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Abstract The homotrimeric P2X7 purinergic receptor has
sparked interest because of its capacity to sense adenosine
triphosphate (ATP) and nicotinamide adenine dinucleotide
(NAD) released from cells and to induce calcium signaling
and cell death. Here, we examine the response of arginine
mutants of P2X7 to soluble and covalently bound ligands.
High concentrations of ecto-ATP gate P2X7 by acting as a
soluble ligand and low concentrations of ecto-NAD gate
P2X7 following ADP-ribosylation at R125 catalyzed by
toxin-related ecto-ADP-ribosyltransferase ART2.2. R125
lies on a prominent cysteine-rich finger at the interface of
adjacent receptor subunits, and ADP-ribosylation at this site
likely places the common adenine nucleotide moiety into
the ligand-binding pocket of P2X7.
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Introduction

Nicotinamide adenine dinucleotide (NAD) and adenosine
triphosphate (ATP) are the universal currencies of energy
metabolism in all kingdoms of life. Following their release
from cells, ATP and NAD can function as extracellular
signaling molecules [1–3]. The extracellular actions of ATP
are mediated through ionotropic P2X and metabotropic
P2Y purinergic receptors [4–7]. Extracellular NAD serves
as a substrate for cell surface ADP-ribosyltransferases
(ARTs) that catalyze the post-translational modification of
membrane proteins by ADP-ribose [8–10]. The concen-
trations of extracellular ATP and NAD are controlled by
ATP- and NAD-hydrolyzing ecto-enzymes such as CD39
and CD38 [11, 12].

Mammalian cell surface ARTs transfer the ADP-ribose
moiety from NAD onto arginine residues on secreted and
membrane proteins including defensin 1, integrins, and the
P2X7 receptor [13–15]. These mammalian ARTs are
closely related in structure and function to bacterial toxin
ARTs like the C2 and C3 toxins of Clostridium botulinum
[16–20]. ADP-ribosylation can either inactivate the func-
tion of the target protein as in the case of actin and
elongation factor 2 [21, 22], or activate target protein
function as in the case of the P2X7 receptor [15, 23].

Among purinergic receptors, P2X7 is widely expressed
on immune cells and plays a crucial role in the processing
and release of the leader-less cytokines IL-1β and IL-18
[24–29]. P2X7 has been implicated in the activation of the
inflammosome, the killing of intracellular microorganisms
by macrophages, apoptosis of T cells, cell fusion, and
shedding of the CD62L homing receptor [15, 30–38].

Activation of P2X7 either by high concentrations of
ecto-ATP or by ADP-ribosylation induces P2X7 to form a
nonselective cation channel, allowing influx of calcium,
followed rapidly by exposure of phosphatidylserine on the
outer leaflet of the plasma membrane [15, 39–42].
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Prolonged activation of P2X7 induces the formation of a
nonselective pore, recently identified as pannexin 1, that
allows the passage of large DNA-staining dyes such as YO-
PRO-1, followed by membrane blebbing, mitochondrial
dysfunctioning, DNA fragmentation, release of lactate
dehydrogenase, and cell death [15, 40, 41, 43–45].

Like other P2X receptors, P2X7 is thought to form
trimers [46]. Each subunit has two transmembrane regions
(Tm1 and Tm2) and cytosolic N- and C-termini [5–7]. The
extracellular ligand-binding domain contains approximately
280 amino acid residues (aa 47–329), including ten
conserved cysteine residues that are probably engaged in
intrachain disulfide bonding [47, 48]. No 3D structure is yet
available for any of the P2X purinergic receptors, but
modern prediction programs such as PSI-PRED [49] can
pinpoint potential secondary structures and provide insight
into the local structural context of amino acid residues [23].

The extracellular domain of P2X7 contains 11 arginine
residues that are strictly conserved in mouse, rat, and
human P2X7 (Fig. 1). Residues R125 and R151 lie on the
side and at the tip of a conspicuous cysteine-rich “finger”
that is connected by three closely spaced disulfide bridges.
Residue R206 is flanked by two potential N-linked
glycosylation sites. Residues R307 and R316 are located
in a β-stranded region upstream of Tm2. The other
conserved arginine residues lie outside of well-defined
secondary structure units, consistent with a location in
loops on the surface of the protein, as would be expected
for charged amino acid residues.

