
A new SEAIRD pandemic prediction model with clinical
and epidemiological data analysis on COVID-19 outbreak

Xian-Xian Liu1
& Simon James Fong1,2

& Nilanjan Dey3 & Rubén González Crespo4
& Enrique Herrera-Viedma5

Accepted: 11 September 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Measuring the spread of disease during a pandemic is critically important for accurately and promptly applying various lockdown
strategies, so to prevent the collapse of the medical system. The latest pandemic of COVID-19 that hits the world death tolls and
economy loss very hard, is more complex and contagious than its precedent diseases. The complexity comes mostly from the
emergence of asymptomatic patients and relapse of the recovered patients which were not commonly seen during SARS
outbreaks. These new characteristics pertaining to COVID-19 were only discovered lately, adding a level of uncertainty to the
traditional SEIR models. The contribution of this paper is that for the COVID-19 epidemic, which is infectious in both the
incubation period and the onset period, we use neural networks to learn from the actual data of the epidemic to
obtain optimal parameters, thereby establishing a nonlinear, self-adaptive dynamic coefficient infectious disease
prediction model. On the basis of prediction, we considered control measures and simulated the effects of different
control measures and different strengths of the control measures. The epidemic control is predicted as a continuous
change process, and the epidemic development and control are integrated to simulate and forecast. Decision-making
departments make optimal choices. The improved model is applied to simulate the COVID-19 epidemic in the
United States, and by comparing the prediction results with the traditional SEIR model, SEAIRD model and adaptive
SEAIRD model, it is found that the adaptive SEAIRD model’s prediction results of the U.S. COVID-19 epidemic
data are in good agreement with the actual epidemic curve. For example, from the prediction effect of these 3
different models on accumulative confirmed cases, in terms of goodness of fit, adaptive SEAIRD model (0.99997) ≈
SEAIRD model (0.98548) > Classical SEIR model (0.66837); in terms of error value: adaptive SEAIRD model
(198.6563) < < SEAIRD model(4739.8577) < < Classical SEIR model (22,652.796); The objective of this contribution
is mainly on extending the current spread prediction model. It incorporates extra compartments accounting for the
new features of COVID-19, and fine-tunes the new model with neural network, in a bid of achieving a higher level
of prediction accuracy. Based on the SEIR model of disease transmission, an adaptive model called SEAIRD with
internal source and isolation intervention is proposed. It simulates the effects of the changing behaviour of the SARS-CoV-2 in
U.S. Neural network is applied to achieve a better fit in SEAIRD. Unlike the SEIRmodel, the adaptive SEAIRDmodel embraces
multi-group dynamics which lead to different evolutionary trends during the epidemic. Through the risk assessment indicators of
the adaptive SEAIRD model, it is convenient to measure the severity of the epidemic situation for consideration of different
preventive measures. Future scenarios are projected from the trends of various indicators by running the adaptive
SEAIRD model.
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Abbreviations
S Susceptible People
Sq Isolated Susceptible People
E In Incubation Period
A Asymptomatic Patients
I1 Undetected Infected Population
I2 Infected People under Treatment

(Limited, subject to hospital
equipment supply)

R Cure (Fully recovered, not fully recovered)
D Dead
Sq Isolated Susceptible People without

Risk of Infection
Eq Isolated People in Incubation

Period, No Risk of Infection
Iq Isolated Infections without Risk of Infection
φ Probability of Exposure to Infection
ρ Probability of Susceptibility to Isolation
β Rate of Exposure of Susceptible

People to People in Incubation
Period or The Infection

β1 Probability That the People In
Incubation Period will Turn
Negative (based on the onset period of 14 days)

ε Infection Rate of People in Incubation Period
α Probability That the People in

Incubation Period will Turn
Positive (relapse rate)

η Ratio of Symptomatic Infections
to All Infections

p1 Proportion of Untreated Patients
with SARS-CoV-2

p2 Percentage of Infected People Being Treated
α Probability That Person in The

Incubation Develops into An Infected Person
θ1 Probability of Isolated Infected Population
θ2 Probability of Confirmed Patient

Being Isolated (Limited hospital equipment)
γR Removal Rate of Infected Persons(cure rate)
γ Removal Rate of Infected Persons(mortality rate)
γq Probability of Quarantined Infected

Person Receiving Treatment
μ Rate of Cured Patients Turning Positive
ω Isolation Rate of Susceptible Population
ξ The Ratio of Reverting to The

Susceptible After Recovery
ν1 ν2 Birth Rate, Natural Mortality Rate

1 Introduction

COVID-19 outbreak has hit the world so hard; thousands of
lives were lost; world economy was hammered. This current

pandemic might be eased if the government of a country is
prepared with appropriate health safety measure taken early.
One of the most effective safety measures [1], proven success-
ful to certain extent by some countries, is called lockdown that
comprises mainly of social distancing, staying at home and
closing borders from domestic and international travellers.
The protection over the susceptible individuals who are vulner-
able and be able to be infected, by this lockdown scheme is to
stop or slow down the spread of disease by reducing the social
activities and interactions between people in a society. In theo-
ry, if everybody’s mobility is restricted and totally isolated,
there is no chance for the virus to have passed from one to
another. However, this means a huge loss in economy, as pro-
ductivity and activities are brought to standstill. It is hence a
challenging problem to find a compromise between thwarting
the economy and keeping the number of infected patients man-
ageable, with the aim of preventing the medical infrastructure
from collapse. So, that new patients could be admitted to hos-
pital for medical treatment, while existing patients would have
discharged from hospital freeing up the limited resources, e.g.
beds and respiratory aid devices. To decide on the intensity and
duration of lockdown, multiple factors are considered; these
include the prediction of the future number of infected people
in a population, which usually comes from a disease spreading
model called SEIR (susceptible, exposed, infected, and recov-
ered) [2]. SEIR is the most basic model that depicts how a
contagious disease spreads from a handful of carriers in a pop-
ulation at the beginning to a growing percentage of people who
get cross-infected in the future. Almost every country is
adopting this SEIR model or its modified versions as a refer-
ence for making decision about imposing and lifting lockdown.

On the other hand, there is another proposal called “herd
immunity” [3] - it advocates that natural resistance to the virus
can be achieved after a significant portion of population has
become immunized from their previous information.
Therefore, the virus will either be eradicated, or the spread
can be slowed down, because the chain of spread can be cut
when the number immunized individuals has reached 60%
[4]. By then the suspectable individuals especially those who
are elders or possess pre-conditions can be spared. UK and
Sweden governments had been considering the herd immuni-
ty strategy [5], while the rest of the world are practicing lock-
down and social distancing to protect their citizens from the
disease. In either case, SEIR model is used as a simulator for
estimating the numbers of susceptibles, exposed, infested and
recovered, and their inter-dependent changes as the virus
spreads over time.

At the time of writing this article, COVID-19 is still prev-
alent as a pandemic, taking many lives. Just United States
alone, the number of infected surpasses 1.5 million, with more
than 100,000 deaths.1 Should appropriate protection actions

1 https://www.worldometers.info/coronavirus/country/us/
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be taken in time by a capable president, the course of infection
and fatality rates would be very different. It is observed that
since the first outbreak was confirmed in Wuhan, China, the
prognosis and the characteristics of COVID-19 have changed
[6]. Some of the most noticeable changes about COVID-19
are 1) asymptomatic patients [7-10] and (2) relapse of recov-
ered patients [11-13].

Asymptomatic patients are those infected with the corona-
virus, but not showing visible symptoms such as spiking fe-
vers and coughing. There exist a certain number of people
who have been infected without knowing it. In epidemiology,
it is not uncommon for an infection without any obvious
symptoms, while the carrier is able to spread the disease. Up
to 25% of infections of common flu happenwith no symptoms
[14]. It is not a medical anomaly as the immune system in our
body often displays a latency to battle the infection, and symp-
toms are side effect of the fight. The virus in this case can be
spread by normal exhalations through which tiny droplets are
produced from breaths. Some studies found that respiratory
related virus can exist during the pre-symptomatic stage for
longer than a week. Without exhibiting coughing and fever
which are the usual characteristics of COVID-19, carriers can
go undetected and transmit the virus to people everywhere he
goes, contributing to the pandemic.

In an effort of serosurveillance, blood samples from 10,000
volunteers were collected and analyzed in the United States
[15]. The aim of serosurvey is to measure the number of un-
detected cases of COVID-10 infection including those pre-
symptomatic, symptomatic and asymptomatic patients for un-
derstanding the characteristics of the SARS-CoV-2. It was
found by surprise that up to 20% of residents in New York
City, they might have already been infected with COVID-10
previously, from their blood samples. They did not even know
that they were infected before and their immune systems had
defeated off the virus.

On the other hand, thousands of people have recovered
from COVID-19, since more than three million cases of infec-
tion were reported from worldwide. Generally, it is believed
as a hype that those who recovered from the disease would
have developed an antibody immune [16]. Although the re-
covery rate is encouraging at approximately 95% in developed
countries, in reality those who were infested and recovered
can get sick again through a second infection [17]. In other
words, there is no absolute immunity despite a patient had
recovered from COVID-19. So far, there is no evidence prov-
ing that COVID-19 patients who have recovered are guaran-
teed to have antibodies which protect them from a second
infection. Also, currently it is unknown about howmuchmore
or less contagious a second infection is, to the suspectable
group of people. The existence of asymptomatic carriers and
the potential threat of contagion from a second infection in
local community, had bluntly refute the assumptions of the
family of SEIR models, making them look overly idealistic

and outdated. The shortcomings of the current models, the
uncertainty about the new level of contagiousness, and its
associated risks gave new impetus to the need of a new disease
spreading model.

Furthermore, some classical epidemic models (SIR, SEIR)
are not suitable to the evolution of SARS-CoV-2. Therefore,
the SEIR model [18] is proposed to be extended to a new
adaptive SEIARDmodel. The advantage of this model design
is to allow a neural network predictor to fit the model, so as to
obtain a high degree of fitting and maintain a good tracking of
epidemic trends [19]. In our modelling, isolation for the
suspected population and infection during the incubation time
are taken into consideration. Multiple groups make the model
more adaptable to the real situation. In view of the spreading
characteristics of this outbreak, we considered the mutual
transformation among different groups to make the model
circular and communicative. For example, the model allows
the recovered individual returns to the susceptible population
to account for the insufficient evidence that antibody will in-
deed be developed after contracting the virus once. Since, our
model takes into account of the death population, in order to
maintain the stability of the population, we introduced com-
partments of births and deaths to accommodate our model
internal motivation. Making the model more convincing, we
also take the infection during quarantine and contagious of
asymptomatic patients into consideration and form a complex
network flow.

