

OPEN access

Crystal structure of methyl (2R,3S)-3-[(tert-butylsulfinyl)amino]-2-fluoro-3phenylpropanoate

Zhiwei Zhao, Wengiang Fan, Yixiang Zhang and Ya Li*

Department of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China. *Correspondence e-mail: ya.li@sues.edu.cn

Received 3 December 2015; accepted 9 December 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, C₁₄H₂₀FNO₃S, contains two chiral carbon centres and the absolute configuration has been confirmed as (2R,3S). In the crystal, adjacent molecules are linked by weak $C-H \cdots O$ hydrogen bonds, generating zigzag chains along the a-axis direction.

Keywords: crystal structure; fluorine; amino acid; sulfoxide; N-H···O hydrogen bonding.

CCDC reference: 1441329

1. Related literature

For the use of of fluorinated β -amino acids in organic synthesis, see: Marsh (2014); Niemz & Tirrell (2001); Chiu et al. (2006). For their synthesis, see: Shang et al. (2015); Yoshinari et al. (2011); Duggan et al. (2010); Peddie & Abell (2012); Jing et al. (2011); Pan et al. (2010).

2. Experimental

2.1. Crystal data

C14H20FNO3S $M_r = 301.37$ Orthorhombic, $P2_12_12_1$ a = 9.1809 (14) Åb = 9.2384 (15) Åc = 18.577 (3) Å

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.972, T_{\max} = 0.985$

8176 measured reflections

2773 independent reflections 2542 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.022$

V = 1575.7 (4) Å³

Mo $K\alpha$ radiation

 $0.13 \times 0.11 \times 0.07 \text{ mm}$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 296 K

Z = 4

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.088$	$\Delta \rho_{\rm min} = -0.29 \text{ e A}^{-5}$
S = 1.04	Absolute structure: Flack (1983)
2773 reflections	Absolute structure parameter:
186 parameters	0.05 (8)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14 - H14B \cdots O3^{i}$	0.96	2.79	3.045 (4)	135

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Acknowledgements

Financial support by the Innovation Program of Shanghai University Students (cs1504006) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5256).

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chiu, H. P., Suzuki, Y., Gullickson, D., Ahmad, R., Kokona, B., Fairman, R. & Cheng, R. P. (2006). J. Am. Chem. Soc. 128, 15556–15557.

Duggan, P. J., Johnston, M. & March, T. L. (2010). J. Org. Chem. **75**, 7365–7372. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

Jing, Z.-T., Huang, Y.-G. & Qing, F.-L. (2011). Chin. Chem. Lett. 22, 919-922.

Marsh, E. N. G. (2014). Acc. Chem. Res. 47, 2878-2886.

Niemz, A. & Tirrell, D. A. (2001). J. Am. Chem. Soc. 123, 7407-7413.

Pan, Y., Zhao, Y., Ma, T., Yang, Y., Liu, H., Jiang, Z. & Tan, C.-H. (2010). *Chem. Eur. J.* **16**, 779–782.

Peddie, V. & Abell, A. D. (2012). Helv. Chim. Acta, 95, 2460-2473.

Shang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739-8747.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yoshinari, T., Gessier, F., Noti, C., Beck, A. K. & Seebach, D. (2011). *Helv. Chim. Acta*, **94**, 1908–1942.

supporting information

Acta Cryst. (2015). E71, o1055-o1056 [doi:10.1107/S2056989015023580]

Crystal structure of methyl (2*R*,3*S*)-3-[(*tert*-butylsulfinyl)amino]-2-fluoro-3-phenylpropanoate

Zhiwei Zhao, Wenqiang Fan, Yixiang Zhang and Ya Li

S1. Synthesis and crystallization

LiHMDS (1.5 ml, 1.0 mol/l in THF) was added to a solution of methyl fluoroacetate (138 mg, 1.5 mmol), (Rs)—N-benzylidene- 2-methylpropane-2-sulfinamide (209 mg, 1.0 mmol), N,N,N',N'-tetramethyl-ethane-1,2-diamine (0.3 ml), and THF (3 ml) at 203 K. The reaction mixture was stirred for 30 min, then saturated NH₄Cl—H₂O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous Na₂SO₄. The obtained compound was recrystallized from ethyl acetate/hexane (1:2) to give colorless crystals.