Results and discussion

Lysine substitutions at R206, R276, and R277 result
in enhanced ATP sensitivity, and lysine substitution at R294
results in loss of ATP sensitivity

In order to explore the potential functional significance of
the conserved arginine residues in the extracellular domain
of P2X7 and in order to identify the target residue(s) for
ADP-ribosylation, we analyzed the effects of substituting
each of these arginines for lysine or alanine on expression
and function of P2X7 in transfected human embryonal
kidney (HEK) cells. Cell surface expression levels were
assessed 20 h post-transfection by flow cytometry using
three different fluorochrome-conjugated antibodies that
recognize P2X7 in native conformation [15, 50]. All
arginine to lysine mutants except for mutant R307K were
clearly detectable on the cell surface [23]. Other conserva-
tive substitutions of this residue resulted in low expression
levels, indicating that an arginine at this position is required
for proper expression and/or stability of the protein. Mutants
R151K and R151A were detectable with monoclonal

antibody Hano43 but lost reactivity with mAb Hano44 and
with the anti-P2X7 serum K1G, consistent with the notion
that the cysteine-rich region containing R151 forms a finger-
like structure accessible to antibodies [23].

Using a sensitive live cell imaging technique, we
assessed calcium responses and membrane blebbing of
HEK cells attached to cover slips 20 h after transfection
with wild-type and mutant P2X7 (Fig. 2). When cells were
perfused for 3-min periods with increasing doses of ATP,
we observed small transient responses in untransfected and
mock-transfected HEK cells likely mediated by metabo-
tropic P2Y receptors (panel 1). Typically, these transient
responses were induced at low doses of ATP (10 μM, and
in some cells even at 1 μM). Although ATP mediates a
P2X7-independent response in HEK cells, the responses
mediated by P2X7 could be clearly distinguished from the
former: cells expressing wild-type P2X7 showed a strong
sustained response to 1 mM ATP, which subsided only after
removal of ATP (panel 2). Most P2X7 mutants showed
responses similar to wild-type P2X7(panels 3–6, 8, and 13),
whereas cells expressing R294K and R307K did not show
any responses besides the transient responses also seen in
mock-transfected cells (panels 11, 12). Strikingly, cells
expressing R276K or R277K showed sustained responses
already to 100 μM ATP. Moreover, in these cells, calcium
responses were maintained at elevated levels during
washout of ATP (panels 9 and 10). Similarly, HEK cells
expressing R206K initiated sustained calcium responses
already to 100 μM ATP, albeit with a slight delay (panel 7).

Similar results were obtained using florescence-activated
cell sorting (FACS)-based assays for ATP-induced changes
in forward and side scatter (Fig. 3) by HEK cells harvested
20 h after transfection. Six mutants—R53K, R125K,
R151K, R178K, R230K, and R316K—displayed ATP
potencies in these assays similar to wild-type P2X7 (EC50

150–300 μM) (Fig. 3b, panel 2). Mutant R294K, which is
expressed on the cell surface, and mutant R307K, which is
not expressed on the cell surface completely lacked any
detectable response to ATP (Fig. 3a, panel 2 and Fig. 3b,
panel 1). The three mutants, R206K, R276K, and R277K,
again showed ATP potencies that were enhanced five- to
20-fold compared to wild-type P2X7 (EC50 7.5–30 μM)
(Fig. 3b, panel 3). Similar results were obtained for ATP-
induced exposure of phosphatidylserine and formation of
pores permeable to the DNA staining dye YO-PRO-1 (data
not shown and [23]).

