
Neuroimaging statistical approaches for determining neural 
correlates of Alzheimer’s disease via positron emission 
tomography imaging

Daniel F. Drake1, Gordana Derado2, Lijun Zhang3, F. DuBois Bowman1, Alzheimer’s 
Disease Neuroimaging Initiative
1Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 
Michigan, USA

2Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory 
University, Atlanta, Georgia, USA

3Department of Population and Quantitative Health Science, Case Western Reserve University, 
Cleveland, Ohio, USA

Abstract

Alzheimer’s disease (AD) is a degenerative disorder involving significant memory loss and 

other cognitive deficits, manifesting as a progression from normal cognitive functioning to mild 

cognitive impairment to AD. The sooner an accurate diagnosis of probable AD is made, the 

easier it is to manage symptoms and plan for future therapy. Functional neuroimaging stands 

to be a useful tool in achieving early diagnosis. Among the many neuroimaging modalities, 

positron emission tomography (PET) provides direct regional assessment of, among others, 

brain metabolism, cerebral blood flow, amyloid deposition—all quantities of interest in the 

characterization of AD. However, there are analytic challenges in identifying early indicators of 

AD from these high-dimensional imaging data sets, and it is unclear whether early indicators 

of AD are more likely to emerge in localized patterns of brain activity or in patterns of 

correlation between distinct brain regions. Early PET-based analyses of AD focused on alterations 

in metabolic activity at the voxel-level or in anatomically defined regions of interest. Other 
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approaches, including seed-voxel and multivariate techniques, seek to characterize metabolic 
connectivity by identifying other regions in the brain with similar patterns of activity across 

subjects. We briefly review various neuroimaging statistical approaches applied to determine 

changes in metabolic activity or metabolic connectivity associated with AD. We then present 

an approach that provides a unified statistical framework for addressing both metabolic activity 

and connectivity. Specifically, we apply a Bayesian spatial hierarchical framework to longitudinal 

metabolic PET scans from the Alzheimer’s Disease Neuroimaging Initiative.
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brain activation analysis; Alzheimer’s disease; Bayesian modeling and inference; brain 
connectivity analysis; PET neuroimaging
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Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data; 
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1 | INTRODUCTION

Positron emission tomography (PET) neuroimaging has proven to be an extremely useful 

diagnostic tool in quantifying brain function. Depending on the ligand, PET scans can 

highlight specific function of the brain. One of the most important ligands, [18F]-2-

fluoro-2-deoxy-2-glucose (FDG), targets metabolic rates of glucose uptake, an indicator 

of neuronal activity. Studies have shown that alterations in cerebral metabolic activity can 

precede the clinical manifestation of dementia symptoms (Brown et al., 2014), particularly 

in Alzheimer’s disease (AD) (Marcus et al., 2014). Other ligands, like [11C]-Pittsburg 

Compound B(PiB) that measures amyloid deposits or [15O]-H2O that measures cerebral 

blood flow, also play a role in AD research.

AD is a progressive, degenerative disorder that attacks the brain’s neurons, resulting in 

loss of memory, thinking and language skills, and behavioral changes; and is the most 

common cause of dementia, or loss of intellectual function, among people aged 65 and 

older. Clinicians can now diagnose AD with up to 90% accuracy, but the diagnostic process 

can be long and AD can only be confirmed by an autopsy, during which pathologists look 

for the disease’s characteristic plaques and tangles in brain tissue. The sooner an accurate 

diagnosis of “probable” AD is made, the easier it is to manage symptoms and plan for the 

future therapy. Therefore, statistical methods that can identify alterations in PET scans are 

an important component in the study and treatment in AD.

A number of statistical techniques have been developed to quantify various aspects related to 

PET neuroimaging. These techniques typically fall into one of two categories: analyses that 

focus on voxel- or region-wise differences in activity intensity; or analyses that highlight 

coordinated activity between voxels or regions in different areas of the brain. In the 

context of FDG, these techniques measure metabolic activity and metabolic connectivity, 
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respectively. We provide an overview of statistical methods that have been used to analyze 

localized metabolic activity and connectivity using PET imaging. We then highlight one 

particular method that integrates both aspects and illustrating its performance on FDG PET 

scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

2 | EXPERIMENTAL DATA

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led 

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 

test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression of 

mild cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.

We use ADNI data to illustrate one of the methods reviewed in this article, examining 

FDG PET scans from groups of healthy controls (HCs), MCI, and AD patients taken at 

four successive time points. The tomographic reconstruction process of the PET projections 

ends with a three-dimensional (3D) array of activity values in a coordinate system specific 

to the individual being scanned. Typically, the reconstructed PET scan is coregistered to a 

T1-weighted anatomical MRI scan from the same subject. PET scans are generally relatively 

smooth, and functional PET scans generally do not reflect anatomical boundaries of the 

brain. The detail in the underlying T1 anatomical scan helps identify the relative location 

of the PET uptake values with respect to brain anatomy. The T1 MRI scan, in turn, is 

spatially transformed to best align with a T1 brain template defined in a standard stereotaxic 

coordinate system. Finally, that same spatial transformation is applied to the PET scan, 

interpolating uptake values to align with the standard brain anatomy. This transformation to 

standard space allows for voxel-wise comparison across subjects. Often, however, the PET 

uptake values within anatomically or functionally defined regions are averaged together, 

leading to a region-of-interest (ROI) representation with just one summary uptake value per 

region. The most commonly used stereotaxic coordinate system is known as MNI space by 

virtue of a brain template developed and provided by the Montreal Neurological Institute 

(Mazziotta et al., 1995). A number of different regional parcellations of the brain have been 

defined on the MNI template, but the automated anatomical labeling (AAL) parcellation 

(Tzourio-Mazoyer et al., 2002) is among the more popular. The number of voxels in a 

particular region can be quite large. For example, at a 2-mm isotropic grid, the number of 

voxels in the AAL parcellation range from 220 for the smallest feature (the amygdala) to 

5104 (the middle frontal gyrus).

3 | STATISTICAL METHODS FOR THE ANALYSIS OF PET SCANS

FDG PET analyses typically fall under two distinct categories: metabolic activity and 

metabolic connectivity. Metabolic activity quantifies the FDG uptake rate in distinct brain 

locations (at a voxel or region level) and is generally regarded as providing a measure of 

distributed activity across the brain. Metabolic connectivity, on the other hand, quantifies the 
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degree of association between brain region-pairs based on the consistency of FDG uptake 

across scans.

We review methods that focus on one or another of the two analyses and then examine an 

approach that integrates both.

3.1 | Statistical analysis of metabolic activity

Analyses of metabolic activity typically attempt to identify brain regions in patients 

with neurological disorders or dementia with abnormal uptake compared to HCs. Such 

approaches come in both voxel- and region-wise flavors.

Region-wise approaches generally involve t-tests or other linear analyses applied to regional 

summary measures derived from voxel intensities inside each region. Depending on 

the number of regions under consideration, corrections for multiple comparisons (e.g., 

Bonferroni) can be feasible. Examples of region-based analyses include Gray et al. (2012), 

which uses baseline, 12-month, and change over time as features for a support vector 

machine (SVM) classifier.