The paper is organized as follow. In section 2, the factor of
susceptible population, whether they are separately gender,
age and smoking or not are analyzed. In section 3, some clin-
ical characteristics of SARS-CoV-2 are divided into three
main parts: treatments and outcomes of patients infected with
COVID-19, baseline characteristics of patients and laboratory
findings of patients infected with SARS-CoV-2 on admission
to hospital. The significance difference of parameters/
symptoms in different forms is studied to get the correlation
with severe patients. In section 4, the transmission path of
SARS-CoV-2 is described, so to show how the virus spread
and prevent the transmission of virus between people by peo-
ple. In section 5, using the infected population dataset, the
incubation period of infected population by gender and age
is analyzed. In section 6, the adaptive SEIARD model is pro-
posed to simulate the evolution of the outbreak of SARS-
CoV-2 in United States. Due to the poor fitting, in the default
setting, neural network is used to improve the fitness of the
curve. The neural network predicts the tendency of multi-
groups, such as suspected population, exposed population,
infected people, asymptomatic population, cured people and
dead patients. In section 7, the simulation data of the training
set is compared with the actual data. The goodness of fit and
error values are then used as indicators to evaluate the exper-
imental results. In section 8, for the testing set, comparing the
simulation data and actual data in the testing set are also used
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as evaluation indicators for the improved model to further test
the prediction effect of the model. In section 9, in order to test
the applicability of the model, we compared the epidemic data
of two countries with different cultural backgrounds (the
United States vs Singapore) to further verify that the model
is highly self-adaptable. In section 10, the index of risk assess-
ment from the adaptive SEAIRD model in section 6 helps us
judge how the epidemic developed. Therefore, we can get the
tendency of different index from the adaptive model to help
the epidemic prevention department make measures to control
the epidemic in advance, so as to prevent disastrous situations
from happening. In section 11, the potentially lethal features
are discussed, to effectively release ICU beds to those in need
and it is crucial to reduce mortality. Section 12 concludes the
paper.

2 Population at risk (susceptible population)

In the current global outbreak of new coronavirus, research on
“who are susceptible” has become a key issue. In real life,
people’s susceptibility to SARS-CoV-2 is different, and we
need to focus on the protection of particularly susceptible
people, so as to avoid the emergence of “super spreaders”.
In this paper, we determine whether it is a susceptible factor
by comparing the gender, and age of different states in U.S.
with the infected and fatalities, and studying the significant
difference (P value) of the smoking population and patients
with chronic diseases compared with the infected population
with COVID-19.

With the collected epidemic dataset in different states of
U.S., the gender ratio, infected population and fatalities cases
are visualized to obtain a heatmap graph. From Fig. 1, we

found that the proportion of men and women in each state
has a certain relationship with the infection rate. In several
states in U.S. with a high infection rate, such as South
Dakota, Utah, Vermont, New York, New Jersey, Louisiana,
Massachusetts, and Connecticut, the ratio of male to female is
mostly equal. In addition, the proportion of women in the
District of Columbia is highest comparing with other states.
On the contrary, the proportion of men in Alaska is highest,
and the first one has a higher infection rate than the second.
These phenomena indicate that states with mostly equal ratios
of male to female and the proportion of females is slightly
higher than the proportion of male would have higher infec-
tion rates. It is also found that the death rates in all states are
generally high.

In the collected data, there are three age groups (age 0-25,
age 26-54 and age 55+) in different states. There are many
young people between the ages of 0-25 in Utah, and
their infection rate is relatively high. District of
Columbia has the highest ratios of middle-aged from
26 to 54 years old women, which its infection rate is
highest. The proportion of people over 55 years old is
generally large in all states, which shows that old peo-
ple have higher susceptibility to the virus due to weaker
immunity, the fact shows that the SARS-CoV-2 is susceptible
to all age groups. From Fig. 2, since the influence of age on the
infection rate will be different at different ages, it needs to be
analyzed by age group.

Through analysis, the middle-aged women and elderly
population is relatively weak and the risk of infection is great-
er than other groups. They should be taking more attention on
disease prevention.

By normalizing the smoking rate and mortality rate,
and then calculating the error values, the results are shown in

Fig. 1 Number of deaths and
infected population by gender
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Fig. 3. We can find that the errors between smoking rate and
infection rate or mortality rate are similar. As shown in Fig.
4(a), the residual value of smoking rate and mortality rate is
roughly between −1 ~ 1. Due to the high similarity be-
tween the infection rate / mortality rate with the
smoking rate, we only study the residual value between
the smoking rate and the infection rate. As shown in
Fig. 4(b), most of the residual values between the
smoking rate and the infection rate are fluctuating be-
tween −1 and + 1. The fact that most of the residual
values between the smoking rate and the infection rate
or mortality rate of each state have not obvious mathe-
matical statistical significance indicates that the smoking
rate is not obvious correlation to the infection rate and
mortality rate.

3 The clinical characteristics of SARS-CoV-2

SARS-CoV-2 has posed a serious threat to global health. In
the early stages of the epidemic, Through the study of more
than 5000 cases of infection, we found that the most common
clinical features of SARS-CoV-2 patients at the time of onset
were fever, dry cough, tiredness, sore throat and difficulty in
breathing, and some people may still experience other symp-
toms, including diarrhea, runny nose, nasal congestion and
pains [20]. In the heat map, the yellow part indicates the pres-
ence of the disease, and the dark blue part indicates the ab-
sence of the disease. As shown in the Fig. 5, we can see that
after being infected with COVID-19, patients most often have
these symptoms, such as difficulty in breathing, dry cough and
tiredness.

Fig. 2 Age distribution in the
U.S. states

Fig. 3 Error between normalized
smoking rate and fatalities rate
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In initial performance, based on clinical characteristics to
determine whether is SARS-CoV-2 patients, most patients
confirmed with SARS-CoV-2 experienced breathing difficul-
ty, dry cough and tiredness. Some people experienced other
symptoms such as runny nose and nasal congestion. From Fig.
6, we can see that patients infected with COVID-19 may also
have other symptoms, such as runny nose and nasal
congestion.

Table 1. shows the difference of the treatments and their
outcomes between ICU patients and no ICU patients infected
with COVID-19. In terms of complications, acute respiratory
distress syndrome, acute cardiac injury, acute kidney injury,
acute kidney injury, secondary infection and shock have sig-
nificant statistical difference (P value<0.05). For example,

acute respiratory distress syndrome (ARDS) is the main com-
plication of critical patients. Among patients, critical patients
with acute respiratory distress syndrome account for 85%,
while ordinary patients account for 4%. In terms of complica-
tions, the use of corticosteroid of critical patients count for
46%. 23% of the patients who used continuous renal replace-
ment treatment were critical patient. In terms of oxygen sup-
port, only 8% of critical patients use nasal cannula to inhale
oxygen. The use of other support equipment (non-invasive
ventilation or high-flow nasal cannula, invasive mechanical
ventilation and invasive mechanical ventilation and ECMO)
accounts for a large proportion.

From the Tables 2, 3 and 4, almost all patients have com-
mon symptoms such as fever, cough, myalgia or fatigue,

Fig. 5 Five Major Symptoms of
SARS-CoV-2

Fig. 4 Residual case order plot
(smoking rate vs infected rate &
smoking rate vs fatalities rate)
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sputum production, headache, hemoptysis, and diarrhea. The
study finds that critical patients have difficulty breathing after
around 11 days (median time) from illness onset, while the
ordinary patients need 6 days. The highest temperature range
of severe patients is respectively 37.3-38 (23%), 38.1-39.0
(54%), and 39.0 ~ (23%). Severe patients have a greater pro-
portion of symptoms of dyspnea, which accounts for 92%.
Patients in ICU need almost 8 days to transfer from the first
admission. The systolic pressure of patients in ICU reaches
145.0, which indicates that severely ill patients have high
blood pressure. Respiratory rate of patients in ICU is higher
than 24 breaths /min, which accounts for 62%.

SARS-CoV-2 patients have different white blood cell
counts. Severe patients have more white blood cells than nor-
mal patients(>10 × 109/L), which account for 54%.
Neutrophil Count (10·6 × 109/L) and Lymphocyte count (0·
4 × 109/L) have been reported, and they are different from
ordinary patients. Prothrombin time of patients (PT) in ICU
need 12.2 s, which shows that the SARS-CoV-2may cause
coagulation factor damage. Comparing to the ordinary pa-
tients, the D-dimer of severe patients have extraordinarily high
content (2.4 mg/L) and an extremely elevated D-dimer is
uniquely associated with severe disease, mainly including
VTE, sepsis and/or cancer [21, 22]. Severe patients have a
lower albumin level (27.9 g/L), which indicates severe pa-
tients may have malnutrition. Alanine aminotransferase
(ALT) is an enzyme found primarily in the liver and kidney
[23]. Normally, a low level of ALT exists in the serum. ALT is
increased with liver damage and is used to screen for and/or
monitor liver disease, and serve patients have a high content of
ALT (49 U/L) [24]. Total bilirubin of sever patents infected
with SARS-CoV-2 have a high content (14.0 mmol/L), which
their bilirubin levels are higher than normal and it is a sign that
either severe patients’ red blood cells are breaking down at an
unusual rate or that their liver isn’t breaking down waste

properly and clearing the bilirubin from severe patients’ blood
[25]. Severe patients have high content of Lactate dehydroge-
nase (LDH), which reach around 400 U/L. and if any cell is
abnormally damaged, LDH will increase [26]. Procalcitonin
has an important role in evaluating and managing lower respi-
ratory tract infections (LRTIs) in adults (including pneumo-
nia, acute bronchitis, and acute episodes of chronic obstructive
pulmonary disease). The procalcitonin of severe patients with
SARS-CoV-2 is ≥0·5, which account for 25%, and it shows a
high procalcitonin level, it is likely severe patients have a
serious bacterial infection such as sepsis or meningitis. The
higher the level, the more severe a patient may have been
suffering from the infection [27].

4 SARS-CoV-2 transmission path

SARS-CoV-2 mainly spreads through droplets and contact,
the SARS-CoV-2 quickly spread to the whole country and
other countries. [28]

Respiratory tract infections can be spread by droplets of
different sizes: when the droplet diameter is greater than 5-
10 μm, they are called infectious droplets, and when the di-
ameter is less than 5 μm, they are called infectious droplet
nuclei [29]. The virus is released together with the droplets
(sneezing, coughing, saliva, etc.) of the infected person. They
can adhere to the surface of the object after the droplets settle,
or the water in the droplets evaporates into droplet nuclei. The
virus can spread to any places far away. Nearby people are
infected by inhaling the virus through mouth and nose [30].

We can learn how to prevent from infecting SARS-CoV-2
through viral transmission by droplet nucleus: Wearing masks
could shield off the spread of viruses by establishing physical
barriers between virus and people. In the prevention and con-
trol of respiratory infectious diseases, the mask not only

Fig. 6 Other symptoms
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prevents the virus carrier from spraying droplets outwards,
reducing the volume and spread speed of droplets in the air;
it also blocks the virus droplet nucleus and reduces the risk of
inhalation by people.

5 Incubation period

As Figs. 7, 8 and 9 shown, the incubation period refers to the
period from when the pathogen invades the body until the
earliest clinical symptoms or signs appear. In different popu-
lations, the immune response is different, and the symptoms
may vary too. For example, children may have a weaker im-
mune response than adults, and it is less likely to show symp-
toms. In addition, asymptomatic after viral infection may also
be related to the individual’s unique constitution. These peo-
ple are all asymptomatic infected persons, which is why some

patients with SARS-CoV-2 have no clinical symptoms but are
infectious.

By studying the relationship between incubation period
and gender, it is found that women have a longer incubation
period than men. Although, the women were not diagnosed in
the early stage, they might have already been infected; her
symptoms are mild or asymptomatic. In response to this situ-
ation, the epidemic prevention department should take differ-
entiated measures to control disease against women as soon as
possible. For example, during the screening process, a nucleic
acid test should be performed directly on women with a clear
history of exposure. Regardless of whether they have symp-
toms, the isolation period of women under medical observa-
tion should also exceed 14 days.