These results underscore the functional importance of
residues R294 and R307. The finding that mutant R294K
was expressed at the cell surface at wild-type levels, but did
not show any detectable responses to ATP or NAD, is in
accord with previous studies reporting loss of function upon
mutation of the corresponding residues to alanine or lysine
in human P2X1 (R292), rat P2X2 (R291), and mouse P2X7
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loss of gating by
ADP-ribosylation
but not by ATP

loss of
antibody binding

enhanced gating by ATP
and by ADP-ribosylation

loss of gating by ATP
and by ADP-ribosylation

impaired expression

impaired signaling

R151K

R125K

R206K

R230K

R294K

R276K

R277K

R307K

Conf: 961221013320356308997311022245788888886401021232321011676237
Pred: CCCHHHHHHHHCCCCCEEEEEECCEEEHHHHHHHHHHHHHHHHHHEECCCCCCCCCCCEE

****** .*************** ****:**.:*: :***:.***:**********:***

Conf: 999998888861233212321000100264111214788768997621570560016465
Pred: EEEEEEEEEEEECCCCCCCCCHHHHHCCCCCCEEECCCCCEEEEEEEEEEECCEECCCCC
mmP2X7 VHTKVKGIAEVTENVTEGGVTKLGHSIFDTADYTFPLQGNSFFVMTNYVKSEGQVQTLCP
rnP2X7 VHTKVKGVAEVTENVTEGGVTKLVHGIFDTADYTLPLQGNSFFVMTNYLKSEGQEQKLCP
hsP2X7 VHTKVKGIAEVKEEIVENGVKKLVHSVFDTADYTFPLQGNSFFVMTNFLKTEGQEQRLCP

*******:***.*::.*.**.** *.:*******:************::*:*** * ***

125 151 178
Conf: 677877667754678888455688961101377168871202566532788765567640
Pred: CCCCCCCCCCCCCCCCCCCCCCCCCCEEEEEEEECCCCCCCEEEEEECCCCCCCCCCCCC

*** * * **: * ****************: *: .:****: **** * :******

206 230
Conf: 122057764650453014652651577676766534327765753440244157654278
Pred: HHHCCCCCEEECCCCCCCCCCCCCCCCCCCCCCCCEEECCCCCCCCCHHHHHHHHHHHCC

**.*************.************* :* :*****: :***.********:* *:

276 277 294
Conf: 840412342588899850258887635686641330278877544220102113201211
Pred: CHHHEEEEEEEEEEEEEECCCCCCCCCCCCCCEEECCCCCCCCCCCEECEEECCCCEEEH

**::**:**************** * *:*:*:********* : *: ************

307 316
Conf: 068404578888517999998268763004788888888887753689999999986200
Pred: HCCCEEEEEEEEEEEEEEEEEECCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

**.:*******.**:********************************:* **::*:**:*

mmP2X7 MPACCSWNDVFQYETNKVTRIQSTNYGTVKWVLHMIVFSYISFALVSDKLYQRKEPVISS
rnP2X7 MPACCSWNDVFQYETNKVTRIQSVNYGTIKWILHMTVFSYVSFALMSDKLYQRKEPLISS
hsP2X7 MPACCSCSDVFQYETNKVTRIQSMNYGTIKWFFHVIIFSYVCFALVSDKLYQRKEPVISS

mmP2X7 EYPRRGAQCSSDRRCKKGWMDPQSKGIQTGRCVPYDKTRKTCEVSAWCPTEEEKEAPRPA
rnP2X7 EYPSRGKQCHSDQGCIKGWMDPQSKGIQTGRCIPYDQKRKTCEIFAWCPAEEGKEAPRPA
hsP2X7 EYPTRRTLCSSDRGCKKGWMDPQSKGIQTGRCVVYEGNQKTCEVSAWCPIEAVEEAPRPA

mmP2X7 LLRSAENFTVLIKNNIHFPGHNYTTRNILPTMNGSCTFHKAWDPQCSIFRLGDIFQEAGE

hsP2X7 LLNSAENFTVLIKNNIDFPGHNYTTRNILPGLNITCTFHKTQNPQCPIFRLGDIFRETGD
rnP2X7 LLRSAENFTVLIKNNIDFPGHNYTTRNILPGMNISCTFHKTWNPQCPIFRLGDIFQEIGE