Similarly, statistical tests can be performed on a voxel-wise basis as well (Friston et al., 

1995). For example, consider a voxel-wise general linear model (GLM) that characterizes 

the PET uptake in a region g from T  scans of subject i. Let T × 1 vector Yig ν  denote the 

FDG uptake at voxel ν in region g on T  distinct scans (e.g., in the resting state and during 

the performance of a task) from subject i. The GLM models Yig ν  as a linear combination 

of the columns of the T × q design matrix Xi, whose q columns consist, in the context of this 

survey, of indicator values that target a specific row of the dependent variable, and/or form 

contrasts between the rows, and, optionally, subject-dependent covariates; and a noise term 

ϵig ν N 0, σgνIT  :

Yig ν = Xiβg ν + ϵig ν ,

where the q × 1 effect vector β ν  characterizes the response.

In this basic form, the model above assumes that the FDG activity is voxel-wise 

independent. However, imaging data, and PET scans in particular, are generally smooth 

and nearby voxels are typically highly correlated, yet the GLM neglects to incorporate 

these correlations into estimates of the metabolic activity. As a consequence, this naive 

estimate reflects a mixture of the influence of neighboring voxels and the individual voxel 

activity. Incorporating an effect to model the influence of neighboring voxels results in a 

sharper estimate of the actual voxel activity itself. To this end, Bowman (2005) introduced 

a GLM that incorporates a spatial autoregressive component to account for the contributions 

of the voxels ν* in the functional neighborhood Nν that surrounds voxel ν. The model in 

Bowman (2005) consists of two stages, following the traditional approach to functional MRI 

(fMRI) analysis: first, fitting each subject’s scans separately with design matrix Xi, and then 

capturing spatial correlation across the fitted coefficients. Since PET studies generally have 
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only a few scans per subject, we present a slightly modified model that combines the two 

stages:

Yig ν = Xiβg ν + ρg
1

Nν
∑

ν* ∈ Nν

Yig ν* − Xiβg ν* + ϵig ν ,

where Nν  denotes the V g − 1 voxels in the functional neighborhood of voxel ν, and 

autoregressive parameter ρg, with 0 ≤ ρg < 1, characterizes the degree of influence of 

neighboring voxels. This model reduces to the simpler, decoupled GLM above when ρg = 0.

Alternative models have been proposed to estimate metabolic activity while accounting for 

spatial correlations in the data (Bowman, 2007; Derado et al., 2013). The primary focus 

of these models is to estimate metabolic activity, and spatial correlations are captured 

to improve estimation of the metabolic activity by borrowing strength across voxels. For 

some models, robust estimation of the spatial correlations requires a large number of scans 

or subjects relative to the number of regions. Unfortunately, large-scale PET studies are 

extremely rare, thus limiting the number of regions that can be considered. We examine 

ways around this problem in the next sections.

Inferences can be drawn from these voxel-wise models, but given the large number of voxels 

involved, traditional corrections for multiple comparisons are untenable. PET images tend 

to have a relatively high degree of spatial correlation, or smoothness; the resulting lack of 

independence across voxels violates the assumptions underlying the rationale for traditional 

corrections for multiple comparisons. Friston et al. (1991) introduced the notion of a 

statistical parametric map (SPM), where the effect measured (e.g., group mean difference) is 

replaced by a test statistic characterizing that effect. Using elements of random field theory, 

they derived a smoothness adjustment to the voxel-wise distribution of the null hypothesis 

to account for the lack of independence from neighboring voxels. For a desired level of 

significance α, the adjustment induces a reciprocal relationship between the the number 

of voxels N and the per-voxel test statistic threshold that is far less stringent than those 

dictated by traditional correction methods. In practice, due to the smoothness of the PET 

image, the thresholding of the SPM results in 3D “islands,” or clusters, of locally adjacent 

voxels. Clusters whose number of voxels exceeds the lower bound on N established by the 

smoothing adjustment are deemed significant. In this way, SPMs provide an alternate, more 

realistic approach to account for the multiple comparisons that inevitably arise in voxel-wise 

analyses.

We note that a recent analysis in the fMRI community has called into question the 

assumptions used to derive the smoothness adjustment (Eklund et al., 2016), citing failure 

to control cluster family wise error to the desired level α. Similar issues may apply to PET 

findings as well (Ganz et al., 2020).

A number of studies have employed SPMs. Using a SPM-based approach in a longitudinal 

setting, Gray et al. (2012) devised an SVM-based classifier using average uptake values 

from 83 regions at two different time points to differentiate between HC, stable and 

progressing MCI, and AD patients. In a similar longitudinal analysis, Rodrigues and Silveira 
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(2014) evaluated SVM classification performance between a region-wise and voxel-wise 

approach; they found that the greater number of features afforded by the voxel-wise 

approach gave higher classification accuracy than that base on regions. Patterson et al. 

(2011) employed SPM analysis to identify clusters with significantly different FDG uptake 

between AD and MCI patients as a way to identify patterns of potential onset of AD.

3.2 | Statistical analysis of metabolic connectivity

Multiple statistical techniques have been applied to the calculation and analysis of metabolic 

connectivity (Yakushev et al., 2017), including studies specifically targeting AD (Morbelli 

et al., 2013; Rahmani et al., 2020). We note that, unlike fMRI for example, PET studies 

typically generate just one scan per subject. So, while inter-region correlation of fMRI 

activity can be computed on a per-subject basis by correlating regional values across time, 

in PET this is generally not an option. As such, measuring similarity of uptake between 

regions is typically performed on an ensemble of subjects, either over the entire cohort or 

on a per-group basis depending on the analysis. However, some newer techniques have been 

developed that allow for the computation of metabolic connectivity on a per-subject basis 

based on specific assumptions about the behavior of uptake. Methods generally break down 

into some combination of the following categories:

3.2.1 | Inter-regional correlation analysis—One basic form of inter-regional 

correlation analysis consists of correlating across subjects the uptake of a particular voxel 

of interest with that of all other voxels in the brain. This so-called seed region approach 

highlights regions of the brain that have similar uptake patterns as the seed region (Metter, 

Riege, Kameyama, et al., 1984; Metter, Riege, Kuhl, et al. 1984). Lee et al. (2008) 

characterized the nature of voxel-wise correlations within a particular ROI, indicating if 

a given voxel in the region generated correlation only within said region, or extended to the 

region’s contralateral counterpart, or if significant (as determined by SPM) regions of voxels 

at other locations showed strong association. Carbonell et al. (2014) developed a hierarchy 

of hypotheses designed to classify between-group differences in the variance-covariance 

characteristics relating the seed voxel uptake pattern to that in other voxel locations in the 

brain. Their technique successively identifies regions with group differences in correlation; 

or group differences in variance or covariance; or regions with proportional variance–

covariance structure between groups. Chung et al. (2016) examined differences in metabolic 

connectivity between early- and late-onset AD. Expanding from the simple seed-region 

approach, they estimated full AAL-based region-to-region correlation matrices for each 

group. They generated 10,000 such matrices per group based on subject resamplings, then 

used nonparametric permutation tests to identify region pairs with significant connectivity 

differences between the groups. They estimated full AAL-based region-to-region correlation 

matrices for each group, and computed correlation differences between groups, using 

nonparametric permutation tests to identify significant differences.