As Fig. 10 shown, in the data set under study, there is no
epidemic data of ages between 30 and 40 years old. Therefore,
the study of people between 30 and 40 years old is not

Table. 1 Treatments and outcomes of patients infected with COVID-19

Parameters Sub-parameters No. (%) P Value

All Patients(n = 41) ICU Care(n = 13) No ICU Care(n = 28)

Duration from illness
onset to first admission

7·0 (4·0–8·0) 7·0 (4·0–8·0) 7·0 (4·0–8·5) 0·87

Complications

Acute respiratory distress syndrome 12 (29%) 11 (85%) 1 (4%) <0·0001

RNAaemia 6 (15%) 2 (15%) 4 (14%) 0·93

Cycle threshold of RNAaemia 35·1 (34·7–35·1) 35·1 (35·1–35·1) 34·8 (34·1–35·4) 0·35

Acute cardiac injury 5 (12%) 4 (31%) 1 (4%) 0·017

Acute kidney injury 3 (7%) 3 (23%) 0 0·027

Secondary infection 4 (10%) 4 (31%) 0 0·0014

Shock 3 (7%) 3 (23%) 0 0·027

Treatment

Antiviral therapy 38 (93%) 12 (92%) 26 (93%) 0·46

Antibiotic therapy 41 (100%) 13 (100%) 28 (100%) NA

Use of corticosteroid 9 (22%) 6 (46%) 3 (11%) 0·013

Continuous renal
replacement therapy

3 (7%) 3 (23%) 0 0·027

Oxygen support <0·0001

Nasal cannula 27 (66%) 1 (8%) 26 (93%)

Non-invasive ventilation or
high-flow nasal cannula

10 (24%) 8 (62%) 2 (7%)

Invasive mechanical ventilation 2 (5%) 2 (15%) 0

Invasive mechanical
ventilation and ECMO

2 (5%) 2 (15%) 0

Prognosis 0·014

Hospitalization 7 (17%) 1 (8%) 6 (21%)

Discharge 28 (68%) 7 (54%) 21 (75%)

Death 6 (15%) 5 (38%) 1 (4%)

Duration from illness
onset to first admission

7·0 (4·0–8·0) 7·0 (4·0–8·0) 7·0 (4·0–8·5) 0·87

Note: Data are median (IQR) or n (%). p values are comparing ICU care and no ICU care. 20COVID-19 = 2019 novel coronavirus. ICU = intensive care
unit. NA = not applicable. ECMO= extracorporeal membrane oxygenation

A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak 4169



considered. The World Health Organization (WHO) clearly
stated that “from the age of 40, the higher the age, the higher
the risk of severe illness.” Therefore, data of 40 years old are
used as a demarcation point. According to the data set, it is
roughly divided into young people between 15 and 30 years
old, and middle-aged and elderly people aged 40+. The pro-
portion of patients in need of hospitalization also increases
dramatically with age. The proportion of patients aged 40-49
who are hospitalized is 4.3%, and the proportion of patients
aged 60-69 is 11.8%. WHO considers “population over 60
years old” as a “high-risk group” [31]. Here, we continue to
subdivide the 40+ year-old population into those between 40
and 50 years old. Since the 50-year-old population is closer to
60 years old, we will consider the 50-70 year-old population
as another subject to be studied. In France, more than two-
thirds (71%) of hospital patients who died of COVID-19, and
half (51%) of hospitalized patients were at least 70 years old.
In some countries, such as the United Kingdom, the govern-
ment advises people over 70 to comply with strict quarantine
measures [32]. Therefore, people over 70 years old are con-
sidered as a special population to be studied. The incubation
period between the age 15 ~ 30 years old is about 2-4 days.
Adolescents have greatly strong immunity. When the virus
enters the body, the immune molecules respond quickly,
attacking the virus-infected host cells excessively, causing
hypersensitivity, resulting in lung cells to be killed by their

own immunity, and then causing pneumonia [33]. Severe
symptoms and possible secondary infection with other micro-
organisms, etc. The 40 ~ 50 years old people have longer in-
cubation period from 1 ~ 22 days. The incubation period of
50-70 people is from 2 to 52 days, which shows that the 50-
70 years old are well tolerated by the virus. The incubation
period of the 70-90 years old is up to 38 days. The incubation
period of the elder above 50 years old is up to more than one
month, whichmay be related to the weakened immunity of the
elder. Their defensive ability is reduced, resulting in no severe
rejection against the virus, making the symptoms appear very
slowly. In this case, the patient will not stop activities and be
hospitalized, the longest incubation period will become lon-
ger. Since, the incubation period is long and there are many
mild patients, so stricter isolation and prevention and control
measures are needed to control the spread of the epidemic,
which will have a significant impact on the short-term
economy.

The incubation period is of great significance in epidemio-
logical research. First, the pre-epidemic period of novel coro-
nary pneumonia (NCP) can be clarified during the isolation
period, which is to determine the contact period for
quarantine, quarantine and medical observation of con-
tacts; The length of the patient ‘s infection is used to
trace the source of infection, determine the route of
transmission, and evaluate the effectiveness of

Table 2 Selected baseline characteristics of patients infected with COVID-19

Signs and symptoms No. (%)

Total(n = 41) ICU Care(n = 13) No ICU Care(n = 28) P Value

Fever 40 (98%) 13 (100%) 27 (96%) 0·68

Highest temperature, °C 0·037

<37·3 1 (2%) 0 1 (4%)

37·3–38·0 8 (20%) 3 (23%) 5 (18%)

38·1–39·0 18 (44%) 7 (54%) 11 (39%)

>39·0 14 (34%) 3 (23%) 11 (39%)

Cough 31 (76%) 11 (85%) 20 (71%) 0·35

Myalgia or fatigue 18 (44%) 7 (54%) 11 (39%) 0·38

Sputum production 11/39 (28%) 5 (38%) 6/26 (23%) 0·32

Headache 3/38 (8%) 0 3/25 (12%) 0·10

Haemoptysis 2/39 (5%) 1 (8%) 1/26 (4%) 0·46

Diarrhoea 1/38 (3%) 0 1/25 (4%) 0·66

Dyspnoea 22/40 (55%) 12 (92%) 10/27 (37%) 0·0010

Days from illness onset to dyspnoea 8·0 (5·0–13·0) 8·0 (6·0–17·0) 6·5 (2·0–10·0) 0·22

Days from first admission to transfer 5·0 (1·0–8·0) 8·0 (5·0–14·0) 1·0 (1·0–6·5) 0·0023

Systolic pressure, mm Hg 125·0 (119–135) 145·0 (123–167) 122·0 (118·5–129·5) 0·018

Respiratory rate > 24 breaths per min 12 (29%) 8 (62%) 4 (14%) 0·0023

Note: Data are median (IQR), n (%), or n/N (%), where N is the total number of patients with available data. p values comparing ICU care and no ICU
care are from χ2 test, Fisher’s exact test, or Mann-Whitney U test. COVID-19 = 2019 novel coronavirus. ICU = intensive care unit
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prevention and treatment measures. Again, the future
development of a new coronary pneumonia vaccine

can also determine the time of immunization according
to the length of the incubation period.

Table. 3 Laboratory findings of patients infected with SARS-CoV-2 on admission to hospital

Blood Cell Category Counts No.(%) P Value

Total(N = 41) ICU Care(N = 13) No ICU Care(N= 28)

White Blood cell count, ×109/L 6.2(4.1–10.5) 11.3(5.8–12.1) 5.7(3.1–7.6) 0.011

<4 10/40(25%) 1/13(8%) 9/27(33%) 0.041
4–10 18/40(45%) 5/13(38%) 13/27(48%)

>10 12/40(30%) 7/13(54%) 5/27(19%)

Neutrophil Count, ×109/L 5·0 (3·3–8·9) 10·6 (5·0–11·8) 4·4 (2·0–6·1) 0·00069

Lymphocyte count, × 109/L 0·8 (0·6–1·1) 0·4 (0·2–0·8) 1·0 (0·7–1·1) 0·0041

<1·0 26/41 (63%) 11/13 (85%) 15/28 (54%) 0·045
≥1·0 15/41 (37%) 2/13 (15%) 13/28 (46%)

Haemoglobin, g/L 126·0 (118·0–140·0) 122·0 (111·0–128·0) 130·5 (120·0–140·0) 0·20

Platelet count, × 109/L 164·5 (131·5–263·0) 196·0 (165·0–263·0) 149·0 (131·0–263·0) 0·45

<100 2/40 (5%) 1/13 (8%) 1/27 (4%) 0·45
≥100 38/40 (95%) 12/13 (92%) 26/27 (96%)

Prothrombin time, s 11·1 (10·1–12·4) 12·2 (11·2–13·4) 10·7 (9·8–12·1) 0·012

Activated partial thromboplastin time, s 27·0 (24·2–34·1) 26·2 (22·5–33·9) 27·7 (24·8–34·1) 0·57

D-dimer, mg/L 0·5 (0·3–1·3) 2·4 (0·6–14·4) 0·5 (0·3–0·8) 0·0042

Albumin, g/L 31·4 (28·9–36·0) 27·9 (26·3–30·9) 34·7 (30·2–36·5) 0·00066

Alanine aminotransferase, U/L 32·0 (21·0–50·0) 49·0 (29·0–115·0) 27·0 (19·5–40·0) 0·038

Aspartate aminotransferase, U/L 34·0 (26·0–48·0) 44·0 (30·0–70·0) 34·0 (24·0–40·5) 0·10

≤40 26/41 (63%) 5/13 (38%) 21/28 (75%) 0·025
>40 15/41 (37%) 8/13 (62%) 7/28 (25%)

Total bilirubin, mmol/L 11·7 (9·5–13·9) 14·0 (11·9–32·9) 10·8 (9·4–12·3) 0·011

Potassium, mmol/L 4·2 (3·8–4·8) 4·6 (4·0–5·0) 4·1 (3·8–4·6) 0·27

Sodium, mmol/L 139·0 (137·0–140·0) 138·0 (137·0–139·0) 139·0 (137·5–140·5) 0·26

Creatinine, μmol/L 74·2 (57·5–85·7) 79·0 (53·1–92·7) 73·3 (57·5–84·7) 0·84

≤133 37/41 (90%) 11/13 (85%) 26/28 (93%) 0·42
>133 4/41 (10%) 2/13 (15%) 2/28 (7%)

Creatine kinase, U/L 132·5 (62·0–219·0) 132·0 (82·0–493·0) 133·0 (61·0–189·0) 0·31

≤185 27/40 (68%) 7/13 (54%) 20/27 (74%) 0·21
>185 13/40 (33%) 6/13 (46%) 7/27 (26%)

Lactate dehydrogenase, U/L 286·0 (242·0–408·0) 400·0 (323·0–578·0) 281·0 (233·0–357·0) 0·0044

≤245 11/40 (28%) 1/13 (8%) 10/27 (37%) 0·036
>245 29/40 (73%) 12/13 (92%) 17/27 (63%)

Hypersensitive troponin I, pg/mL 3·4 (1·1–9·1) 3·3 (3·0–163·0) 3·5 (0·7–5·4) 0·075

>28 (99th percentile) 5/41 (12%) 4/13 (31%) 1/28 (4%) 0·017

Procalcitonin, ng/mL 0·1 (0·1–0·1) 0·1 (0·1–0·4) 0·1 (0·1–0·1) 0·031

<0·1 27/39 (69%) 6/12 (50%) 21/27 (78%) 0·029
≥0·1 to <0·25 7/39 (18%) 3/12 (25%) 4/27 (15%)

≥0·25 to <0·5 2/39 (5%) 0/12 2/27 (7%)

≥0·5 3/39 (8%) 3/12 (25%)* 0/27

Bilateral involvement of chest radiographs 40/41 (98%) 13/13 (100%) 27/28 (96%) 0·68

Cycle threshold of respiratory tract 32·2 (31·0–34·5) 31·1 (30·0–33·5) 32·2 (31·1–34·7) 0·39

Note: Data are median (IQR) or n/N (%), where N is the total number of patients with available data. p values comparing ICU care and no ICU care are
from χ 2, Fisher’s exact test, or Mann-Whitney U test. 20COVID-19 = 2019 novel coronavirus. ICU = intensive care unit.* Complicated typical
secondary infection during the first hospitalization
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6 Adaptive SEAIRD model

The objective of this paper is mainly to analyze the epidemic
by collecting the data feed of confirmed cases, cures, and
deaths within 100 days from January 22th to April 30th from
the United States. Considering that the data before
February 29th is seriously distorted, we selected the
time series data feed after February 29th to build the
model. These data are all from a website published by
an official media. There may be some bias with the
actual situation, but the paper mainly focuses on build-
ing an epidemic model using the current dataset, focus-
ing on the research and judgment of epidemic future
trends, and more precise values of epidemic may only
eventually have a slight impact on the trend.