mmP2X7 ENNVEKRTLIKAFGIRFDILVFGTGGKFDIIQLVVYIGSTLSYFGLATVCIDLLINTYSS
rnP2X7 ENGMEKRTLIKAFGVRFDILVFGTGGKFDIIQLVVYIGSTLSYFGLATVCIDLIINTYAS
hsP2X7 ENNVEKRTLIKVFGIRFDILVFGTGGKFDIIQLVVYIGSTLSYFGLAAVFIDFLIDTYSS

mmP2X7 NFTEVAVQGGIMGIEIYWDCNLDSWSHHCRPRYSFRRLDDKNMDESFVPGYNFRYAKYYK
rnP2X7 NFTEVAVQGGIMGIEIYWDCNLDSWSHRCQPKYSFRRLDDKYTNESLFPGYNFRYAKYYK
hsP2X7 NFSDVAIQGGIMGIEIYWDCNLDRWFHHCRPKYSFRRLDDKTTNVSLYPGYNFRYAKYYK

53

Fig. 1 Schematic diagram of
the functional consequences
following substitution of the
conserved arginine residues in
the ectodomain of mouse P2X7.
The connectivity of cysteine
residues (in red) corresponds to
that proposed for P2X1 and
P2X2 [6]. The conserved
arginine (R) residues in the
ectodomain are indicated by
yellow diamonds, the natural
allelic polymorphism in the
cytosolic domain [70] that
distinguishes C57BL/6 mice
from wild-type mice is indicated
by a pink circle. Potential
glycosylation sites are indicated
by green triangles and predicted
β-strands by blue arrows. The
sequences in the alignment of
mouse, rat, and human P2X7 are
truncated five residues down-
stream of Tm2. Secondary
structures predicted with
PSIPRED [49] are indicated
above the alignment (H helix;
E extended β-strand; C coil,
unstructured). Structure units
with a confidence >8 are
highlighted in blue. Identical
amino acid residues are
indicated by asterisks, strongly
and weakly conserved residues
by colons and periods, respec-
tively. Predicted transmembrane
domains and conserved cysteine
residues are in red, potential
N-linked glycosylation sites are
in green. The 11 conserved
arginine residues in the
ectodomain are highlighted in
yellow and their positions in
residue number (for mouse
P2X7) are indicated above the
alignment
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[50–52]. R294 forms part of a contiguous asparagine–
phenylalanine–arginine (NFR) motif that has been proposed
to coordinate binding of the adenine and ribose moieties
[6]. R307, on the other hand, seems to be important for
proper folding and/or stability of the receptor, since
mutation of this residue to any of five other residues tested
(A, K, Q, E, and H) had a strong negative impact on cell
surface expression. A natural allelic variant, R307Q, has
been described previously for human P2X7 [53], which
also did not show any detectable ATP response.

Lysine substitutions at R206, R276, and R277 result
in enhanced sensitivity to gating by ADP-ribosylation

We further assayed whether activation of P2X7 by ADP-
ribosylation can be observed in HEK cells co-transfected
with ART2 and each of the 11 P2X7 arginine mutants

(Fig. 4). Live cell calcium imaging experiments in which
cells were perfused for 3-min periods with increasing doses
of NAD revealed a small transient response to high NAD
concentrations (250 μM) in untransfected and mock-
transfected HEK cells, possibly mediated by the metabo-
tropic P2Y11 receptor [54]. Strong sustained responses to
100-fold lower concentrations of NAD (2.5 μM) were
detected in the case of cells co-transfected with ART2.2 and
mutants R206K, R276K, or R277K (Fig. 4, panels 7, 9,
10), i.e., the same mutants that had shown dramatically
enhanced sensitivity to ATP in the previous assays (Fig. 2,
panels 7, 9, 10 and Fig. 3b, panel 3). Further, HEK cells co-
transfected with ART2.2 and these mutants responded with
exposure of phosphatidylserine and uptake of YO-PRO-1 in
response to NAD (data not shown). Interestingly, however,
cells co-transfected with ART2.2 and wild-type P2X7 or
P2X7 mutants with wild-type-like sensitivities to ATP did
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ATP (µM )Fig. 2 Potency of ATP to
induce calcium flux in HEK
cells transiently transfected with
P2X7 variants. HEK cells were
co-transfected with expression
constructs for mRFP and
wild-type or mutant P2X7
receptors. Twenty hours post-
transfection, cells were loaded
with the calcium-sensitive fluo-
rochrome Fura-2 before live cell
imaging by fluorescence mi-
croscopy. Images were captured
every 5 s. At the indicated times,
the perfusion buffer (37°C) was
changed to subject cells to
increasing doses of ATP. Ratio
images (340/380 nm) were
constructed pixel-by-pixel and
single cell tracings were
captured using the Openlab
software. Gray lines show single
cell tracings, red lines the
calculated mean
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not show any detectable responses, even to saturating
concentrations of NAD (panels 2–6, 8, 13 in Figs. 2 and 4).