S1.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A 11 the H atoms were placed at calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93–0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C$ -methyl and $1.2U_{eq}(N,C)$ for other H atoms.

Figure 1

Molecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1).

Methyl (2R,3S)-3-[(tert-butylsulfinyl)amino]-2-fluoro-3-phenylpropanoate

Crystal data	
$C_{14}H_{20}FNO_3S$	Hall symbol: P 2ac 2ab
$M_r = 301.37$	a = 9.1809 (14) Å
Orthorhombic, $P2_12_12_1$	<i>b</i> = 9.2384 (15) Å

c = 18.577 (3) Å $V = 1575.7 (4) \text{ Å}^3$ Z = 4 F(000) = 640 $D_x = 1.270 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.972, T_{\max} = 0.985$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.088$ S = 1.042773 reflections 186 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Cell parameters from 3418 reflections $\theta = 2.2-25.5^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.13 \times 0.11 \times 0.07 \text{ mm}$

8176 measured reflections 2773 independent reflections 2542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -7 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -22 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.1714P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0117 (16) Absolute structure: Flack (1983), ???? Friedel pairs Absolute structure parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.45246 (5)	0.13512 (6)	1.04644 (3)	0.04566 (16)	
C1	0.4525 (2)	0.0513 (2)	0.86771 (10)	0.0454 (5)	
C2	0.4258 (3)	0.1407 (3)	0.80959 (13)	0.0645 (7)	
H2	0.3412	0.1960	0.8085	0.077*	
C3	0.5233 (3)	0.1489 (4)	0.75313 (14)	0.0799 (8)	
Н3	0.5032	0.2089	0.7142	0.096*	
C4	0.6486 (3)	0.0701 (4)	0.75394 (14)	0.0790 (9)	