Some of the proposed traditional infectious disease models
are similar to the SEIR model, and with somemultiple solving
functions added. Analyzing these classical models from an-
other point of view, the current state can completely determine
the future curve trend in these models, which it is a Markov
process. The problem with these types of classical model is
that they are only a statistical feature (like machine learning).

The complexity of communication in modern society cannot
be reproduced. By improving the original SEIR model, it
makes the infectious disease model mapped on a huge social
network. The modified model is used to simulate and analyze
more detailed propagation. The model can roughly show the
process of SARS-CoV-2 from infection, onset to the end, its
core lies in differential equations. For this task, Matlab soft-
ware is used to calculate differential equations.

As shown in Fig. 11, the classic SEIR infectious disease
model is developed into a hierarchical infectious disease mod-
el. The deficiencies that need improvement in the model from
the perspective of epidemic prevention measures and simula-
tion results are analyzed. Then the neural network was
applied to search for the optimal values of several pa-
rameters in the model, and the finite difference method
was used for numerical simulation. Finally, the model
was applied on the data of United States as well as
other countries where the number of people infected
with COVID-19 is relatively small. By comparing the
results of the two countries, it was found whether the
results are quite close to the actual data, so as to verify
whether the model is widely applicable. And from this,
we can draw conclusions about the importance of early
prevention and treatment of people infected with infec-
tious diseases.

Based on the classic Susceptible-Exposed-Infectious-
Recovered (SEIR) infectious disease epidemiology mod-
el, this article introduces the concepts of “Silent Skill”,
that is asymptomatic patients (A), marking it as A(t) in
the model. At the same time, this model differentiates
recovered patients (R) into recovered patients (R) and
the dead (D), marking them as R(t) and D(t) respective-
ly. The other three core populations in this model are:
S = susceptible, marking it as S(t); E = exposed, marking
it as E(t); I = infected, marking it as I(t);

Fig. 7 Droplet nucleus
transmission

Table 4 Parameter Value Setting

Parameter φ ρ ε β β1

Estimated Value 0.8 0.9 1/1.1 4 × 10−5 0.5

Parameter ω α ƞ p1 p2
Estimated Value 0.9 1/5 0.9 0.5 0.5

Parameter θ1 θ2 γR γ γq
Estimated Value 0.2 0.8 0.5 0.1 0.1

Parameter γI μ ξ ν1 ν2
Estimated Value 0.8 0.1 0.3 0.1 0.1
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The core parameters are set as follows: A case of United
States is chosen as the virus outbreak area for SARS-CoV-2
scenario simulation. In the initial stage of the outbreak, we
assume that the number of susceptible population is S(0) =
1 × 105; The initial infection cases (Patient Zero) is set to
I(0) = 20; Initial exposed population: E(0) = 100; In reality,
the initial values of other groups are all A(0) = R(0) =D(0) =
0; The total statistic meets N=S + E + I + A + R. In the real
case, it is absolutely impossible for the dead (D) to return to
any other populations, so the number of deaths who withdrew
the calculation from the model. However, due to reasons such
as the large population base and the high mobility of people in
the United States, in order to maintain the stability of our
susceptible population to keep a sufficient number of
people running in the simulation and maintain a balance
and maintain the mobility of the model, the concepts of
lower birth rate is introduced, natural mortality rate, and
temporary immunity of the recovered population. This is
also one of the innovations of our model. We
recalculated the total statistic population of the model,
considering that except for a few out-of-control epi-
demics, in most cases, the number of infected people
(including asymptomatic infected people) and the recov-
ered population accounted for a very small proportion
of the total number of models. The number of infected
people can be ignored, so the total number of people is
N = S + E;

The SEAIR framework diagram shows how each group
moves among each node of the model. The solid red line in
the diagram in Fig. 12, shows how the SEIR model transform
to a SEIAR(D)S (susceptible-exposed-infected-recovered
(death) -susceptible) model. In the model, the recovered peo-
ple may become susceptible people again (that means recov-
ered people do not obtain lifelong immunity).

The diagram of the Adaptive SEIARD model is shown in
Fig. 12.

It can be seen from Fig. 11 that adaptive SEIARDmodel is
a two-way closed model. The susceptible populations are con-
stantly input to the infected population, and at the same time
the infected population are also input to the recovered popu-
lation in both directions. Finally, the recovered population will
return to the susceptible population with a low probability.
When the birth rate and natural death rate are the same, the
ratio of reverting to the susceptible after recovery set here is
very low, the number of susceptible and infected people will
eventually drop to 0, and the data will become negative after it
falls below 0. At the same time, all the population will first
become the recovered population with a high probability. But
due to the interoperability between the recovery population
and the death population, as time goes by, all people will
eventually become dead at a certain time. This is the limitation
of the model. By adjusting the ratio of reverting to the suscep-
tible after recovery, we can make the model constantly self-
loop.

Fig. 8 Timeline of from exposure to coronavirus onset by gender

Fig. 9 SARS-CoV-2 natural
history
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At the initial stage of the development of the epidemic, the
rate of exposure to infection (φ) represents the average num-
ber of daily contacts with infectious patients with susceptible
people;

Exposure rate of susceptible people (β) controls the
probability that a susceptible group contacts an infected
person or any infectious group during the incubation
period and represents the possibility of transmitting dis-
ease between a susceptible group and an infectious
group. The parameters will be constantly adjusted dur-
ing the simulation to adapt it to the actual development
of the epidemic.

Probability of susceptibility to isolation (ρ) is the probabil-
ity that a susceptible group is isolated.

Infection rate of people in incubation period (ε) is
the infectious rate of the infected in the incubation pe-
riod. It can be calculated by 1 / TI. The exposed pop-
ulation during the incubation period (E) in the SEIARD
model refers specifically to the period when it is infect-
ed but not yet infectious. The average duration of this
period is TE. The general understanding of the incuba-
tion period is the period of infection but no symptoms
(In section 4, we know that the average incubation pe-
riod of patients with SARS-CoV-2 is about 10 days). At
the end of the incubation period, patients may have a
certain infection rate a few days before onset, and gen-
erally should not be infectious in the early stage.
Therefore, in an asymptomatic incubation period of

Fig. 10 Timeline of from exposure to coronavirus onset by age

Fig. 11 Flow chart of overall analysis
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average 10 days we assumed, the infectious incubation
period is 6.5 days on average (Referenced the relevant
data of SARS), and the last 3.5 days are contagious
which is marked as Infectious period (TI). Instead of
the time from the patient’s illness to recovery, the av-
erage duration of the infectious period, TI, refers to the
time when a patient is contagious and will not be ex-
posed to a specific susceptible group, such as hospital-
ization or staying in bed at home. Under this under-
standing, the heavier the symptoms of patients, the
shorter the average infectious period TI. Because the patient
will be hospitalized or lost his ability to move quickly, and the
virus with milder symptoms may have a longer infection pe-
riod. When establishing the SEIR model for various epi-
demics, the duration of the infection period is usually 3 to
5 days, or even shorter.

Probability that the people in incubation period will
turn negative is (β1). After contacting the infected per-
son (A or I), by sampling pharyngeal swabs of
suspected cases, the exposed population still showed
negative, and we do not exclude the existence of many
false negative patients. This unstable negative test result
may be due to the amount of virus secreted by the
patient in the early stage is very little, or it may be

related to the quality of the reagent kit, but also related
to the characteristics of the SARS-CoV-2 itself, sam-
pling site, sampling volume, transportation and storage
links, etc. The testing conditions in the laboratory and
the operation of personnel may be the contributing fac-
tors too. It is composed of many reasons and is very
complicated.

Probability of exposure to infection (α) indicates the
number of people in the infectious period (including
asymptomatic infected persons) (I + A) per unit time,
and the number of people who transitioned from the
incubation period to the infectious period. It is the num-
ber of people who transits from the incubation period to
the infection period. This infection rate in the paper is
similar to most current research results.

Isolation rate of susceptible population (ω), the num-
ber of susceptible people is an important subject of our
research. Since there is currently no vaccine, there is no
way to artificially reduce the proportion of susceptible
people. So, it is difficult for us to change this part at
present. If we do not take any measures, the virus will
infect more people, and the proportion of susceptible
people will drop, which is equivalent to the forest fire
burning up the trees as an analogy. Without the

Fig. 12 Adaptive SEIARD dynamic model

Fig. 13 Structure diagram of
asymptomatic patients in two
scenarios
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susceptible people, the disease will disappear soon.
However, realistically susceptible people are those we
need to protect, so preventive measures must be applied.
Isolation of infected and latent persons can be achieved
through symptom tracking (according to the clinical
characteristics of SARS-CoV-2 in section 2) + diagnosis
+ isolation of patients. We call this measure as surveil-
lance contagious cases. So we can only isolate infected
people / latent people, or only susceptible people (in-
creasing ω value), or both.

Ratio of symptomatic infections to all infections (η), This
ratio can reflect the proportion of asymptomatic infections
from the side. Some researchers have shown that the spread
of asymptomatic infected persons cannot be underestimated. It
is also a dangerous source of infection and we cannot help but
guard against it. The current model assumes that the propor-
tion of asymptomatic persons in the total infected population
is 0.1, but the proportion of true asymptomatic patients is
likely to be higher than expected. By studying the rate of
asymptomatic infections and tracking asymptomatic infec-
tions, we can prevent the flattening epidemic curve from
starting to rise again.

This ratio, proportion of untreated patients with
SARS-CoV-2 (p1), can help us study how many of the
infected people belong to mild infectious symptoms.
Most mild patients have not reached the point of seek-
ing medical assistance due to mild symptoms and may
also avoid screening methods such as body temperature
testing. Some studies indicate that 30% -60% of infec-
tions with SARS-CoV-2 have mild symptoms, but their
ability to spread the virus is quite strong. These mildly
infected people may trigger a new round of outbreaks.

This ratio, percentage of infected people being treated
(p2), is an important ratio that can effectively improve
the utilization rate of critically ill beds and help reduce
mortality.

Removal rate of infected people (mortality rate) γ, which
represents the rate of death removal. γR is the rate of recovery
removal. The rate of both depends on the average duration of
infection.

Probability of Quarantined Infected Person Receiving
Treatment (γq). This ratio can reflect the hospital bed capacity
and the removal rate of infected patient from the side.