When comparing the responses of P2X7 to the soluble
ligand ATP vs. the immobilized ligand ADP-ribose (gener-
ated by ART2.2 upon exposure of cells to NAD), several
points are worth noting: Firstly, much lower concentrations
of NAD (2.5 μM) than ATP (100 μM) are required to
activate the gain-of-function mutants R206K, R276K, and
R277K. A similar difference in the sensitivity of wild-type
P2X7 to activation by ATP vs. NAD has been noted
previously for primary T cells [15]. This much higher
sensitivity to low concentrations of NAD vs. ATP most
likely reflects a higher stability and consequently higher
local concentration of a covalently bound vs. soluble
ligand. Secondly, and in accord with this notion, calcium
signals subside more slowly during washout of saturating
concentrations of NAD than ATP (panels 7, 9, and 10 in
Fig. 2 vs. Fig. 4). Similarly, PS exposure by primary T cells
induced by short pulse treatments of ATP was readily
reversed but the effects induced by pulse treatments with
NAD were not [15]. Thirdly, in ART2.2 co-transfected
HEK cells, neither wild-type P2X7 nor any of the six
mutants with wild-type-like responses to ATP showed any
detectable responses to NAD (Fig. 4, panels 2–6, 8, and
13), even at concentrations far above the levels required for
saturating ADP-ribosylation of proteins on the HEK cell
surface. Most likely, the different sensitivities of P2X7 to
activation by ADP-ribosylation in HEK cells vs. primary T
cells reflect differences in these cells in proteins and/or

lipids in the plasma membrane available for interaction with
P2X7 [55, 56]. Indeed, even different subsets of T cells
evidently differ in their sensitivity to P2X7 activation, with
regulatory T cells being particularly sensitive [57].

ADP-ribosylation at R125 in the cysteine-rich
finger provides a ligand for the binding site
while ADP-ribosylation at R133 does not

Analysis of radiolabeling of P2X7 mutants in ART2.2 co-
transfected HEK cells using radioactive [32P]-NAD as
substrate allowed us to identify R125 and the nearby
nonconserved residue R133 as the sole targets for ADP-
ribosylation in P2X7 [23]. Both of these residues are located
in a prominent finger-like cysteine-rich region (Fig. 1). The
NAD-mediated activation of P2X7 in HEK cells co-
transfected with the gain-of-function mutant R276K and
ART2.2 allowed us to directly assess whether ADP-
ribosylation of P2X7 itself or ADP-ribosylation of other
membrane proteins was responsible for gating of P2X7 [23].
Replacement of R125 by lysine in R276K abolished
responses to NAD, while replacement of R133 by lysine
did not. Importantly, substitution of residues R125 or R133
with lysine, either alone or in combination, did not alter the
sensitivity to ATP, indicating that the ligand-binding site
itself was not affected by these substitutions. These results
demonstrated that ADP-ribosylation at R125 gates P2X7,
whereas ADP-ribosylation at R133 does not [23]. The
observation that the R125K mutant could not be activated