H4	0.7134	0.0755	0.7156	0.095*
C5	0.6780 (3)	-0.0166 (3)	0.81134 (15)	0.0763 (8)
H5	0.7640	-0.0698	0.8124	0.092*
C6	0.5812 (3)	-0.0262 (3)	0.86807 (13)	0.0614 (6)
H6	0.6029	-0.0855	0.9070	0.074*
C7	0.3370 (2)	0.0338 (2)	0.92539 (10)	0.0412 (4)
H7	0.2837	0.1254	0.9288	0.049*
C8	0.2285 (2)	-0.0833 (2)	0.90203 (11)	0.0485 (5)
H8	0.1834	-0.0536	0.8566	0.058*
C9	0.1100 (2)	-0.1116 (2)	0.95639 (13)	0.0467 (5)
C10	0.3929 (3)	0.0729 (3)	1.13521 (12)	0.0606 (6)
C11	0.4604 (4)	0.1814 (4)	1.18744 (15)	0.0919 (10)
H11A	0.4255	0.1626	1.2352	0.138*
H11B	0.4337	0.2778	1.1734	0.138*
H11C	0.5646	0.1720	1.1865	0.138*
C12	0.4469 (5)	-0.0790 (3)	1.15008 (15)	0.1004 (11)
H12A	0.5481	-0.0858	1.1376	0.151*
H12B	0.3920	-0.1468	1.1218	0.151*
H12C	0.4347	-0.1008	1.2002	0.151*
C13	0.2279 (3)	0.0833 (4)	1.13551 (16)	0.0914 (10)
H13A	0.1880	0.0102	1.1045	0.137*
H13B	0.1989	0.1772	1.1186	0.137*
H13C	0.1924	0.0692	1.1836	0.137*
C14	-0.1016 (3)	-0.0130 (4)	1.00859 (19)	0.0961 (11)
H14A	-0.1445	-0.1076	1.0052	0.144*
H14B	-0.1733	0.0589	0.9969	0.144*
H14C	-0.0670	0.0026	1.0567	0.144*
F1	0.30213 (17)	-0.21153 (14)	0.89103 (8)	0.0696 (4)
N1	0.38966 (18)	-0.00242 (17)	0.99719 (8)	0.0410 (4)
H1	0.3884	-0.0897	1.0133	0.049*
01	0.02014 (16)	-0.00250 (18)	0.95826 (11)	0.0748 (5)
O2	0.10015 (19)	-0.21952 (17)	0.99189 (10)	0.0648 (5)
O3	0.61290 (18)	0.1341 (2)	1.04867 (11)	0.0792 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0395 (3)	0.0456 (3)	0.0519 (3)	-0.0028 (2)	0.0025 (2)	-0.0062 (2)
C1	0.0440 (11)	0.0485 (11)	0.0438 (11)	-0.0090 (10)	0.0010 (10)	0.0042 (9)
C2	0.0517 (14)	0.0817 (17)	0.0600 (14)	-0.0088 (13)	-0.0025 (11)	0.0254 (13)
C3	0.0740 (19)	0.111 (2)	0.0545 (14)	-0.0187 (18)	0.0034 (13)	0.0315 (15)
C4	0.0731 (19)	0.101 (2)	0.0632 (17)	-0.0250 (17)	0.0232 (15)	0.0080 (16)
C5	0.0572 (15)	0.0885 (19)	0.0832 (18)	0.0025 (15)	0.0285 (13)	0.0076 (16)
C6	0.0578 (14)	0.0670 (14)	0.0595 (14)	0.0055 (12)	0.0115 (11)	0.0130 (12)
C7	0.0402 (10)	0.0416 (10)	0.0418 (10)	-0.0018 (8)	0.0021 (8)	0.0043 (9)
C8	0.0455 (12)	0.0540 (12)	0.0458 (11)	-0.0051 (10)	0.0000 (9)	0.0011 (10)
C9	0.0369 (10)	0.0445 (11)	0.0588 (12)	-0.0058 (8)	-0.0021 (10)	0.0024 (11)
C10	0.0636 (15)	0.0741 (16)	0.0440 (12)	-0.0009 (13)	0.0036 (11)	-0.0078 (11)

supporting information

C11	0.094 (2)	0.121 (2)	0.0608 (16)	-0.006 (2)	-0.0073 (16)	-0.0322 (16)
C12	0.152 (3)	0.089 (2)	0.0602 (16)	0.007 (2)	-0.020 (2)	0.0179 (15)
C13	0.0664 (18)	0.133 (3)	0.0744 (18)	-0.0155 (18)	0.0280 (15)	-0.0240 (18)
C14	0.0490 (15)	0.0811 (18)	0.158 (3)	0.0062 (14)	0.0448 (19)	0.019 (2)
F1	0.0689 (9)	0.0569 (8)	0.0828 (10)	-0.0086 (7)	0.0215 (7)	-0.0240 (7)
N1	0.0477 (10)	0.0368 (8)	0.0385 (8)	-0.0010 (7)	0.0006 (7)	0.0035 (7)
01	0.0440 (9)	0.0610 (10)	0.1193 (15)	0.0081 (8)	0.0214 (10)	0.0283 (10)
02	0.0621 (10)	0.0489 (9)	0.0835 (12)	-0.0020 (7)	0.0163 (9)	0.0133 (9)
03	0.0401 (8)	0.0993 (14)	0.0981 (13)	-0.0126 (9)	0.0054 (9)	-0.0301 (12)

Geometric parameters (Å, °)