3.2.2 | Sparse inverse covariance estimation—As a precursor to sparse inverse 

covariance estimation (SICE), Horwitz et al. (1984) proposed to analyze the metabolic 

connectivity by identifying region-pairs with strong associations. However, they found 

that the large intersubject variability in global whole brain uptake rate induced significant 
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p < 0.01  correlations between every region pair. To eliminate this nonspecific effect, they 

examined associations between region pairs using partial correlations with respect to the 

global uptake rate between regions. In subsequent work, Horwitz et al. (1987) acknowledged 

that even a few outliers could have an outsized impact on a correlation’s parametrically 

derived p-value. To make their selection process more robust, they adopted a series of 

criteria based on idempotent, jackknife, and bootstrap resamplings to identify “reliable” 

region pair associations. They then applied the technique to AD patients and HCs to examine 

differences in connectivity.

The actual SICE approach (Friedman et al., 2007), also known as the Graphical Lasso, 

works in the inverse covariance domain where partial correlations between a given region-

pair represent the direct association of uptake between the two regions independent of 

any indirect contributions via other regions. SICE leverages an L1-penalized maximum 

likelihood estimator of the inverse covariance matrix Θ = Σ−1, maximizing:

log detΘ − tr SΘ − λ ∥ Θ ∥1 ,

where S is the sample covariance matrix. Increasing the penalization strength via 

regularization parameter λ leads to fewer region-pairs with nonzero partial correlations, but 

increases the bias of the correlations that remain.

Both Huang et al. (2010) and Titov et al. (2016) leveraged the variable selection properties 

of SICE to identify region pairs with nonzero partial correlation. However, acknowledging 

the bias introduced by SICE on those nonzero estimates, both researchers employed 

subsequent constrained estimation of the nonzero partial correlations via Dempster (1972). 

Huang et al. (2010) used this SICE approach to estimate covariance matrices for HCs, 

MCI patients, and AD patients, and then used these covariance matrices in classifiers to 

determine which group a new pattern of uptake values most likely belonged. Similarly, 

Titov et al. (2016) formed maximum-likelihood framework to differentially classify HCs, 

mild AD patients, and patients with mild frontotemporal lobar degeneration. The choice of 

regularization parameter λ, which governs the sparsity of the estimated partial covariance 

matrix, differed between their approaches: Huang et al. (2010) adjusted λ to target a 

prespecified number of nonzero connections between region pairs (e.g., 60, 120, 180). Titov 

et al. (2016), in contrast, employed a maximum a posteriori probability estimator proposed 

by Bani Asadi et al. (2009) to jointly estimate λ and the sparse inverse covariance matrix. 

Although comparison of classification performance between the two approaches is hindered 

by the use of nonidentical cohorts and different subset of ROIs, the approach of Titov et al. 

(2016) correctly distinguished between HC and AD patients with 96%, compared to 88% 

with Huang et al. (2010).

3.2.3 | Principal and independent component analysis—A number of statistical 

techniques have been used to identify spatial patterns of voxels that have similar spatial 

FDG uptake profiles across subjects, notably principal component analysis (PCA) (Jolliffe & 

Cadima, 2016) and independent component analysis (ICA) (Stone, 2002). A variant of PCA 

known as the subprofile scaling model (SSM) (Alexander & Moeller, 1994; Moeller et al., 
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1987), in particular, has seen extensive use in the PET domain: SSM’s initial conditioning 

of the data matrix, including initial log transformation of the data followed by both row 

and column centering, is well suited as a preprocessing step for the strictly positive PET 

measurements. ICA, in the context of imaging, comes in two flavors: spatial-ICA (sICA) 

and temporal-ICA (tICA) (so named due to its origins in the blind source separation of 

time series signals). The tICA flavor has little application in the PET context given that the 

nonspatial dimension of the data matrix in the PET context is “subjects.” In both sICA and 

PCA, each 3D scan is converted to a 1D row vector of length p; then these row vectors are 

stacked to form a n (subjects) × p (voxels) matrix of uptake values. Typically, the columns 

of this matrix are shifted to have zero mean (though, as noted, SSM-PCA performs more 

complex initial conditioning), giving data matrix D.

Although the underlying methodologies vary, both PCA and sICA model the data matrix in a 

similar fashion:

D = S × VT ,

where the columns of V represent spatial decomposition of the data matrix, and S describes 

how those patterns are combined to reconstitute the data matrix. In PCA, the columns 

of V form the principal components and each row of S = U × Λ provides the coordinates 

of the corresponding subjects scan on the basis defined by V. In sICA, the columns of 

V are considered realizations of random variables whose underlying distributions are non-

Gaussian and mutually maximally independent from each other, and S is known as the 

mixing matrix. In both approaches, any anatomically defined ROIs that have significant 

overlap with an identified component are often considered to form a network: they are 

all associated by the characteristics that defined the component. For example, in resting-

state fMRI, one frequently identified ICA component is called the default mode network 

consisting of the medial prefrontal cortex, the posterior cingulate cortex/precuneus, and the 

angular gyrus. Each FDG uptake scan can be decomposed onto these spatial patterns, giving 

a set of scores that can be used for classification purposes. Eidelberg (2009) reviews the use 

of SSM in the realm of metabolic connectivity to identify patterns associated with various 

disease states.

A number of so-called multimodal extensions to ICA have been developed to relate patterns 

across distinct data sets; see Yang et al. (2021) for an overview. These extensions range 

from joint ICA (Calhoun, Adali, Giuliani, et al., 2006; Calhoun, Adali, Kiehl, et al. 2006) 

to parallel ICA (Liu et al., 2009) and linked ICA (Groves et al., 2011), to multimodality 

concatenated ICA (Li et al., 2021), each uncovering increasingly sophisticated relationships 

between the supplied modalities.

In terms of applications of these methods, many researchers have used the spatial bases 

derived from these techniques to discriminate between distinct groups. Approaches vary, 

from relying on the first principal component as the separator (Alexander & Moeller, 1994; 

Pagani et al., 2009), to more sophisticated approaches (Scarmeas et al., 2004) that form 

linear combination of the principal components to as the separating hyperplane. Toussaint 
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et al. (2012) identified components using both SPM and ICA analyses and devised support 

vector machines (SVM) to distinguish stable MCI subjects from those at risk of conversion 

to AD. Likewise, Pagani et al. (2016) applied sICA to FDG scans of amyotrophic lateral 

sclerosis patients and HCs, and similarly used the resulting coordinates system to separate 

the groups. Laforce et al. (2014) applied parallel ICA to jointly analyze PET-FDG and 

PET-PIB in the context of AD.