Fig. 3 Potency of ATP to in-
duce changes in forward and
side scatter of HEK cells tran-
siently transfected with P2X7
variants. HEK cells were
transfected with expression
constructs for wild-type or
mutant P2X7 receptors. Twenty
hours post-transfection, cells
were harvested by mild
trypsinization and cells were
incubated for 60 min in the
absence or presence of the
indicated concentrations of ATP
before FACS analyses.
a Contour plots illustrating the
changes in cell size (forward
scatter, FSC) and cell granulari-
ty (side scatter, SSC) induced by
1 mM ATP. b Dose–response
curves illustrating the mean FSC
of HEK cells treated as in (a) as
a function of the concentration
of ATP
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by ADP-ribose groups bound either to R133 or attached to
other target proteins on the cell surface effectively rules out
the model proposed by Kawamura and coworkers, in which
P2X7 was proposed to be activated by ADP-ribosyl groups
presented on neighboring ADP-ribosylated proteins [35].

In analogy to glutamate and nicotinic receptors, it has been
proposed that the ligand-binding site of P2X purinergic
receptors is located at the interface of two adjacent receptor
subunits [5, 6]. Our model for the activation of P2X7 by
ADP-ribosylation is in line with this notion (Fig. 5). We
propose that the ADP-ribose moiety covalently attached to
R125 provides a ligand that fits into the binding site between
two adjacent P2X7 subunits. This model accounts for the
resistance of P2X7 to activation by covalently linked etheno-
ADP-ribose and other ADP-ribose analogues carrying
modifications of the adenosine moiety, as these analogues
would not be expected to fit into the ligand-binding site [15].

Moreover, our model accounts for the finding that ADP-
ribosylation at the second target site, R133, does not activate
P2X7, as the ADP-ribose unit attached to R133 would be out
of reach of the ligand-binding site. Further, our model is in
accord with the notion that residue R125 lies at the interface
of two neighboring subunits. This is consistent with recent
findings for the corresponding histidine residue in P2X2,
H120 [58]. A disulfide bond was formed between adjacent
P2X2 subunits when this residue and residue H213 (S215 in
P2X7) were mutated to cysteine.

Our results further indicate that the cysteine-rich region
plays an important functional role and may form an
exposed finger-like structure. This region is accessible to
ART2.2 (i.e., can be ADP-ribosylated at R125 and R133)
as well as to antibodies, with residue R151 at the tip of the
finger-forming part of the epitope recognized by both, the
monoclonal rat antibody Hano43 and by the polyclonal
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Fig. 4 Potency of ADP-
ribosylation to induce calcium
flux in HEK cells transiently
transfected with P2X7 variants.
HEK cells were co-transfected
with expression constructs
for mRFP, ART2.2, and
wild-type or mutant P2X7
receptors. Twenty hours post-
transfection, cells were loaded
with the calcium-sensitive fluo-
rochrome Fura-2 before live cell
imaging by fluorescence mi-
croscopy as in Fig. 2. At the
indicated times, the perfusion
buffer (37°C) was changed to
subject cells to increasing doses
of NAD. Gray lines show single
cell tracings, red lines the cal-
culated mean
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rabbit serum K1G. Moreover, recent reports indicate that
mutation of other residues in this region can result in gain-
of-function P2X7 (A127K in mouse P2X7 and H155Y in
human P2X7) [59, 60] or affect the inhibition of P2X7
function by zinc and magnesium (H130A in rat P2X7) [61]
(see also Fig. 6, below).

Comparison of the P2X7 mutants analyzed
here with those of other P2X receptors

Table 1 provides a comparison of the mouse P2X7 mutants
analyzed in the present study with those of previous
mutagenesis studies on other P2X receptors (summarized
in [6, 7, 62]). The only arginine that, when mutated, impairs

ATP potency in all P2X receptors analyzed so far is residue
R294. Mutation of the corresponding residues in human
P2X1 (R292) and in rat P2X2 (R291) also resulted in
dramatic reduction in ATP potency [51, 52]. This residue
forms part of a conserved NFR motif found in all P2X
receptors and has been proposed to coordinate the adenosine
and ribose moieties [6]. The results of a recent, elegant
mutagenesis study with rat P2X1 strongly indicate that this
motif lies at the interface of two adjacent receptor subunits
near the ATP-binding site: simultaneous cysteine substitu-
tions of the corresponding phenylalanine residue (F291)
and lysine 68 (corresponding to K64 of P2X7 see Fig. 5)
allowed the formation of an intersubunit disulfide bond,
which was inhibited by ATP [63].