Rate of Cured Patients Turning Positive (μ). For most pa-
tients who turn positive after recovery, the chance of repeated
infection is very small, and this only shows that only a few of
them have not fully recovered, the immune function is very
poor, and the risk of infection cannot be ruled out. So we set it
to μ = 0.1; .

In the adaptive SEIARD model, ξ is the ratio of
recovered people returning to a susceptible state due to
loss of immunity.

Birth Rate (ν1) and Natural Mortality Rate (ν2). Both of
them have nothing to do with disease. It can simulate a con-
stant population.

Here special emphasis is made on some newly introduced
parameters:

Due to the rapid growth of the epidemic, SARS-
CoV-2 consumes susceptible people, and the virus
needs to find a new batch of susceptible people. The
immunity gained by people infected with the SARS-
CoV-2 will weaken over time, allowing the recovered
population to return to the susceptible state. Here the
ratio coefficient of reverting to the susceptible state after
recovered(ξ) is introduced.

The study found that newborns belong to susceptible
groups. In order to better maintain the sustainability and sta-
bility of the model, we introduce the birth rate ν1 and mortality
rate ν2, ν1 = ν2 (It only consider the susceptible and exposed
groups with a large base here).

Some assumptions are made for the model to work as
follow:

& The infection only transmits between people.
& There are no specific drugs or vaccines for treatment at

this stage.
& Fully mixed: Equal opportunity for each individual to con-

tact others.
& Medical equipment has certain limits.
& After being cured, the patient may still become infected.

There are even cases where patients die suddenly after
being cured.

Here are some parameters defined before describing the
problem.

A similar stochastic model is used to initiate the initial
value to start the simulation. Such as initial number of suscep-
tible people (S0):1 × 105; Initial number of exposed people
(E0):100; Initial number of infected people with symptoms
(I0):20 (It is assumed that half of mild infected people I1(0)
who have not received treatment and half of severe patients
I2(0) who have received treatment).

After the initial parameters are set for the model, the initial
values are used for curve fitting and continuous iterative
optimization.

Adaptive SEIARD dynamic model belongs to a kind
of dynamic model of infectious diseases. It can also be
classified as a physical model (From another perspec-
tive, it is also an empirical summary). This research
work analyzes the construction process of the model
as follows.

Then the process of virus transmission can be characterized
by the differential equations of the changes in the population
of these 9 main groups. These 9 groups are all functions that
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follow the change of time, where t is set to a unit of time, and
the following formula are derived:

dS
dt

¼ υ1N−υ2S− 1−ρð Þβφ εE þ I þ Að ÞS−ρ 1−φð Þβ εE þ I þ Að ÞS−ρφβ I þ εE þ Að ÞS þ ωSq þ β1E þ ξR

dE
dt

¼ 1−ρð Þβφ εE þ I þ Að ÞS−αE−β1E−υ2E
dA
dt

¼ α 1−ηð ÞE− γR þ γð ÞA−υ2A
dI1
dt

¼ αηp1E−θ1γqI1
dI2
dt

¼ αηp2E−θ2γqI2 þ γI Iq−γRI2
dI
dt

¼ αηE þ μR−γqI2−γRI2−γI
dR
dt

¼ γRAþ γRI2− μþ γð ÞR−υ2R−ξR
dD
dt

¼ Rþ I þ Að Þγ
dSq
dt

¼ ρ 1−φð Þβ εE þ I þ Að ÞS−ωSq
dEq

dt
¼ ρφβ I þ εE þ Að ÞS−αEq

dIq
dt

¼ αEq þ θ1γI1 þ θ2γI2−γI Iq
I ¼ I1 þ I2 p1 þ p2 ¼ 1

N ¼ S þ E

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

However, to list such similar equations we need an ideal-
ized condition, which are more important.

First of all, in this paper, we assume that the total number of
people in the model remains balanced. That is S(t) + E(t) +
I(t) + R(t) + A(t)+υ1N(t)=K, and K is a constant in unit time
at time t.

For susceptible people, without isolation, the number of
infectious patients contacting the susceptible people (E(t),
A(t), I(t)) is separately proportional to the total number of
susceptible people S(t). We successively set the coefficient
to be (1-ρ)βφε, (1-ρ)βφ, (1-ρ)βφ, Therefore, the number of
people infected by all patients (groups with certain infectivity)
in unit time at time t is (1-ρ) βφ (ε × E (t) + I(t) + A(t)) × S (t),
which is a constant value at time t.

In isolation, the proportional coefficients of 3 groups re-
spectively are ρ (1-φ) βε, ρ (1-φ) βε, ρ (1-φ) βε, therefore, the
number of susceptible people per unit time at time t is ρβφ ×
(ε × E(t) + I(t) + A(t)) × S(t).

Considering the situation where susceptible people
contacted infectious patients and were isolated, the proportion
coefficients of each infected people (E(t), A(t), I(t)) contacted
and isolated are ρφβε, ρφβ, ρφβ, Therefore, the number of Eq

per unit time at time t is ρφβ× (I(t) + ε × E (t) + A(t)) × S(t).
After the quarantine period expires, the isolated susceptible

population (Sq) are released quarantine and returns to the sus-
ceptible population (S) with a coefficient of ω, the number of

Sq in the unit time at time t is ω × Sq. The coefficient of the
exposed population not infected with the SARS-CoV-2 and
returned to the susceptible population is β1, which the number
of people E (t)→ S (t) in unit time at time t is β1 × E(t). The
coefficient of recovered people to the susceptible people is ξ,
and the number of people R (t)→ S (t) in unit time at time t is
ξ × R(t).

For exposed people (E), at time t, the number of people
from S (t) to E (t) per unit time is (1-ρ)βφ(ε × E (t) + I(t) +
A(t)) × S(t).The number of people flowing out of the exposed
population is divided into two main branches, and the number
of people who flow to the asymptomatic group (A) at time t is
α × (1-η) × E (t), The other one goes to symptomatic infection
patients, and symptomatic infection patients are divided into
mild infections (no treatment but strong infectivity) and severe
patients (receiving hospital treatment). The proportional coef-
ficients respectively are αp1, αp2, where p1+ p2 = 1.

For asymptomatic infected people (A), since the asymp-
tomatic infected person does not have any symptoms in a long
time, it is assumed that the asymptomatic infected person has
not received any treatment and isolation measures. As Fig. 13
shown, at time t, asymptomatic patients can heal themselves
through their super-strong immunity, and no symptom has
ever occurred all the time like in the scenario 2. That is the
process: A (t)→ R (t), the conversion coefficient is γ, and the
number of people per unit time at t is γ × A (t). Otherwise the
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asymptomatic infected person finally failed to defeat the
SARS-CoV-2 and died of sudden onset that is A (t)→D (t)
like the scenario 1, the conversion coefficient is γq, and the
number of people per unit time at t is γq × A(t).

For all symptomatic infections I(I1 + I2), our new model
considers the problem of limited beds, and isolates mild pa-
tients I1 (mild, not receiving treatment) and severe patients I2
(severity, receiving treatment) with different probability,
which we can describe them as I1(t)→ Iq(t) or I2(t)→ Iq(t).
Their conversion coefficients respectively are θ1γq, θ2γq, and
the number of I1 people per unit time at t is αηp1E (t) -θ1γq I1
(t). There are some mild patients with the SARS-CoV-2. They
may not be seeking medical treatment or home cultivation for

a long time, and they are in an active transmission state after
the onset. In fact, the longer infection period is the main reason
why the basic infection rate of the SARS-CoV-2 is significant-
ly higher than SARS. When the hospital bed is released, the
coefficient from Iq to I2 is γI, and the number of severe patients
I2 per unite time at time t isαηp2E(t) + γIIq(t)-θ2γqI2(t). For the
overall symptomatic patient (I), the conversion coefficient
from R (t)→ I (t) is μ, and the number of I people per unit
time at time t is μ × R (t) in this way; The conversion factor
from I (t)→D (t) is γ, which the number of people per unit
time at t is γI (t); Therefore, the number of all symptomatic
patients per unit time at time t is αηE(t) + μR(t) + γIIq-γRI2-γI
through all sources.

Fig. 15 Simulation of infected cases after neural fitting

Fig. 14 Simulation of infected cases
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For the recovered population (R), when R (t)→ D (t), the
rate of removal per unit time is γ, and the number of recovered
people moving out at a certain point is γR (t). Then the number
of recovered people R (t) is γR A(t) + γRI2(t)-(μ + γ + ε)R-υ2R
in the end.

For the dead population, the three main sources of inflow to
the dead respectively are asymptomatic patients without treat-
ment, that is A (t)→ D (t); symptomatic severe patients after
treatment, that is I2(t)→ D(t); and sudden death of recovered
population, that is R (t)→ D (t). Their removal rate is γ, and
the number of people per unit time at t is (R + I + A) γ.

For the other three compartments of people in isolation,
they respectively are isolated susceptible people (Sq), isolated
people in incubation period (Eq) and isolated infections (Iq).
Among them, the conversion coefficient from Eq into Iq by
accidental infection isα, at a certain time between the two, the
conversion number is α × Eq(t). According to the analysis, the
conversion number of S → Sq at time t is ρ(1-φ)β(εE + I +
A)S-ωSq; The conversion number of S → Eq at time t is
ρφβ(I + εE + A)S-αEq; Similarly, the conversion number of
Eq → Iq at time t is αEq + θ1γI1 + θ2 γI2-γIIq.

Therefore, it can be known that the mutual mechanism of
action (MOA) among these 10 populations as follows:
Probability of implementation of isolation measures (ρ), prob-
ability of exposure to infection (φ) between susceptible and
infected people (including the exposed in incubation period
(E), symptomatic patients (I) and asymptomatic patients (A)

and the infection rate between the susceptible population and
each infected population simultaneously act on the total sus-
ceptible population. They are the people also involved isolated
susceptible people(Sq) and isolated people in incubation
period(Eq); The infection rate (α) of the E population and
the probability (η) of dominant symptoms (I) act on the ex-
posed population (E) at the same time; The removal rates of
asymptomatic recessive patients respectively are the recovery
rate (γR) and mortality (γ), the coefficient of transfer to reces-
sive patients from exposed populations (E) together with re-
covery rate (γR) and mortality (γ) also simultaneously act on
asymptomatic patients (A); Coefficients (αηp1, αηp2) of pa-
tients with dominant symptoms (I) transferred from exposed
population (E), probability of recovery population becoming
positive (μ), recovery rate of severe patients (γR), re-
moval rate (γ), and their respective isolation rate (θ1γq,
θ2γq) and hospital admission rate (γI) act on patients
with dominant symptoms at the same time; The outflow
probability of the recovery population becoming posi-
tive, the susceptibility rate of the recovery population
(ξ) and the recovery coefficient (γR) of different popu-
lations (A and I) also affect the recovery population.
But at the same time, this is a two-way cyclic mecha-
nism. They influence and interact with each other.