S1—O3	1.4737 (17)	С8—Н8	0.9800
S1—N1	1.6685 (17)	C9—O2	1.199 (2)
S1—C10	1.830 (2)	C9—O1	1.303 (3)
C1—C2	1.381 (3)	C10-C12	1.513 (4)
C1—C6	1.381 (3)	C10—C13	1.518 (4)
C1—C7	1.516 (3)	C10-C11	1.527 (4)
C2—C3	1.381 (4)	C11—H11A	0.9600
С2—Н2	0.9300	C11—H11B	0.9600
C3—C4	1.361 (4)	C11—H11C	0.9600
С3—Н3	0.9300	C12—H12A	0.9600
C4—C5	1.361 (4)	C12—H12B	0.9600
C4—H4	0.9300	C12—H12C	0.9600
C5—C6	1.382 (3)	C13—H13A	0.9600
С5—Н5	0.9300	C13—H13B	0.9600
С6—Н6	0.9300	C13—H13C	0.9600
C7—N1	1.458 (2)	C14—O1	1.460 (3)
C7—C8	1.533 (3)	C14—H14A	0.9600
С7—Н7	0.9800	C14—H14B	0.9600
C8—F1	1.379 (3)	C14—H14C	0.9600
C8—C9	1.507 (3)	N1—H1	0.8600
O3—S1—N1	110.87 (10)	O1—C9—C8	109.95 (18)
O3—S1—C10	105.74 (12)	C12—C10—C13	112.7 (3)
N1-S1-C10	98.71 (10)	C12—C10—C11	111.1 (2)
C2C1C6	117.7 (2)	C13—C10—C11	111.2 (2)
C2—C1—C7	119.5 (2)	C12—C10—S1	111.0 (2)
C6—C1—C7	122.66 (17)	C13—C10—S1	106.35 (19)
C1—C2—C3	120.8 (3)	C11—C10—S1	104.17 (19)
C1—C2—H2	119.6	C10-C11-H11A	109.5
С3—С2—Н2	119.6	C10-C11-H11B	109.5
C4—C3—C2	120.6 (3)	H11A—C11—H11B	109.5
С4—С3—Н3	119.7	C10-C11-H11C	109.5
С2—С3—Н3	119.7	H11A—C11—H11C	109.5
C3—C4—C5	119.4 (2)	H11B—C11—H11C	109.5
C3—C4—H4	120.3	C10-C12-H12A	109.5
C5—C4—H4	120.3	C10-C12-H12B	109.5

C4—C5—C6	120.5 (3)	H12A—C12—H12B	109.5
C4—C5—H5	119.8	C10-C12-H12C	109.5
С6—С5—Н5	119.8	H12A—C12—H12C	109.5
C1—C6—C5	120.9 (2)	H12B-C12-H12C	109.5
С1—С6—Н6	119.5	C10-C13-H13A	109.5
С5—С6—Н6	119.5	C10-C13-H13B	109.5
N1—C7—C1	116.05 (17)	H13A—C13—H13B	109.5
N1—C7—C8	108.22 (16)	C10-C13-H13C	109.5
C1—C7—C8	109.24 (16)	H13A—C13—H13C	109.5
N1—C7—H7	107.7	H13B—C13—H13C	109.5
С1—С7—Н7	107.7	O1—C14—H14A	109.5
С8—С7—Н7	107.7	O1—C14—H14B	109.5
F1—C8—C9	107.71 (16)	H14A—C14—H14B	109.5
F1—C8—C7	109.26 (18)	O1—C14—H14C	109.5
C9—C8—C7	113.67 (17)	H14A—C14—H14C	109.5
F1—C8—H8	108.7	H14B—C14—H14C	109.5
С9—С8—Н8	108.7	C7—N1—S1	116.21 (12)
С7—С8—Н8	108.7	C7—N1—H1	121.9
02—C9—O1	125.5 (2)	S1—N1—H1	121.9
O2—C9—C8	124.6 (2)	C9—O1—C14	116.76 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14—H14 <i>B</i> ···O3 ⁱ	0.96	2.79	3.045 (4)	135

Symmetry code: (i) x-1, y, z.