3.2.4 | Graph theory—Graph theoretic analyses (Bullmore & Sporns, 2009) are 

typically performed after the estimation of the correlation matrix. The correlation matrix 

is converted to a binary adjacency matrix (e.g., via thresholding or SICE), effectively 

defining a finite graph. Then summary characteristics of the graph (such as characteristic 

path length, small world properties, etc.) can be extracted and compared. Veronese et al. 

(2019) used a graph theoretic approach for the quantification of FDG covariance and defined 

an entropy metric relevant for AD to show an association with the progression of the 

pathology. Spetsieris and Eidelberg (2021) performed SICE on the anatomical ROIs within 

the SSM network that most differentiates disease status from HCs; bootstrapping samples 

over a range of sparsity, they use eigenvalue centrality measures on the resulting adjacency 

matrices to identify the ROIs in the discriminating network whose connectivity is most 

robust.

3.2.5 | Single-subject estimates of metabolic connectivity—The methods 

discussed so far compute metabolic connectivity by deriving statistics across a collection of 

scans. The methods in this section are novel in that they estimate a measure of connectivity 

for each individual subject. Huang et al. (2020) proposed an element-wise, region-pair 

adjustment to a group-derived correlation matrix from HC subjects. The element-wise 

adjustment relies on an effect-size normalization of the between-region differences in 

activity between the individual PET scan and the average HC group activity. In their 

derivation, a large effect of region-pair difference in uptake leads to a shrinking of the 

HC group correlation for the corresponding region-pair. Another approach, the Kullback–

Leibler divergence similarity estimation (KLSE), does not rely on the adjustment of 

predefined correlation matrix. Instead, Wang et al. (2020) posited that brain regions with 

similar distributions of voxel intensities indicate a common underlying metabolic process. 

They defined a similarity measure using Kullback–Leibler (KL) divergence to estimate the 

similarity of voxel intensity distributions pairwise between regions.

Given probability distributions P  and Q of voxel intensities for two different regions, the 

similarity measure is defined as

SKL P , Q = exp −DKL P , Q ,

with the Kullback–Leibler divergence expressed as

DKL P , Q = ∫
x

P x log P x
Q x + Q x logQ x

P x dx,
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providing a symmetric (undirected) estimate of connectivity between the two regions. 

Applied to all region-pairs, this technique generates a connectivity matrix representative of 

one particular scan. Wang, Yan, et al. (2020) used KLSE to characterize the connectivity 

patterns between stable and progressive MCI patients using the AAL parcellation. 

Comparing the patterns of stable and progressive MCI patients they were able to identify 

a difference pattern that implicated regions associated with conversion to AD. Using this 

pattern, they devised a classifier that outperformed discriminators based on ROI-based mean 

intensity values as well as the distribution of voxel intensities within a spatial component 

associated with conversion to AD derived from spatial covariance analysis.

3.3 | Joint analysis of metabolic activity and connectivity: A Bayesian spatial model

As summarized above, many different techniques have been developed to characterize 

either metabolic activity or metabolic connectivity in the brain. To our knowledge, only 

one approach has been developed to characterize jointly metabolic activity and metabolic 

connectivity. In what follows, we apply an updated version of a Bayesian spatial model 

for activation and connectivity (BSMac) (Bowman et al., 2008) to quantify FDG-derived 

metabolic characteristics of the brain. The update accommodates the inclusion of covariates 

to control of age, socioeconomic status, handedness, and other potentially confounding 

variables; also, the model has been extended to permit as many regions as one wishes, even 

with a limited sample size—with the caveat that the number of inter-regional correlation 

estimates remains constrained by the sample size. Unlike the approaches above, ours is 

the first unified approach that integrates the elements of metabolic activity (at the voxel 

level) and metabolic connectivity (at the regional level) into a single model. Our integrated 

approach thus provides self-consistent modeling of the metabolic characteristics of the brain.

To illustrate the capabilities of our model, we employed FDG scans from healthy, 

cognitively normal controls (HC, n = 69), MCI n = 125 , and AD   n = 53  patients across 

four different time points (baseline, 6, 12, and 24 months) from ADNI to estimate the model 

parameters, and then used the model to derive inferences about activity and connectivity 

among the three groups. Covariates included in the model were age, weight, and the 

cognitive subscale of the Alzheimer’s Disease Assessment Scale, each standardized to 

z-scores across all subjects.

BSMac, implemented as a MATLAB toolbox (Zhang et al., 2012), performs parameter 

estimation based on Markov chain Monte Carlo (MCMC) methods and generates plots 

for activation and connectivity (Derado et al., 2012; Zhang et al., 2012). The toolbox 

includes several extensions to the original Bowman et al. (2008) model, for example, 

incorporating covariate effects into the spatial model and implementing analyses for small 

sample sizes. BSMac is released as an open-source package under the GNU public license 

(http://www.gnu.org/licenses/gpl.html) and is available upon request to the authors.

Our analysis uses FDG scans preprocessed through Step 4 of the ADNI preprocessing 

protocol (http://www.loni.ucla.edu/ADNI). To summarize, the scans from each subject’s 

visits are coregistered in native, aligned to the anterior to posterior commisure line on 

a standard voxel grid, intensity normalized to a mean value of one within the subject’s 

brain mask, and smoothed to an isotropic resolution of 8 mm full width at half maximum. 
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We subsequently determined an affine, 12 degrees of freedom transform that best warp 

the subject’s averaged intensity-normalized scans to stereotaxic MNI space by way of a 

PET-FDG template. The four intensity-normalized scans were warped to MNI space by 

means of this transform. Finally, each spatially normalized scan was scaled in intensity 

so that the mean intensity of the upper cerebellum (whose FDG uptake is thought to be 

insensitive to age and cognitive status) equals one for improved comparison across groups 

and visits (Rasmussen et al., 2012).

3.3.1 | Model—Let i = 1,2, …, K index subjects, and j denote specific group × visit 

combinations: each subject belongs to one of three groups (HC, MCI, or AD) and has four 

scans (baseline and three subsequent visits). BSMac leverages a parcellation of the brain 

into regions defined in MNI space, such as those proposed by the AAL (Tzourio-Mazoyer 

et al., 2002) or the Brodmann maps (Judaš et al., 2012). The G regions are indexed by 

g = 1,2, …, G, and contain V g voxels; intensity values from all voxels in region g are stacked 

into a single vector.

Yigj denotes the average FDG uptake for subject i in region g for group × visit combination 

j. (Note that here Yigj is a vector of length V g, with one element per voxel, in contrast to the 

vector of scans Yig ν  at voxel ν in the GLM model presented earlier.) Finally, let xiq represent 

the qth q = 1,2, …, Q  covariate for subject i.