Fig. 5 Model for the activation
of P2X7 by ADP-ribosylation at
R125. a Schematic diagram of
the trimeric P2X7 receptor
complex in open conformation
following binding of ATP at
the interface of two adjacent
subunits. b ADP-ribosylation at
R125 places the attached ADP-
ribose in the ligand-binding site,
inducing the open conformation.
c ADP-ribosylation at residue
R133 places the attached ADP-
ribose out of reach of the bind-
ing site. d Schematic diagrams
of the soluble ligand ATP and of
ADP-ribose in covalent linkage
to R125. Residues K64 and
K311 may interact with the
negatively charged phosphate
groups, residues F293 and R294
with the adenine–ribose moiety
[6, 76]

Fig. 6 Summary of mutagenesis data for P2X receptors in the region
of the cysteine-rich finger. The arginine residues that serve as targets
for ADP-ribosylation in mouse P2X7 [23], rat, and human P2X7 (our
own unpublished observations) are highlighted in cyan. Conserved
cysteine residues are highlighted in yellow. Amino acid residues that,
when mutated, result in a gain-of-function are shown in bold and are

highlighted in green [59, 60]. Residues that alter the sensitivity of the
receptor to zinc, copper, and/or magnesium are shown in bold red [58,
59, 61, 77]. The positions of the cysteines (numbering for mouse
P2X7) are indicated on top, the proposed connectivity [6] is indicated
below. mm = Mus musculus, hs = Homo sapiens, rn = Rattus
norvegicus, sm = Schistosoma mansoni, dd = Dictyostelium discoideum
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Other arginine mutants, evidently, affect only certain
members of the P2X family. For example, mutation of the
residue corresponding to R307 (which seems to be essential
for the stability and cell surface expression of mouse P2X7)
resulted in a loss of function of human P2X7 (R307Q) and
of ratP2X2 (R304A), but not of human P2X1 (R305A) [52,
53]. Mutation of the residue corresponding to R316 (which
impaired cell surface expression but not ATP potency of
mouse P2X7, see above) did not affect the ATP potency of
human P2X1 (R314A) [51]. Mutation of residue R230 to K
or A did not affect the function of mouse P2X7, whereas
mutation of the corresponding residues (K228A) moderate-
ly impaired the ATP potency of rat P2X2 [64].

At the position corresponding to the R206K gain-of-
function mutant of mouse P2X7, human P2X1 (R202) and
hP2X7 (R206) also carry an arginine residue, while hP2X2
(K200) and hP2X4 (K203) carry a lysine residue. Mutation of
R202 did not affect the ATP potency of human P2X1 [51]. The
arginine doublet at the other two gain-of-function mutants of
mouse P2X7 (R276, R277) is conserved in rat P2X2 (R274/
R275), rat P2X4 (R277/R278), and human P2X7 (R276/
R277), but not in human P2X1 (H277/G278). Mutation of the
downstream arginine residue in this doublet in rat P2X4
resulted either in a slightly enhanced ATP potency (R278K)
or in a dramatically reduced in ATP potency (R278A) [65].

The arginine residues in the cysteine-rich finger of mouse
P2X7, which serve as targets for ADP-ribosylation in mouse
P2X7, are only partially conserved in rat and human P2X7,
where they also function as targets for ADP-ribosylation (our
own unpublished observations). However, these residues are
conserved neither in other mammalian P2X receptors nor in
the distant P2X orthologs of Schistosoma mansoni [66, 67]
and Dictyostelium discoideum (Fig. 6). Note that the distal
portion of the finger is missing in the Dictyostelium P2X,
recently shown to be expressed in an intracellular organelle
(the contractile vacuole) where it plays a crucial role in cell
volume regulation [68]. The absence of suitable targets for
ADP-ribosylation in other P2X receptors indicates that
gating by ADP-ribosylation is unique to P2X7. It is tempting
to speculate that there may be an evolutionary link between
the comparatively low sensitivity of P2X7 to gating by the
soluble ligand ATP and its unique capacity to be gated by a
covalently tethered ligand.