To simplify the differential equations and establish a nu-
merical simulation model, the above differential equations are
expressed in discrete form as follows:

S t þ 1ð Þ ¼ S tð Þ þ υ1N tð Þ−υ2S tð Þ− 1−ρð Þβφ εE tð Þ þ I tð Þ þ A tð Þð ÞS tð Þ−ρ 1−φð Þβ εE tð Þ þ I tð Þ þ A tð Þð ÞS tð Þ
−ρφβ I þ εE tð Þ þ A tð Þð ÞS tð Þ þ ωSq tð Þ þ β1E tð Þ þ ξR tð Þ

E t þ 1ð Þ ¼ E tð Þ þ 1−ρð Þβφ εE tð Þ þ I tð Þ þ A tð Þð ÞS tð Þ−αE tð Þ−β1E tð Þ−υ2E tð Þ
A t þ 1ð Þ ¼ A tð Þα 1−ηð ÞE tð Þ− γR þ γð ÞA tð Þ−υ2A tð Þ

I1 t þ 1ð Þ ¼ I1 tð Þ þ αηp1E tð Þ−θ1γqI1 tð Þ
I2 t þ 1ð Þ ¼ I2 tð Þ þ αηp2E tð Þ−θ2γqI2 tð Þ þ γI Iq tð Þ−γRI2 tð Þ

I t þ 1ð Þ ¼ I tð Þ þ αηE tð Þ þ μR tð Þ−γq−γRI2 tð Þ−γI tð Þ
R t þ 1ð Þ ¼ R tð Þ þ γRA tð Þ þ γRI2 tð Þ− μþ γð ÞR tð Þ−υ2R tð Þ−ξR tð Þ

D t þ 1ð Þ ¼ D tð Þ þ R tð Þ þ I tð Þ þ A tð Þð Þγ
Sq t þ 1ð Þ ¼ Sq tð Þ þ ρ 1−φð Þβ εE tð Þ þ I tð Þ þ A tð Þð ÞS tð Þ−ωSq tð Þ
Eq t þ 1ð Þ ¼ Eq tð Þ þ ρφβ I tð Þ þ εE tð Þ þ A tð Þð ÞS tð Þ−αEq tð Þ
Iq t þ 1ð Þ ¼ Iq tð Þ þ αEq tð Þ þ θ1γI1 tð Þ þ θ2γI2 tð Þ−γI Iq tð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð2Þ

Among them, S (t), E (t), I (t), A (t), R (t) and D (t)
respectively indicate that the number of each population
in a susceptible state, incubation period, infectious peri-
od, and asymptomatic infection, recovery state and in-
animate state per unite time at time t. N (t) represents
the sum of the number of people in each population at
time t. The formula is as follows: N (t) = S (t) + E (t).
Therefore, we get 12 discrete equations that reflect the
iterative relationship between 6 main state quantities and
5 derived states. If all the parameter values are known,

the value at time t can be derived from time t-1, the
entire sequence can be obtained from the starting point.

For a mature model, the reliability of the output results is
entirely determined by the accuracy of the input parameters.
So in the paper, we start with the specific situation of the
SARS-CoV-2, focusing on evaluating, verifying, and
correcting the input values of the model from multiple angles
to improve the model output and get reliable results.

The following process is the basis for adjustment of the
parameters in accordance with the actual situation.
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6.1 Optimization result of fitting curve

The initial date of the data on which curve fitting was done is
on February 29th 2020. The number of susceptible people is
set to 100,000. In order to predict the development of the
epidemic, SEIARD model is applied to perform a simple fit
on the actual data stream. A deep learning method based on
the epidemic data of the United States was trained to simulate
the epidemic trend. The trend is then refined iteratively to
optimal.

As shown in Fig. 14, in the Quantile-Quantile Plot (Q-Q
Plot), the two axes are the Quantile function of the first set of

data (simulation of adaptive SEAIRD model) and the second
set of data (actual data). Comparing the quantiles of the two
sets of data together, we can see whether the two are “similar”,
and whether the scatters almost fall on a line similar to y = x,
indicating that the two distributions are similar. It shows that
the predicted value of the model can well predict the trend of
actual data. However, the curve fitting effect is not good.
There is no deep learning to do the optimized fitting, so the
model has a poor fitting effect on the obvious fluctuations in
the epidemic data in the United States.

Therefore, the neural network method is introduced to im-
prove the fitness of our model. The result is shown in Fig. 15.

(a)

(b)
Fig. 16 The performance of neural fitting and error analysis
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The final optimized performance results are shown as
bellowed:

The backpropagation (BP) neural network is trained itera-
tively. Fig. 16(a) shows that the training (epoch) stops after
1000 times. The test results are shown in Fig. 15. By optimiz-
ing the fitting, the simulation curve (red solid line) begins to
approach the real data curve (blue line). and when the epoch
stops, the best training performance value is 1287.267, which
it is the optimal performance result that can be trained. As
shown in Fig. 16(b), most errors of the error histogram graph
are between (−26.69, 181.5). Compared with the huge epi-
demic data stream, the error here is very small and can be
ignored. As Fig. 16(c) shows, the training dataset causes an
over-fitting. Fig. 15 shows that the two curves almost overlap.
It may also be that the accumulative infected curve is relative-
ly smooth and there are not too many glitches to cause an

excessively high degree of fit. From Fig. 16(d), we found that
the error of fitting curve is overall small; the biggest
error appears in the testing dataset, which is shown
directly in Fig. 16(c).

As shown in Fig. 17, comparing the quantiles of the
two sets of data together, the scatters almost fall on a
line (y = x), indicating that the two distributions are sim-
ilar. It shows that the predicted value of the model can
well predict the trend of actual fatalities data. But the
degree of fitting is mediocre.

After using the neural network, as shown in Fig. 18, the
degree of curve fitting is greatly improved.

In Fig. 19(a), the fitting is stopped at the epoch 600. At that
time, the training performance is 51.8461(MSE). As shown in
Fig. 19(b), most errors in the error histogram are between
(−1.179, 1.57). And It can fit the target data well, which is

(c)

(d)
Fig. 16 (continued)
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shown as the Fig. 19(c). The error between the target dataset
and output dataset is small.

7 Comparative simulation experiment
of models

In order to test the performance of adaptive SEAIRD model
proposed in this article, accumulative confirmed and new con-
firmed data from March 1st to March 29th are selected as
control group of the simulation experiment. Each model re-
spectively performs 29 iteration experiments and the model’s
simulation data are recorded in terms of Root Mean Squared
Error (RMSE) and R-squared (R2) between the actual data
feed and simulation data feed.

Since SEIR model is a relatively mature and commonly
used epidemiological prediction model, the infectious dis-
eases studied in this model have a certain incubation period.
Healthy people who have been in contact with patients do not
become ill immediately but become carriers of pathogens.
Compared with other traditional infectious disease models
such as the SIR model, the SEIR model further takes latent
persons into consideration, and is closer to the transmission
method of the new coronavirus. Therefore, in this paper, the
classical SEIR model is chosen to replace other traditional
infectious disease models such as SI, SIR, SIRS and SEIR
models for comparing with the improved model. The results
from different models are tabulated in Table 5:

In order to analyze the modeling effects of the three
models, R-squared (R2) and Mean Squared Error (RMSE)

Fig. 18 Simulation of Fatalities after Neural Fitting

Fig. 17 Simulation of Fatalities
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are used for comparison. R-squared (R2) is a statistical mea-
sure of how close the data are to the fitting curve. It is also
known as the coefficient of determination [34], or the coeffi-
cient of multiple determination for multiple regression. In gen-
eral, the higher the R-squared (R2), the better the model fits
your actual data.

The formula of R2 are as follows:

ð3Þ

The RMSE value is used to measure the error between the
fitted value and the real data [35]. The more the RMSE value
tends to 0, the better the fitting effect.

The formula of RMSE are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

t¼1 X t−Y tð Þ2
r

ð4Þ

The R-squared (R2) and Mean Squared Error (RMSE) of
Adaptive SEAIRDmodel, classical SEIRmodel and SEAIRD
model proposed in this paper is respectively shown as Table 6,
The ranking of the goodness of Fit of the three models is
Classical SEIR Model < SEIRD Model < Adaptive SEAIRD
Model (Larger Values are Optimal). And the error ranking of
these three models is Classical SEIRModel < SEAIRDModel
< Adaptive SEAIRD Model (Smaller Values are Optimal). It
can be seen from the comparison results that the Adaptive
SEAIRD model proposed in this paper has a better goodness
of fit (R2) and a smaller error value (RMSE). It shows that the

(a)

(b)
Fig. 19 The training performance of daily fatality cases
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adaptive SEAIRD model has a better fitting effect, can better
fit the trend of the accumulative diagnosed cases in the United
States, and is more in line with the propagation rule of the
epidemic development.

Similarly, the development trends of newly confirmed
cases in the United States under each model are compared.
The numerical simulation results are shown in Table 7:

Among them, R2 and RMSE of the new confirmed cases of
Classical SEIR model, SEAIRD Model and Adaptive
SEAIRD Model are shown in Tables 8 and 9. It is found that
the R2 value of SEAIRDModel and Adaptive SEAIRDModel
is far superior to Classical SEIR Model, and Adaptive
SEAIRD Model is slightly higher than SEAIRD Model,
which can be regarded as approximately equal to each other.
However, in terms of error value RMSE, the ranking of these
three models is Classical SEIR Model <SEAIRD Model

<Adaptive SEAIRD Model. Adaptive SEAIRD Model is far
superior to the former twomodels. It can be seen that the effect
of these three models more apparently from Fig. 20 (b). This
essentially demonstrates that the network complexity and
adaptability of the new model is higher than that of the
Classical SEIR Model, which is more in line with the current
trend of epidemic in United States.

8 Model prediction comparison experiment

In order to objectively measure the prediction effect of these
three models, the testing dataset is used to verify each model.
The optimal parameters of the model obtained by the previous
training are introduced into the differential equation to predict
the change of daily confirmed cases and accumulative

(c)

(d)
Fig. 19 (continued)
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confirmed cases over time. The prediction effect is shown in
Fig. 21. The x-axis (absicissa) is the number of diagnoses, and
the y-axis (ordinate) is the time variable T. The changes of
each model in the time period of T (30 ≤ T ≤ 57) are being
predicted, thus further verifying the superiority of the model
proposed in this paper.

It can be seen from the graphs above:
The yellow area is the testing area for verifying the perfor-

mance of the model, and the scattered points are the actual
data from testing dataset. The solid green line in Fig. 21 (a) is
the prediction curve of the Classical SEIR Model, and its
prediction effect is the worst; the blue solid line is the predic-
tion curve of the SEAIRD Model which of the prediction

effect is followed by the adaptive SEAIRD model; the solid
purple line is the prediction curve of Adaptive SEAIRD
Model, which can well predict the change of actual SARS-
CoV-2 data.

In Fig. 21 (b), the solid orange line is the prediction curve
of Classical SEIR Model. Compared with the prediction
curves of the other two models, its prediction effect is the
worst; while SEAIRD Model (blue curve) and Adaptive
SEAIRD Model (pink solid line) can well predict the change
of the actual cumulative diagnosis data.