The BSMac model has the following hierarchical structure:

Yigj ∣ μgj, αigj, ηgjq, σgj
2 MVN μgj + 1αigj + ∑

q = 1

Q
ηgjqxiq, σgj

2 I ;

σgj
−2 Gamma a0, b0

μgj ∣ λgj
2 MVN 1μ0g, , λgj

2 I λgj
−2 Gamma c0, d0

ηgjq ∣ τgjq
2 MVN 0, τgjq

2 I τgjq
−2 Gamma e0q, f0q

αij ∣ Γj MVN 0, Γj Γj
−1 Wishart ℎ0H0j

−1, ℎ0

(1)

where μgj = μgj 1 , …, μgj V g ′, ηgjq = ηgjq 1 , …, ηgjq V g ′, and αij = αi1j, …, αiGj ′. Parameter μ0gj

denotes the mean voxel intensity in region g across all subjects in Group × Visit combination 

j. The G × G matrix H0j is the sample covariance matrix of the mean regional values in Group 

× Visit combination j. The model assumes that each individual’s normalized glucose uptake 

at the voxel level is randomly distributed around a population (or group) parameter, μgj, plus 

an individualized region-specific random effect, 1αigj, after adjusting for covariate effects 

through ηgiq. The regional random effect αigj, the gth element of vector αij, contributes to short 

range intra-regional correlations and accounts for possible long-range inter-regional spatial 

correlations through the covariance matrix Γj. We define the mean regional uptake θgj as the 

mean value of the V g elements of μgj. For more details on the model specification and the 

explanation of the correlation structure, see Zhang et al. (2012).
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3.3.2 | Inference—For estimation, we use MCMC method with the Gibbs sampler. 

BSMac’s Gibbs-friendly model specification facilitates estimation by providing substantial 

reductions in computing time and memory. After discarding iterations included in the burn-

in period, the computing time and memory can be further reduced with a thinning factor, 

which retains samples from the joint posterior distribution drawn at the specified interval. 

For this analysis, BSMac MCMC estimation was set up with a burn-in of 1000 samples, 

followed by a 6000 sample run with a thinning factor of 10, resulting in D = 600 draws 

indexed by d = 1,2, …, D. Relatively uninformative priors were specified via hyperparameters 

a0 = 0.1,   b0 = 0.005, c0 = 0.1, d0 = 0.010; e0q = 0.1, and f0q = 0.05∀q. Parameter ℎ0 denotes the 

Wishart degrees of freedom, equal to the number of subjects in Group × Visit combination j.

3.3.3 | Inference of regional FDG uptake—Once the BSMac model parameters 

outlined in 1 have been estimated, the MCMC process via Gibbs sampling generates near-

independent samples of voxel-level uptake, μgj; regional-level uptake, θgj; and inter-region 

correlation, Rj = Λj
−1ΓjΛj

−1, where diagonal matrix Λj = diag Γj
12.

In the exposition that follows, we use the regional uptake values θgj to outline the inference 

procedure, but the procedure itself can be applied element-wise to μgj and Rj as well.

We denote by θgid the regional activation produced by the dth draw of D total draws from 

the MCMC procedure. To examine differences in regional uptake between groups, visits, or 

both, we introduce contrast sequence cj, j = 1,2, …, J, with coefficients chosen to isolate and 

contrast desired combinations of Group × Visit scans of interest, and collapse across j :

θgcd =(def) ∑
j = 1

J
cjθgjd .

(2)

Let indicator function I+ x = 1 when x > 0,0 otherwise. We use the following as the 

estimator of the probability that the contrasted FDG uptake region g exceeds threshold δ:

Pδ
+ θgc =def 1

D ∑
D

d = 1
I+ θgcd − δ

≈ Pr θgc > δ .

(3)

In a similar manner, we can define Pδ
− θ gc, an estimator for Pr θgc < − δ .

3.3.4 | Metabolic connectivity—The BSMac model enables inferences about the 

associations of FDG uptake between region-pairs based on samples Γ jd ∣ d = 1, 2, …, D
generated by the MCMC process. We apply concepts outlined above to form contrasts on 

each region-pair element of Γ jd and draw inferences by examining exceedance probabilities 

formulated from the empirical distribution of each. We also estimate the posterior median 

correlation matrix of the set of correlation matrix draws using a two-step procedure. 
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First, we determine the posterior median covariance matrix (the point on the manifold of 

symmetric positive semi-definite matrices that minimizes the sum of distances to covariance 

matrix draws Γjd ∣ d = 1,2, …, D ) (Fletcher et al., 2008). Then, we project the result onto 

the submanifold of positive symmetric difference matrices with unit diagonal by pre- and 

post-multiplying by the appropriately scaled diagonal matrix, as noted above. (Note that we 

have opted for this estimation approach because efficient methods to directly compute the 

median correlation matrix do not currently exist.) Finally, we determine, element-wise, the 

region-pair contrasts across groups and visits as dictated by the contrast coefficients cj.

3.3.5 | Contrasts—Our data set consists of three groups of patients (HC, MCI, and 

AD) scanned over four visits (Baseline, Month 6, Month 12, and Month 24). In the model, 

the 12 basic Group × Visit combinations are enumerated by the single index j = 1,2, …, 12. 

The contrast sequence cj dictates how these 12 scans are combined to form quantities of 

interest, typically differences between groups, visits, or a combination of both. We introduce 

a bracket-based notation to help classify and refer to different types of contrasts used 

throughout the remainder of the paper. We refer to the different sets as “blocks,” visualized 

as outer products of group and visit differences. The different categories of contrasts are:

• a three-by-four block of zero-difference, base contrasts which we label ⟨⋅⟩ × ⟨⋅⟩ 
(e.g., ⟨HC⟩ × ⟨Baseline⟩);

• a three-by-three block of single-difference contrasts highlighting the change over 

time relative to the baseline visit for each individual group, summarized as ⟨⋅⟩ × 

⟨−⟩ (e.g., ⟨HC⟩ × ⟨24 Months − Baseline⟩);

• a three-by-four block of single-difference contrasts comparing between-group 

differences at a given visit, summarized as ⟨−⟩ × ⟨⋅⟩ (e.g., ⟨AD − HC⟩ × 

⟨Baseline⟩); and

• a three-by-three block of double-difference contrasts that quantify how a 

particular group difference changes over time, summarized as ⟨−⟩ × ⟨−⟩ (e.g., 

⟨AD − HC⟩ × ⟨24 Months − Baseline⟩).

This block structure will become apparent in later graphics.

4 | RESULTS

We select G = 52 AAL regions (Tzourio-Mazoyer et al., 2002) from among the frontal, 

temporal, and parietal lobes, as well as subcortical gray matter structures, deemed relevant to 

AD pathology. (The selected regions appear in Figure 2.)

4.1 | Metabolic activity

Table 1 lists regions that contain greater than 50% of voxels whose between-group 

difference in ⟨24 Months − Baseline⟩ change in uptake is very probably positive 

Pδ = 0
+ μ > 0.90  or negative Pδ = 0

− μ > 0.90 . In two of the three group differences, the 

50% threshold was exceeded by voxels with high probability of being negative. Seven such 

regions were found for ⟨AD − MCI⟩ × ⟨24 Months − Baseline⟩; a superset with nearly twice 

as many regions was found for ⟨AD − HC⟩ × ⟨24 Months − Baseline⟩. No regions had 
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sufficient number of voxels with Pδ = 0
+ μ > 0.90. Also, for the remaining group difference, 

no regions for the ⟨MCI − HC⟩ × ⟨24 Months − Baseline⟩ met the selection criteria.

