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The Freudian theory of conversion suggested that the major symptoms of functional
neurological disorders (FNDs) are due to internal conflicts at motivation, especially at
the sex drive or libido. FND patients might behave properly at rewarding situations, but
they do not know how to behave at aversive situations. Sex drive is the major source
of dopamine (DA) release in the limbic area; however, the neural mechanism involved
in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key
role in processing motivation-related information. Recently, DAergic neurons are found
to be involved in reward-related prediction error, as well as the prediction of aversive
information. Therefore, it is suggested that DA might change the rewarding reactions
to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic
areas might induce two major motivational functions: reward and aversion at internal
conflicts. This article reviewed the recent advances on studies about DAergic neurons
involved in aversive stimulus processing at internal conflicts and summarizes several
neural pathways, including four limbic system brain regions, which are involved in the
processing of aversion. Then the article discussed the vital function of these neural
circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided
a prospect for future research on the aversion function of limbic system DA neurons and
the therapy of FNDs.

Keywords: limbic system, DA, aversion function, prediction error, functional neurological disorders

INTRODUCTION

Functional neurological disorders (FNDs) are a common mental disorder (Ludwig et al., 2018).
FND is a medical condition in which there is a problem with the functioning of the brain, rather
than a structural disease. The exact prevalence of FND is unknown; research suggests that FND
is the second most common reason for a neurological outpatient visit after headache/migraine,
accounting for one-sixth of diagnoses (Voon et al., 2016). This means that FND is as common
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as multiple sclerosis or Parkinson’s disease (PD). FND was firstly
known as conversion disorder, which was introduced by Breuer
and Freud (1895–1995), who suggested that FNDs are due to
the contradiction in the affective idea, which is converted into
a somatic phenomenon. The Freudian theory of conversion
proposed that the major symptoms of FND are due to inhibition
of internal motivation, especially the sex drive or libido. FND
patients always try to hide their internal motivations and always
behave like acting in a play. FND patients might behave properly
at happy situations; but they do not behave properly at aversive
situations, when they are trying to hide their emotions. Sex
drive is the major source of dopamine (DA) release in the brain;
however, how DA in the limbic area is involved in FND is not
clear. DA has been known as a reward neurotransmitter in the
brain, and a large number of studies have shown that the secretion
of DA in the limbic area has an inseparable relationship with
joy (Gu et al., 2015). Since the 1960s, a great number of studies
have confirmed the vital role of DA in the process of reward and
motivation (Fouriezos and Wise, 1976; Corbett and Wise, 1980),
so DA has gradually become a synonym for joy (Wang F. et al.,
2020). However, what happens to the DA at the internal conflict
for FND patients?

Schultz (Schultz et al., 1997) and others put forward the
viewpoint of reward prediction error for DA in the 1990s,
which induced most of the studies about dopaminergic (DAergic)
neurons focusing on reward prediction error in the following
20 years. Meanwhile, there are an increasing number of studies
investigating the neural circuitry of reward prediction error
during this period. Brain regions such as the ventral tegmental
area (VTA), substantia nigra (SN) pars compacta (SNc) (He et al.,
2021), nucleus accumbens (NAc), striatum, lateral hypothalamus
(LHa), and lateral habenula (LHb) have been found to be critically
associated with the prediction error for rewards (Bromberg-
Martin et al., 2010; Morales and Margolis, 2017). The most
interesting thing is that the DAergic neurons are not only
involved in reward-related prediction error, but they are also
in the prediction of aversive information (Matsumoto and
Hikosaka, 2009). Therefore, DA might work for both rewarding
and aversive predictions, and DAergic neurons might induce two
main motivational functions: reward and aversion at internal
conflicts (Bromberg-Martin et al., 2010).

There have been many reports about the role of DA in reward,
so this article only discusses the aversive function of DAergic
neurons and their neural circuits. First, we briefly explain the role
of DA neurons in the limbic system and the possible aversion
mechanisms for FND. Then we review the neural circuits that
limbic system DA neurons participate in. Finally, in order
to better understand the neural mechanisms of aversion, we
summarize the shortcoming of current research and recommend
future studies, to provide new ideas for neuropsychiatric diseases,
such as addiction, depression, and FND.

AVERSION FUNCTION OF DOPAMINE

Historically, FND has traditionally been viewed as an entirely
psychological disorder in which repressed psychological stress

or trauma gets “converted” into a physical symptom. This is
where the term “conversion disorder” comes from. Psychological
disorders and stressful life events, both recent and in childhood,
may be risk factors for developing the condition in some patients,
but they rarely provide a full explanation for the cause of the
condition and are absent in many patients. Modern theories
propose that FND has many causes, especially the monoamine
neurotransmitters (Liang et al., 2021).