In order to more accurately describe the prediction perfor-
mance of these three models in the testing dataset, the perfor-
mance of the three models in Daily Confirmed Cases and

Table. 5 Time Series Statistics
Population of Confirmed Cases in
Different Model

Date Actual Value Classical SEIR Model SEAIRD Model Adaptive SEAIRD Model

1 Mar 2020 74 74 74 54.81679732

2 Mar 2020 98 140.6 94 76.26668029

3 Mar 2020 118 204.947144 117.8571429 101.7956792

4 Mar 2020 149 273.3878868 151.0724082 137.2339229

5 Mar 2020 217 354.4508971 201.3381227 190.6313564

6 Mar 2020 262 460.2658674 273.6523288 266.9581245

7 Mar 2020 402 608.5764604 374.0844988 371.9935104

8 Mar 2020 518 825.453737 511.0082616 513.3659584

9 Mar 2020 583 1148.577929 695.9454881 700.9452255

10 Mar 2020 959 1630.325851 944.5288107 946.9586456

11 Mar 2020 1281 2338.681014 1277.748196 1265.736634

12 Mar 2020 1663 3352.472273 1723.579614 1672.842223

13 Mar 2020 2179 4747.476681 2319.080609 2183.534393

14 Mar 2020 2727 6574.888641 3113.027581 2811.994616

15 Mar 2020 3499 8843.150622 4169.13937 3578.589732

16 Mar 2020 4632 11,516.5465 5569.858412 4549.970838

17 Mar 2020 6421 14,530.25178 7420.514986 5970.585853

18 Mar 2020 7783 17,808.67482 9853.446437 8515.622647

19 Mar 2020 13,677 21,277.77865 13,031.25263 13,178.12094

20 Mar 2020 19,273 24,870.87407 17,147.85025 19,503.3607

21 Mar 2020 25,600 28,530.48398 22,425.44959 25,521.51446

22 Mar 2020 33,276 32,208.35846 29,105.30355 33,303.47335

23 Mar 2020 43,843 35,864.74572 37,430.56421 43,838.81131

24 Mar 2020 53,736 39,467.42475 47,621.36848 53,494.33658

25 Mar 2020 65,778 42,990.71446 59,845.44671 65,778.35609

26 Mar 2020 83,836 46,414.5452 74,191.04547 83,835.84363

27 Mar 2020 101,657 49,723.62191 90,650.49823 101,657.0809

28 Mar 2020 121,465 52,906.68468 109,120.3082 121,464.9737

29 Mar 2020 140,909 55,955.86264 129,417.6248 140,908.9667

Table. 6 Accuracy of Different
Model (Accumulative
Confirmed)

Result Classical SEIR Model SEAIRD Model Adaptive SEAIRD Model

R2 0.66837 0.98548 0.99997

RMSE 22,652.796 4739.8577 198.6563
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Accumulative Confirmed Cases by evaluating indicators R2

and RMSE are quantitatively analyzed. It can be clearly seen
that in Daily Confirmed Cases, the prediction result of
Adaptive SEAIRD Model is more accurate than Classical
SEIR Model and SEAIRDModel. In accumulative confirmed
cases, the prediction effect of Adaptive SEAIRD Model is
almost the same as SEAIRD Model, and the prediction effect
of Classical SEIR Model is the worst.

Considering the epidemic development process of different
populations, the prediction curves of other populations are
shown below:

In Figs. 22 and 23, the fitted line can roughly reflect the
development trend of the epidemic in the next two months or

so. The results have predicted that the spread of SARS-CoV-2
based on mathematical model when the epidemic turning
point appeared.

In the model, since, the birth rate and mortality rate we set
are low (0.1), which is not enough to offset the number of
deaths which withdraw from the model, the total statistics
population of models rises first and then gradually stabilizes.
The trend causes the initial daily births and daily natural
deaths to gradually decrease. After the model is stabilized,
the daily number of births and the number of daily deaths start
to run steadily at a lower number. The change curve of the
number of susceptible people (S) is depicted. As the number
of infected people and people who have been cured with

Table. 7 Time Series Statistics
Population of New-confirmed
Cases in Different Model

Date Actual Value Classical SEIR Model SEAIRD Model Adaptive SEAIRD Model

1 Mar 2020 6 74 20 12.43983293

2 Mar 2020 24 73.99926 23.85714286 15.77549545

3 Mar 2020 20 81.34376001 33.21526531 23.82302131

4 Mar 2020 31 98.90194751 50.26571458 38.31993422

5 Mar 2020 68 131.3391522 72.31420605 56.74824613

6 Mar 2020 45 186.0013752 100.43217 79.72710365

7 Mar 2020 140 274.1622619 136.9237628 108.6733767

8 Mar 2020 116 412.6385894 184.9372265 145.2501694

9 Mar 2020 65 625.541646 248.5833226 191.1017847

10 Mar 2020 376 945.343172 333.2193855 247.4888183

11 Mar 2020 322 1411.289584 445.8314182 314.708531

12 Mar 2020 382 2061.675879 595.5009942 391.5409949

13 Mar 2020 516 2916.31221 793.9469722 476.3734678

14 Mar 2020 548 3951.159332 1056.111789 576.6764492

15 Mar 2020 772 5081.764409 1400.719042 745.7104788

16 Mar 2020 1133 6182.088665 1850.656575 1149.048151

17 Mar 2020 1789 7139.413536 2432.931451 1782.763817

18 Mar 2020 1362 7899.645549 3177.806194 1364.225523

19 Mar 2020 5894 8467.041877 4116.597621 5893.957572

20 Mar 2020 5596 8876.223039 5277.599336 10,053.37

21 Mar 2020 6327 9167.52506 6679.853966 6327.338866

22 Mar 2020 7676 9375.281221 8325.260655 8079.910465

23 Mar 2020 10,567 9525.053334 10,190.80427 10,566.60987

24 Mar 2020 9893 9634.672028 12,224.07822 9892.793667

25 Mar 2020 12,042 9716.214712 14,345.59876 12,042.07935

26 Mar 2020 18,058 9777.80038 16,459.45276 18,057.39392

27 Mar 2020 17,821 9824.924135 18,469.80996 17,821.3045

28 Mar 2020 19,808 9861.364967 20,297.31658 19,807.66437

29 Mar 2020 19,444 9889.776671 26,100.18368 19,443.99416

Table 8 Accuracy of Different
Model (New Confirmed) Result Classical SEIR Model SEAIRD Model Adaptive SEAIRD Model

R2 0.60624 0.94651 0.98404

RMSE 4132.234828 1523.0608 831.9189
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antibodies increases, the number of susceptible people be-
comes smaller and smaller, and the speed of transmission will
decrease. Since, people in the infectious period have less
chance of contacting susceptible people. As a result, the num-
ber of susceptible groups needs to be described in the model.
The curve of susceptible people is shown as above. The extra-
long period of infection of the new coronavirus may bemainly
because it has a large number of mild patients (I2) and asymp-
tomatic patients (A). These patients will not seek medical
treatment or take measures in time and will be in an active
infection state for a long time. Asymptomatic patients may be
the main reason for the rapid spread of the SARS-CoV-2, and
it is also the core of the early prevention and control of the
epidemic. Therefore, studying the change in the number of
asymptomatic patients has become an important aspect of this
study. From Figs.22 and 23, we can see that the number of
asymptomatic infections increased rapidly about 1.5 months
(worst prediction result) or 1 month (optimistic forecast re-
sults) slowly declined. It shows that effective isolation mea-
sures have much benefit to the control of asymptomatic infec-
tions. The optimized adaptive SEIARD model can effectively
predict the epidemic trend of SARS-CoV-2, confirming the
public health interventions implemented from February 29th

2020, (isolation of susceptible people, isolation of people who
have been in contact with infected people, and isolation of
patients due to medical capacity removal to receive quaran-
tine) effectively controlled the further development of the ep-
idemic. Some asymptomatic patients are still in the incubation
period when they are tested, and the symptoms lag behind.
The median incubation period is about 4.5 days, up to three
weeks; while other asymptomatic patients may not have
symptoms until the virus disappears. But both asymptomatic
infections cannot be ruled out as infectious. Undoubtedly,
finding an asymptomatic infected person is obviously a little
harder than finding a confirmed case. Doing a good job in
monitoring, tracking, isolation and treatment of asymptomatic
infected people, which it tests the ability of precise prevention
and control and the fineness of social management and
governance.

9 Model applicability

By comparing the epidemic simulation result of two countries
with different cultural backgrounds, the correctness and effec-
tiveness of the adaptive SEAIRD model is verified, and its

Fig. 20 Fitting Curve of Different
Model

Table. 9 Verify Performance of Different Model

Model
Performance

Classical SEIR Model SEAIRD Model Adaptive SEAIRD Model

Daily Confirmed Cases R2 0 0 0.5517

RMSE 19,751.7755 5914.5594 2201.1629

Accumulative Confirmed Cases R2 0 0.94370 0.9998

RMSE 318,098.9369 57,258.12971 2700.8827
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self-adaptability and portability are further explored [36]. In
this study, the Singapore epidemic data is used to conduct an
adaptability verification experiment. The Singapore epidemi-
ological data of COVID-19 comes from WHO and other of-
ficial websites related to the epidemic. Compared with the
United States, Singapore has adopted the American plan in
the early stage, but Singapore has done a good job in the rapid
screening and tracking patients. Unlike some countries,
Singapore has not implemented blockade measures, but it
has controlled the spread of the epidemic well. Table 10 is a
comparative study of actual epidemic data and simulated data
in Singapore.

As shown in Fig. 24, this study is based on the method
established by simulation data, and the use of actual data can
more objectively reflect the characteristics of the incidence
and outbreak of COVID-19, including the incidence level,
trend of change, and turning point of the epidemic. The study
uses the same time period as the US epidemic data studied in
this article, and the evaluation results may be more reliable.
By using the adaptive SEAIRD model to fit the actual epi-
demic data in Singapore, the optimal main parameters of the
epidemic are successfully obtained,. Subsequently the devel-
opment trend of the epidemic is fully and accurately predicted.
It is reconfirmed that the adaptive SEAIRD model is reliable

Fig. 21 Experiment of Validation Model

Fig. 22 Simulation of other parameters in SEIARD model
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in predicting the spread of infectious diseases. This model and
method can obtain more reliable data to determine virus infec-
tion characteristics.

10 Risk assessment

The indicators used to measure the severity of the epidemic,
including Contact Rate, Infection Rate, Confirmed Rate and
Death Rate are listed in Table 11. Through these indicators,
we can quantitatively measure the trend of the epidemic and
make necessary anti-epidemic measures when the epidemic
develops to a critical point. These five risk assessment indica-
tors are used as target parameters to objectively assess the
infectious strength of SARS-CoV-2 and to predict the
scale and peak time of patients, implementing necessary
prevention and control measures by decision makers,
assessing the impact on the economy and how investors
respond all have important practical significance. Using
the iterative equations and estimated parameters
established above, we can predict the future develop-
ment of the epidemic.

The worst prediction result is discussed here. As Fig. 25,
the infection rate and confirmed rate in U.S. keep raising and
trend to flattening in the end. This is a risk signal, indicating
that the number of infected people in the United States will
continue to grow at a high growth rate. The government
should take measures to reduce the infection rate. At the same
time, we see that the mortality rate is increasing exponentially.
The government needs to take measures to strengthen medical
conditions. The model introduces isolation measures, so we
can see that the contact rate drops after reaching a certain
height. It shows that the isolation measures can control the
epidemic situation to a certain extent.

To take prevention and control measures is to reduce these
5 parameter values, such as infection rate, confirmed rate,
cured rate, death rate and contact rate, thereby reducing the
number of infection cases. Although the number of newly
confirmed cases is still rising now, in the epidemic transmis-
sion model, as long as the basic infection number R0 is lower
than 1, the epidemic will not be out of control [37]. By ob-
serving infection rate curve and confirmed rate curve in Figs.
26, it can be found that the future maximum infection rate will
reach about 8 (worst situation) or 7 (optimistic situation), and
the turning point of newly confirmed cases will be 5 months
later (worst situation) or 4 and a half months (in the optimistic
situation) appears. The rapid increasing in infection rate and
confirmation rate in early stage may be due to the increase in
the efficiency of diagnosis and the backlog of a large number
of patients to be tested in the early stage, which will soon drop
after a period of stability.