The table also indicates the corresponding probability of aggregate regional ⟨24 Months – 

Baseline⟩ change, both for the group differences and for each group individually. For the 

⟨AD − MCI⟩, ⟨AD − HC⟩, and the AD cases, these regional probabilities are uniformly 

zero (i.e., none of the MCMC draws gave an aggregate regional value greater than zero); the 

probabilities for ⟨MCI⟩ × ⟨24 Months − Baseline⟩ are all similarly small. In contrast, the 

regional probabilities of the ⟨HC⟩ × ⟨24 Months − Baseline⟩, however, range from relatively 

low ≈ 0.2  to quite high (0.9).

Figure 1 indicates voxels with high or low probabilities for the three group difference 

changes on a backdrop of the brain. Following the pattern noted in Table 1, both ⟨AD 

− HC⟩ × ⟨24 Months − Baseline⟩ and ⟨AD − MCI⟩ × ⟨24 Months − Baseline⟩ exhibit 

large numbers of voxels with low probability of the corresponding contrast exceeding zero 

(indicated in blue). The ⟨MCI − HC⟩ × ⟨24 Months − Baseline⟩ case, however, displays far 

fewer voxels with such low probability contrasts.

In short, we infer that AD and MCI exhibit similar patterns of decline in FDG uptake, with 

said decline more severe for AD than MCI. HC, in contrast, does not exhibit such a decline.

4.2 | Metabolic connectivity

We explore the association of FDG uptake between region-pairs in two ways. In the first 

approach, we form contrasts directly on the individual MCMC-derived correlation draws, 

and then infer connectivity strength via the resulting empirical cumulative distribution. In 

the second approach, we determine the posterior median matrix for each group-by-visit 

combination j from the corresponding MCMC draws of the inverse variance-covariance 

matrix Γ jd d = 1
D . Then we form contrasts directly on elements of the posterior median to 

examine differences in group, visit, or both. Both approaches provide insight into the 

strength of association of metabolic activity between region pairs.

4.2.1 | Via Bayesian inference—Figure 2 uses connectograms to highlight strongly 

probable positive and negative associations between region pairs for two (single-difference) 

contrasts: ⟨HC⟩ × ⟨24 Months − Baseline ⟩ and ⟨AD⟩ × ⟨24 Months − Baseline⟩. 
Here, contrasted region-pair correlations determined to be positive or negative with 90% 

probability or greater are shown as colorcoded arcs connecting the two regions. In addition 

to connectivity, the figure also quantifies regional FDG uptake by presenting the probability 

of positive (red) and negative (blue) uptake in nested outer rings. Finally, the regions are 

grouped into sectors based on their membership in various anatomical brain structures.

In terms of connectivity, 14 region-pairs exhibited highly probable positive contrasts 

exceeding 90% for contrast ⟨HC⟩ × ⟨24 Months − Baseline⟩. Regions in the left parietal lobe 

and right temporal lobe garnered the majority of connection endpoints. (See Figure 3 for 

an explicit accounting of connection endpoints.) Contrast ⟨AD⟩ × ⟨24 Months − Baseline⟩, 
however, showed no correlation contrasts with sufficiently consistent positive or negative 

values to reach the 90% threshold.
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In terms of activity, ⟨HC⟩ × ⟨24 Months − Baseline⟩ has five regions with greater than 

90% probability of increase in uptake from Baseline to Month 24, three of which were 

found in the right frontal lobe. The caudate, bilaterally, shows greater than 90% probability 

of decrease in activity from Baseline to Month 24. For ⟨AD⟩ × ⟨24 Months − Baseline⟩, 
however, virtually all regional activations were found to decrease from Baseline to Month 24 

with probability one. Only the pallidum, bilaterally, shows a hint of probable non-negative 

increase over time, but not sufficient to reach the 90% threshold.

For a more complete picture, Figure 3 shows the full array of connectograms in a fashion 

similar to Figure 2. Although anatomical sector labels and region names have been removed, 

this figure includes the number of connections terminating at each anatomical sector. Also, 

in some blocks the posterior distributions used to compute connectivity results have been 

altered by increasing threshold δ used to compute Pδ
+ ρ  and Pδ

− ρ . For the three-by-four 

⟨⋅⟩ × ⟨⋅⟩ block of elemental correlations, δ = 0.5, and for the three-by-three ⟨−⟩ × ⟨⋅⟩ group-

difference contrasts, δ = 0.1. In the remaining two blocks, δ = 0. Without these nonzero 

thresholds, the pervasive connectivity in these blocks completely drowns out any interesting 

patterns.

In the ⟨⋅⟩ × ⟨⋅⟩ block of uncontrasted Group × Visit combinations, metabolic uptake and 

connectivity for all groups and visits are strongly positive. However, the increased threshold 

δ to 0.5 reveals a distinct difference in the connectivity of ⟨AD⟩ × ⟨⋅⟩ compared to ⟨HC⟩ × 

⟨⋅⟩ and ⟨MCI⟩ × ⟨⋅⟩ in the block of zero-difference contrasts: both the temporal and parietal 

sectors, bilaterally, appear to lose strong connections with the anatomical sectors in the rest 

of the brain.

In the ⟨−⟩ × ⟨⋅⟩ group difference contrast block, virtually all differences in uptake are 

highly probably negative across all visits and all group combinations. Consistent with the 

observations above, contrast ⟨MCI-HC⟩ × ⟨⋅⟩ shows fewer connected region pairs that 

compared to the contrasts involving AD.

For change over time, ⟨MCI⟩ × ⟨−⟩ shows a growing number of region-pairs with declining 

correlation relative to baseline. The ⟨HC⟩ × ⟨−⟩ shows a slight increase in correlation 

relative to baseline for a small number of region-pairs. We note, as well, a progressive 

decline in uptake in virtually all regions for groups MCI and (especially) AD.

Finally, for the ⟨−⟩ × ⟨−⟩ contrast block, the connectivity difference ⟨AD − MCI⟩ × 

⟨−⟩ does not seem to change over visits relative to baseline; however, the corresponding 

change in uptake ends up solidly negative by Month 24. The connection profile of the 

group difference ⟨MCI − HC⟩ × ⟨−⟩ shows a somewhat consistent set of region-pairs with 

decreased connectivity relative to baseline, whereas the change in uptake of the group 

difference seems to exhibit an increase in Month 6 and Month 12, but shows a marked 

decrease at Month 24.

4.2.2 | Via posterior median—Table 2 lists the pairwise connections shown in Figure 

3 for contrasts ⟨−⟩ × ⟨Month 24 − Baseline⟩. The subtables for each pair of groups provide 

both the change in group differences from baseline to the visit at Month 24 along with 
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the corresponding single-contrasts indicating each individual group’s change over the same 

interval. Values are given for the inferred probability values as well as the corresponding 

differences in the posterior median correlation matrix for comparison purposes.