Materials and methods

Cloning of expression vectors and cell transfections

Expression vectors for wild-type ART2.2 and wild-type or
mutant P2X7 were cloned as described previously [23, 69–
71]. The expression construct for monomeric red fluorescent
protein (mRFP) was from Clontech. Expression constructs
(5 μg per 106 cells) were transfected into HEK cells with the
jet PEI transfection reagent (Q-Biogen). Anti-P2X7 anti-
bodies were generated by genetic immunization as described
previously [50, 71]. Antibodies were conjugated to Alexa-
488 according to the manufacturer's (Molecular Probes/
Invitrogen) instructions.

FACS analyses

Cells were harvested by trypsinization 20 h post-transfection,
followed by staining with Alexa-488-conjugated antibodies
(0.2 μg/2×105 cells/100 μl). Separate aliquots of cells were
washed and then incubated in the absence or presence of the
indicated concentrations of ATP in 10 mM HEPES
pH 7.5, 140 mM NaCl, 5 mM KCl, 10 mM glucose for
60 min at 37°C. Cells were washed before FACS analyses
using a FACS-Calibur and the Cellquest-Pro software
(Becton Dickinson).

Calcium imaging by fluorescence microscopy

For ratiometric calcium imaging [72, 73], HEK cells were
co-transfected with expression vectors for P2X7, ART2.2,
and mRFP as indicated and plated at low density on glass
bottom culture dishes (35 mm, MatTek, Ashland, USA).

Table 1 Summary of mutant phenotypes

Residues corresponding to those analyzed in this study

mP2X7 hP2X7 hP2X1 rP2X2 rP2X4

R53K R53 T57 D57 E56

R125K R125 G123 H120A A122

R151K R151 K148 H146 R148

R178K R178 R175 N173 Q175

R206K R206 R202A K200 K203

R230K R230 Q231 K228A R231

R276K R276H H277 R274 R277

R277K R277 G278 R275 R278K

R294K R294 R292A R290A R295

R307K R307Q R305A R304A R309

R316K R316 R314A R313 R318K

Other positively charged residues with altered ATP potency

K64 K64 K68A K69A K67

K66 K66 K70A K71A K69

K193 K193A K190A K188A K190R

K311 K311A K309A K308A K313

Italics mutants with no or only small changes in ATP sensitivity, bold
mutants with strongly reduced ATP potency, bold italics and under-
lined gain-of-function mutants, upright (without emphasis) residues
that to our knowledge have not been tested by mutagenesis.
References for: human P2X7 [53, 60, 74], human P2X1 [51], rat
P2X2 [52, 64, 75], and rat P2X4 [65]
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Twenty hours post-transfection, the culture medium was
removed gently and replaced with prewarmed buffer
(15 mM HEPES, pH 7.4, 140 mM NaCl, 5 mM KCl,
1 mM MgCl2, 1.35 mM CaCl2, 10 mM glucose, 0.1%
BSA), containing 4 μM Fura-2/AM (Calbiochem) for
30 min at 37°C. Imaging of cells was performed with a
Leica DM-IRBE fluorescence microscope equipped with
perfusion system (Warner Instruments, Hamden, USA) and
a 40× objective (1.3 numerical aperture). Cells were
continuously perfused with prewarmed (37°C) buffer (see
above) containing the indicated concentrations of ATP or
NAD. Alternating excitation at 340 and 380 nm was
achieved using a monochromator system (Polychrome II;
TILL Photonics, Graefelfing, Germany). Two images were
acquired every 5 s with a grayscale CCD camera (type
C4742-95-12NRB; Hamamatsu, Enfield, UK). Raw data
images were stored on a hard disc, and ratio images (340/
380 nm) were calculated using Openlab software (v3.09;
Improvision, Tübingen, Germany).
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