11 Potentially lethal features

The following factors may cause infection with SARS-CoV-
2: High Lymphocytes Counts, High Neutrophil Counts, High
Alanine Aminotransferase, High Aspartate Aminotransferase
(AST), High Total Bilirubin.

In Fig. 27, high levels of lymphocytes indicate that your
body is infected or other inflammatory diseases [38]. This is a
danger signal from body functions. Patients in intensive care
unit have the most SARS-CoV-2 in the body at this time.
Appearing high content of lymphocytes is the normal immune
function of the body, and the body releases a high content of
lymphocytes to resist virus invasion [39].

In Fig. 28, since neutrophils are often associated with in-
flammatory infection and tissue damage [40], neutrophils

Fig. 23 Simulation of other parameters in SEIARD model after neural fitting
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represent the deterioration of tumor induced by cancer-related
inflammation. This also explains that patients with malignant
tumors are more likely to be infected [41].

In Fig. 29, high levels of (Alanine Aminotransferase) ALT
can indicate liver damage from hepatitis, infection, cirrhosis,
liver cancer, or other liver diseases [42-44]. SARS-CoV-2 can
cause damage to the liver and may even cause liver failure and
cancer.

In Fig. 30, when a liver is damaged, the body will allow
more (Aspartate Aminotransferase) AST to enter one’s blood,
thereby a high AST level is a sign of liver damage if the level
of AST is high [43, 44].

In Fig. 31, Elevated level of Total Bilirubin may indicate
liver damage or disease. By detecting total bilirubin, the

occurrence of acute liver failure can be identified in time
[45]. For infectious diseases, the control and prevention strat-
egy should be implemented from three aspects as a means of
intervention to stop or slow down the spread: source of infec-
tion, transmission route, and susceptible people.

& improve epidemic information monitoring
& isolate the diagnosis and treatment of infection sources
& speed up the diagnosis of suspected cases
& standardize the management of close contacts
& pay attention to the prevention and control of cluster

infections
& pay attention to the prevention and control of returnees
& strengthen community prevention and control

Table. 10 Simulation Results of Singapore Epidemic Data

Date Accumulative
Confirmed Cases

Accumulative
Recovered Cases

Accumulative Dead Cases

Actual Value Simulated Value Actual Value Simulated Value Actual Value Simulated Value

01/03/2020 106 83 72 62 0 0

02/03/2020 108 83 78 72 0 0

03/03/2020 110 92 78 72 0 0

04/03/2020 110 92 78 78 0 0

05/03/2020 117 98 78 78 0 0

06/03/2020 130 98 78 78 0 0

07/03/2020 138 100 78 78 0 0

08/03/2020 150 100 78 78 0 0

09/03/2020 150 120 78 78 0 0

10/03/2020 160 120 78 78 0 0

11/03/2020 178 140 96 78 0 0

12/03/2020 178 140 96 78 0 0

13/03/2020 200 150 97 78 0 0

14/03/2020 212 150 105 78 0 0

15/03/2020 226 168 105 96 0 0

16/03/2020 243 168 109 96 0 0

17/03/2020 266 202 114 105 0 0

18/03/2020 313 202 114 105 0 0

19/03/2020 345 233 114 109 0 0

20/03/2020 385 233 124 109 0 0

21/03/2020 432 303 140 114 2 0

22/03/2020 455 303 144 114 2 0

23/03/2020 509 375 144 124 2 0

24/03/2020 558 375 156 124 2 0

25/03/2020 631 445 160 144 2 2

26/03/2020 683 445 172 144 2 2

27/03/2020 732 548 183 156 2 2

28/03/2020 802 548 198 156 2 2

29/03/2020 844 673 212 172 3 2

30/03/2020 879 673 228 172 3 2

31/03/2020 926 792 240 198 3 2
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12 Discussion

In this paper, MATLAB is used to establish an infectious
adaptive SEAIRD model with incubation period. The model
is used to inversely calculate the parameters during the prop-
agation process [46, 47] of SARS-CoV-2 over time to obtain
important parameters such as the infection rate, exposure rate,
and removal coefficient of the SARS-CoV-2 in the United
States. The calculation results of the model are basically con-
sistent with the actual data. Inverse deduction of parameters
explains the SARS-CoV-2 propagation process well, indicat-
ing that the adaptive SEAIRD model can be used for data
fitting, trend prediction and process simulation of SARS-
CoV-2 propagation [48, 49]. Obtaining the relevant forecast
data of this epidemic [50, 51], a comparative analysis with the
actual data is made. The conclusions about this research are as
follows:

Factors such as isolation measures to the model are added,
which constantly improve the model construction, and revise
the parameter estimates based on more epidemic data. As a
result, the improved model is made to be more adaptable.

In the selection of the model, this study selected the classic
SEIR model [52, 53] to simulate the development of the epi-
demic. By comparing the goodness of fit (R2) and RMSE
between the SEIR Model and the improved adaptive
SEAIRD Model, the superiority of our model can be
explained.

This approach uses two indicators to evaluate the effective-
ness of the model [54, 55]. The first is the evaluation of the
model’s fitting effect, and the second is the evaluation of the
model’s prediction effect. R2 and RMSE are used for quanti-
tative evaluation, and the training dataset and testing dataset of
the epidemic in United States are used to cross-validate the
model. The model has a good fitting effect on the actual data
in the early stage of the epidemic, and the prediction effect is
better than the traditional infectious disease model.

13 Conclusion and future directions

Basic models such as SIR and SEIR that have been used
popularly during the period of SARS may fall short in

Fig. 24 Singapore outbreak simulation data

Table. 11 The indices of risk assessment

Index Definition Measure of severity

Contact Rate Track the growth rate of contacts Measure the dense of the group is exposed to the virus

Infection Rate Suspected Case Measures the probability of a group infected

Confirmed Rate Rate of confirmed cases Measure the growing rate of the epidemic in a certain period of time

Cured Rate Number of patients discharged Measure lethality and the improvement of the epidemic

Death Rate Cumulative death Measure the lethal rate of the infected population and
reflect the medical conditions of various places from the side
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Fig. 26 Simulation of the index of risk assessment after neural fitting

Fig. 25 Simulation of the indices of risk assessment
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COVID-19 prediction. Behind COVID-19, SARS-CoV-2 is
one of the trickiest pathogens, its virus characteristics are
found to be different from its previous versions.
Asymptomatic patients and relapse from recovery are two
factors that cause much uncertainty in the traditional predic-
tion models. Therefore, a new model called SEIARD is pro-
posed in this paper that has taken these two factors into
account.

The complex propagation model proposed in the paper
analyzes the pros and cons of improved models and methods,
and reveals future research directions and potential applica-
tions. In SEIARD, there are 4 pros as follows: (1) Detailed
parameters, capable of simulating a variety of interactive
sources of infection. (2) By improving the existing model that
only considers that one person in a single network is affected
by other people, and the process of spreading infection is
independent, we propose the idea of constructing a virus
spreading model in multiple networks (3) The adaptive

SEAIRD model can gather various groups into an equation-
based model, so the model does not need to treat everyone as
an individual. In the case of not requiring high resolution, the
calculation in the model will be simpler and faster. (4) In the
“equation-based”model, individuals are divided into different
groups. But when the group is divided into detailed, more
representative, and more persuasive, the model becomes more
complicated.

We further subdivide the compartment module into 10 cat-
egories. Based on the Classical SEIR Model, a new module
(asymptomatic patients) is added to the original compartment
module of the infectious disease model with incubation peri-
od. We also subdivide the patients with symptoms into mild
infected population (I1) and severe infected population (I2)
and divide those who are removed into recovered population
(R) who recovered after infection and dead population(D)
[56]. Due to the relatively long transmission time of infectious
diseases, in our model, we take the birth rate and natural

Fig. 28 Neutrophil counts of different severity

Fig. 27 Lymphocytes counts of
different severity
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mortality into account and proposed the situation of re-
immunization in temporary immunization to better reflect
the reality by the model. It is possible that the recovered pop-
ulation who has lost immunity will feedback to the susceptible
population (S) instead of exiting the system. It is also consid-
ered that the impact of isolation measures on the epidemic,
increased the overall complexity of the model, and studied the
development of COVID-19 in more detail. In our new model,
fixed parameters are not used to solve the dynamics equations.
Instead neural networks are used for analyzing the trend of
existing real data in order to obtain the optimal parameters to
predict the development of the epidemic. Using dynamic pa-
rameters could reduce the uncertainty of dynamics equations
to a certain extent. Nonlinear Ordinary Differential Equations

(ODEs) of different models are simulated for predicting the
development of the epidemic. It is found that by comparing
two indexes (R2 and RMSE), the classic SEIR model and
SEAIRD model are not as good as the adaptive SEAIRD
Model in terms of fitting effect, especially in the later stage
of prediction. The goodness of fit of the former two (0.60624
in classical SEIR model<0.94651 in SEIRD model<0.98404
in adaptive SEAIRD model) has dropped significantly, and
the RMSE value (4132.234828 in classical SEIR mod-
el>1523.0608 in SEAIRD model>831.9189 in adaptive
SEAIRD model) is far inferior to the improved model. In this
research, the trend of various risk assessment indicators is also
studied, which is helpful for the relevant epidemic prevention
and control departments to take corresponding intervention

Fig. 29 Alanine Aminotransferase Content of Different Severity

Fig. 30 Aspartate aminotransferase content of different severity
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measures. They have important theoretical insights and prac-
tical significance for preventing the outbreak of infectious
diseases.

Limitations and future Directions: From the current re-
search, there is still a lack of synchronization in the simulation
of infectious disease transmission models. Among them, the
time dynamic model of the infectious disease model is not
synchronized with the spatial dynamic model. For example,
in the SEAIRDmodel, the method in the model focuses on the
time change of the epidemic but ignores the process of spatial
change. In theory, the forecasting model may accurately pre-
dict the development of the epidemic within one to two weeks
in advance. However, due to inherent uncertainty and lack of
accurate information, the accuracy of the forecast has been
reduced. In order to minimize the impact of incomplete infor-
mation and incorrect assumptions, we need to perform hun-
dreds of independent runs on each parameter, and make subtle
adjustments to the input parameters each time. This “sensitiv-
ity analysis” will reduce the error of the model results when a
single input changes. But the calculation time will be longer.
In theory, we compare the actual cases with the predicted
results, but the actual reported data is not accurate.
According to the actual epidemic report, few researchers have
been able to assess the accuracy of predictions made during
the outbreak period or after the outbreak.

Adaptive SEAIRD model can be further improved and
perfected in the following aspects:

1) Some factors are not considered in the model such as
measures like regional blockade and case tracking during
the epidemic, imported cases abroad, some people who
are not in contact with SARS-CoV-2 patients carry

antibodies against SARS-CoV-2 and are immune to
SARS-CoV-2, some recessive infections who carry
SARS-CoV-2 but are not infectious and the population
density of different regions, and other unknown quantities
(such as the number of people moved out) in the model
cannot be accurately predicted. The model needs to be
further refined and considered to be improved into a seg-
mented form.

2) Through model calculations, we also found that there is a
lack of detailed data that truly reflects the actual situation
of SARS-CoV-2, and it is impossible to reasonably deter-
mine the specific values of some parameters. It can only
be obtained by inverse deduction of the model. The anal-
ysis of the model requires more accurate data.

3) Adaptive SEAIRD model can only reflect the spread pro-
cess of infectious diseases over time, but not the space
spread process. Therefore, we will improve this model in
the future and plan to propose a time-space spread model
of infectious diseases.
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