We note that for contrast ⟨AD − MCI⟩ × ⟨Month 24 − Baseline⟩, no region-pairs exceeded 

the 90% threshold. Both ⟨MCI − HC⟩ × ⟨Month 24 − Baseline⟩ and ⟨AD − HC⟩ × ⟨Month 

24 − Baseline⟩ exhibit a similar pattern: changes in the posterior median correlation for HC 

are generally positive, agreeing with the inferred probability values exceeding 0.5, whereas 

changes in the posterior median correlation for MCI and AD are consistently negative, 

resulting in group differences with HC that are even more negative. These findings are 

reflected in the corresponding inferred probabilities which are well below 0.5.

5 | CONCLUSION

Our between-group metabolic activity results largely corroborate findings in the literature, 

summarized by Brown et al. (2014); Patterson et al. (2011); Shivamurthy et al. (2015), 

with decreased uptake in the temporal and parietal lobes in AD relative to HC. We note 

that many regions in the MCI group tend to show an initial increased metabolic activity 

relative to baseline. By Month 24, however, only the postcentral gyrus (bilaterally) in 

the parietal lobe and the right pallidus among the gray nuclei show strong increased 

activity. This hypermetabolism has been hypothesized to be a compensatory mechanism 

to counteract the general decrease in activity overall (Ashraf et al., 2014). the parietal lobe 

Delbeuck et al. (2003) characterize AD as a “disconnectivity” syndrome, citing evidence 

from neuropathology, electrophysiology and neuroimaging, and neuropsychological testing. 

In support of this view, our model highlights strongly reduced inter-hemispheric connections 

in AD, relative to HC, in the temporal, parietal, and frontal lobes; and subcortical gray 

nuclei. Alterations—decreases—in connectivity seem to occur primarily during the MCI 

phase over time; AD exhibits no significant change in connectivity over time. We are unsure 

what to make of the increased metabolic association relative to baseline for HC; it may be an 

artifact of our choice of reference region for intensity normalization (Rasmussen et al., 2012; 

Yakushev et al., 2008), or a reflection of age-related alterations. Also, we note decreased 

connectivity between the temporal, parietal, and frontal lobes in AD versus HC, similar to 

analyses (Alexander & Moeller, 1994; Huang et al., 2018). Several studies use longitudinal 

change in FDG activity relative to baseline as features for classifiers that differentiate 

between cognitively normal controls and MCI or AD patients (Gray et al., 2012; Rodrigues 

& Silveira, 2014; Shokouhi et al., 2013; Teng et al., 2020). However, to our knowledge, 

no study has formally quantified the evolution of group differences in metabolic activity or 

connectivity in a longitudinal setting.

A variety of statistical approaches have been developed to analyze PET-based measures 

of metabolic activity and connectivity. These approaches typically focus on either activity 

or connectivity, but not both in a consistent manner. In contrast, the BSMac approach 

jointly models univariate metabolic activity at the voxel-level and multivariate metabolic 

correlation at the regional level. BSMac’s Bayesian formulation allows for the integration 

of a-priori information to be factored into the model. The voxel-based nature of the model 

provides the flexibility to use less common or even data-driven parcellations rather than 
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rely on strictly anatomically-defined atlases, similar to ICA- and PCA-based approaches. 

BSMac also provides an alternative way to derive adjacency matrices for use in subsequent 

graph-theoretic analyses by acknowledging only the most probable inter-region connections. 

Finally, by virtue of BSMac’s MCMC machinery, draws for various contrasts can be used to 

estimate the posterior median or mean correlation matrices, allowing for an additional means 

of characterizing region-pair connections.

In the current analysis, BSMac views subjects in each ⟨Group⟩ × ⟨Visit⟩ combination 

as independent; there is no consideration for longitudinal association across visits. A 

fully spatiotemporal model, as modeled by Bowman (2007), for example, would not be 

computationally feasible in this framework. However, Derado et al. (2012) augmented a 

variant of the BSMac model to include a multivariate conditional autoregressive component. 

Once trained, this augmented model was able to accurately predict activation patterns at 

Month 6 based on Baseline scans. In the absence of explicit temporal modeling, however, 

one could take the same approach used by other longitudinal studies cited here: use the 

difference in metabolic activity relative to the baseline visit as inputs to the model. In terms 

of modeling connectivity, the current implementation requires fewer regions than subjects. 

However, since the model characterizes connectivity through instances of the precision 

matrix, one could envisage embedding a SICE-like procedure to take advantage of sparse 

connectivity (Emmert-Streib et al., 2019). Such an extension would leverage the known 

sparsity of brain connections to relax the constraint on the number of regions.
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FIGURE 1. 
The Bayesian spatial model for activation and connectivity (BSMac)-inferred between-group 

voxel-wise differences in the 〈Month 24 – Baseline⟩ change in uptake. Colored voxels 

signal that, with high probability, the contrast is positive Pδ = 0
+ μ > 0.90 in red) or negative 

Pδ = 0
− μ > 0.90 in blue).
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FIGURE 2. 
Metabolic connectivity and activity: group change over time. Arcs indicate high 

probability of metabolic connectivity change from baseline to Month 24: red arcs for 

Pδ = 0
+ ρM24) − ρBL > 0.9, blue arcs for Pδ = 0

− ρM24) − ρBL > 0.9. The outer rings, in red and blue, 

probability of change in metabolic activity over time: red for high probability of positive 

change from baseline to Month 24; blue for negative. The number of connected region pairs 

is indicated in the lower right-hand corner of each panel.

Drake et al. Page 23

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2024 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Metabolic connectivity and activity: Arcs indicate high probability of contrasted metabolic 

connectivity between regions Pδ
+ ρ > 0.9 in red, or Pδ

− ρ > 0.9 in blue). (For connectivity, 

the exceedance values δ = 0.5 for the upper left block, δ = 0.1 for the lower left group 

differences block, and zero for the remaining two blocks.) Rectangles along the outer 

segment provide both probabilities Pδ
+ θ  (in red) and Pδ

− θ  (in blue), back to back, 

indicating the probability of contrasted metabolic activity for each region. (For activity, 

the exceedance values δ = 0.75 for the upper left block, δ = 0.05 for the lower left group 

differences block, and zero for the remaining two blocks.) Dark rectangles represent 

probabilities exceeding 90%. Each segment represents an anatomical sector of the brain, 

and the accompanying numbers indicate the number of arcs impinging on that sector. The 

number of connected region pairs is indicated in the lower right-hand corner of each panel.
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TABLE 1

Bayesian spatial model for activation and connectivity (BSMac)-inferred voxel- and region-level change in 

uptake. The between-group differences by ⟨24 Months − Baseline⟩ change (left) indicate for each region the 

percentage of voxels (VPct) for which Prδ = 0
+ ⋅ < 0.01. Only regions for which VPct exceeded 50% are shown 

here. Note that at this threshold, no regions had more than 50% of voxels with Prδ = 0
+ ⋅ > 0.90. Secondary 

values, VAbs and RPr indicate the corresponding absolute number of voxels (VAbs) and the region-level Pδ
+ θ

(RPr). The ⟨24 Months − Baseline⟩ change in uptake for each group individually (right) is summarized by 

regional RPr (i.e., Pδ = 0
+ θ  for the corresponding region). Red values indicate regions that, for a particular 

between-group difference in change in uptake, show highly probable pair-wise association with another region 

at p > 0.90; see Table 2.

AD - MCI MCI - HC AD - HC AD MCI HC

Region VPct VAbs RPr VPct VAbs RPr VPct VAbs RPr RPr RPr RPr

Temporal Mid (R) 88.6 3851 0 91.2 3965 0 0 0.000 0.213

SupraMarginal (R) 78.0 1540 0 83.5 1648 0 0 0.258 0.885

Frontal Mid (R) 51.4 2519 0 80.4 3939 0 0 0.000 0.413

Temporal Inf (R) 77.9 2750 0 79.2 2798 0 0 0.005 0.297

Temporal Mid (L) 72.3 3569 0 70.1 3463 0 0 0.005 0.227

Temporal Inf (L) 65.3 2086 0 69.8 2231 0 0 0.012 0.335

Frontal Inf Tri (R) 65.9 1201 0 0 0.000 0.798

Frontal Inf Oper (R) 60.8 789 0 0 0.010 0.857

Temporal Sup (R) 60.7 1852 0 0 0.020 0.632

Temporal Sup (L) 55.4 1272 0 58.6 1345 0 0 0.037 0.390

Frontal Mid (L) 57.2 2745 0 0 0.000 0.173

Frontal Inf Tri (L) 56.7 1407 0 0 0.000 0.360

SupraMarginal (L) 56.0 703 0 0 0.170 0.657

Abbreviations: AD, Alzheimer’s disease; HC, healthy control; MCI, mild cognitive impairment.
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TABLE 2

Region pair association of the change in uptake 24 Months – Baseline between groups. Region pairs whose 

probability of either positive or negative association for the double contrast that exceeds 95% are listed. Also 

listed are the corresponding per-group probabilities for 24 Months – Baseline change and the corresponding 

differences in posterior average correlation. Regions highlighted in red demonstrate significant change in 

activation, as listed in Table 1.

(a) ⟨AD – MCI⟩ × ⟨24 Months – Baseline⟩

Probability Contrast

AD – MCI AD MCI AD – MCI AD MCI

Positive

Frontal Mid (R) Temporal Mid (L) 0.907 0.817 0.143 0.235 0.148 −0.087

(b) ⟨MCI – HC ⟩×⟨24 Months – Baseline⟩

Probability Contrast

MCI – HC MCI HC MCI – HC MCI HC

Negative

Postcentral (L) Temporal Pole Sup (R) 0.019 0.126 0.959 −0.350 −0.112 0.238

Temporal Inf (R) 0.043 0.175 0.927 −0.270 −0.087 0.183

Temporal Pole Mid (R) 0.092 0.335 0.906 −0.228 −0.042 0.186

Caudate (R) Postcentral (L) 0.026 0.070 0.914 −0.344 −0.141 0.203

Precentral (L) 0.058 0.116 0.863 −0.280 −0.114 0.167

Postcentral (R) 0.063 0.048 0.784 −0.263 −0.151 0.112

Supp Motor Area (R) 0.078 0.032 0.684 −0.253 −0.182 0.071

SupraMarginal (L) 0.095 0.257 0.872 −0.227 −0.058 0.169

ParaHippocampal (R) Postcentral (L) 0.030 0.152 0.942 −0.317 −0.097 0.220

Postcentral (R) 0.046 0.079 0.861 −0.277 −0.132 0.146

Supp Motor Area (R) 0.056 0.080 0.835 −0.285 −0.139 0.145

Precentral (L) 0.078 0.278 0.905 −0.248 −0.057 0.190

Hippocampus (R) Postcentral (L) 0.037 0.118 0.914 −0.306 −0.115 0.190

Postcentral (R) 0.075 0.053 0.746 −0.242 −0.151 0.092

Precentral (L) 0.084 0.173 0.848 −0.245 −0.092 0.153

Precentral (L) Temporal Pole Sup (R) 0.045 0.182 0.922 −0.282 −0.081 0.201

Temporal Inf (R) 0.098 0.288 0.885 −0.203 −0.051 0.152

Supp Motor Area (R) Temporal Pole Sup (R) 0.046 0.121 0.893 −0.296 −0.116 0.181

Temporal Inf (R) 0.071 0.071 0.776 −0.248 −0.144 0.105

Temporal Pole Mid (R) 0.094 0.242 0.866 −0.231 −0.069 0.162

Postcentral (R) Temporal Pole Sup (R) 0.048 0.083 0.866 −0.286 −0.126 0.160

Temporal Pole Sup (L) 0.098 0.117 0.778 −0.219 −0.111 0.108

Rolandic Oper (L) Temporal Inf (R) 0.059 0.240 0.925 −0.218 −0.060 0.158

Temporal Mid (R) 0.096 0.241 0.869 −0.176 −0.056 0.120

Insula (R) Postcentral (L) 0.062 0.037 0.762 −0.234 −0.139 0.095

Precentral (L) 0.096 0.086 0.758 −0.197 −0.107 0.090

Precentral (R) Temporal Pole Sup (R) 0.084 0.130 0.818 −0.233 −0.106 0.126
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(b) ⟨MCI – HC ⟩×⟨24 Months – Baseline⟩

Probability Contrast

MCI – HC MCI HC MCI – HC MCI HC

Cingulum Mid (R) ParaHippocampal (R) 0.087 0.217 0.865 −0.223 −0.072 0.151

Temporal Inf (R) 0.099 0.343 0.901 −0.209 −0.035 0.175

Temporal Pole Sup (R) 0.100 0.385 0.911 −0.217 −0.028 0.189

SupraMarginal (L) Temporal Pole Sup (R) 0.092 0.349 0.908 −0.209 −0.037 0.172

Supp Motor Area (L) Temporal Pole Sup (R) 0.093 0.206 0.854 −0.230 −0.082 0.147

Hippocampus (L) Postcentral (R) 0.095 0.083 0.748 −0.223 −0.127 0.096

ParaHippocampal (L) Supp Motor Area (R) 0.096 0.194 0.834 −0.234 −0.091 0.143

(c) ⟨AD – HC⟩ × ⟨24 Months – Baseline⟩

Probability Contrast

AD – HC AD HC AD – HC AD HC

Negative

Postcentral (L) Temporal Pole Sup (R) 0.040 0.196 0.959 −0.380 −0.142 0.238

Temporal Pole Mid (R) 0.073 0.211 0.906 −0.329 −0.143 0.186

Precentral (L) Temporal Pole Mid (L) 0.073 0.133 0.823 −0.324 −0.201 0.123

Temporal Pole Mid (R) 0.077 0.195 0.887 −0.320 −0.153 0.167

ParaHippocampal (L) Postcentral (L) 0.071 0.226 0.917 −0.333 −0.136 0.197

Precentral (L) 0.086 0.228 0.894 −0.309 −0.129 0.180

Postcentral (R) 0.092 0.166 0.816 −0.304 −0.173 0.131

SupraMarginal (L) Temporal Pole Sup (R) 0.091 0.245 0.908 −0.287 −0.115 0.172
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