Dopaminergic neurons synthesize and release DA to a large
area of the brain and change the emotional states of the
whole brain (Morales and Margolis, 2017), including positive
and negative reinforcement, decision making, and motivation
(Adcock et al., 2006; Brischoux et al., 2009). It is revealed that
DA is vital to the establishment of memory relevant to the
search for reward motivation and reward cues, according to
Dalley et al. (2005), and for the maintenance and promotion
of action (i.e., motivation). However, the function of DA
motivation was thought to be limited to approaching motivation
or rewarding behavior. With the technological advancement,
such as microdialysis methods, voltammetry method, and other
electrophysiological methods, further studies (Salamone and
Correa, 2012) found that DAergic neurons are also found to be
involved non-reward events (Pezze and Feldon, 2004; Lisman
and Grace, 2005; Redgrave and Gurney, 2006); for example, some
researchers believe that DAergic neurons are also involved in
the processing of other non-reward signals related to surprise,
novelty, specificity, and even aversion. Surprisingly, DA has been
shown to be involved in the opposite processes of reward, the
aversion, which is also crucial for individual’s adaptation to
environmental changes and cognitive processes such as learning
and memory (Pignatelli and Bonci, 2015).

The pursuit of reward and the avoidance of punishment
are two fundamental forces that drive animal’s behavior (Hu,
2016). Both Pavlov’s classical conditioned reflex and Skinner’s
operational conditioned reflex have suggested that the pursuit
of reward and the avoidance of punishment is beneficial
evolutionally (Roy et al., 2014). Reward invokes approaching
behaviors and induces satisfaction, which ultimately leads to
behavior reinforcement, while an aversive stimulus produces
negative emotions, including dislike and fear, resulting in
avoidance and reducing the production of similar behaviors
(Salamone and Correa, 2012; Hu, 2016).

AVERSION

Reward and aversion are two major important components for
motivational control (Bromberg-Martin et al., 2010). DAergic
neurons in the limbic system have been shown to be involved
in these processes and cooperate with different neural circuits
to coordinate the downstream cognitive structure and to
control the motivational behavior (Bromberg-Martin et al., 2010;
Fagan et al., 2020). The term “motivation” is widely used
for reward (Salamone and Correa, 2012), and it is defined
by the famous German philosopher Schopenhauer (1999) as
“choose, seize, and even seek out the means of satisfaction.”
Early psychologists such as Wundt, James, and Freud have
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all talked about motivation. However, motivation also involves
avoiding, so a broad definition of motivation is the mental
process, or an inner psychological process that is involved
in approaching or avoiding a target. Young (1961) defined
motivation as “the process of arousing actions, sustaining the
activity in progress, and regulating the pattern of activity.” Peng
(2012) defined motivation as an inner psychological process
or internal motivation, guided, inspired, and maintained by a
goal or object. The latest definition of motivation by Salamone
(1992) is a series of processes by which organisms regulate the
possibility, proximity, and availability of stimuli. Due to the
phased characteristics of motivation, Salamone (2010) further
defined stages of motivation as “desire, preparation, action,
approach or seek.” FND patients might show some abnormal
behaviors when the motivation was inhibited.

Given that motivation is a psychological process that consists
of a series of phased psychological processes, including reward
and aversion, reward motivation as approaching or enjoying an
object or event induces positive emotion or pleasure (Schultz,
2010). According to Berridge and Kringelbach (2015), a similar
definition of reward is that rather than a single process,
reward contains several psychological components, namely,
liking, wanting, and learning. On the contrary, aversion is
convinced as “a stimulus that one always avoids or prevents.”
This definition soon met negative comments, and it is criticized
for failure to reflect the characteristics of learning reinforcement
of aversive stimuli (Murphy, 2008). Aversion learning includes
two processes: (1) operant aversion to learning (1a), punishment
learning (1b), and active avoidance of learning; and (2)
aversive Pavlovian classical conditioning. From the perspective of
biological evolution, aversion is born to sustain survival (Jean-
Richard-Dit-Bressel et al., 2018). In other words, aversion is an
inner feeling generated by an individual to avoid the potentially
harmful stimuli (toxin, instead of predator and threat) to the
body. Aversion behavior might be the contrary of reward, which
includes avoidance behavior (Verharen et al., 2020). Thus, FND
patients might have problems especially at aversion behaviors: they
can behave properly at rewarding behavior, but they do not know
how to behave at aversive situations.

Of note, aversion should be differentiated from disgust, which
is regarded as a basic emotion. Disgust and aversion are two
common psychological concepts. As we discussed above, aversion
derives from motivation; it is a kind of feelings opposed to
reward. On the other hand, disgust is a kind of prototypical
emotion, which originates from eating toxic foods and infected by
pathogens and parasites (Berridge, 2018). From this perspective,
the feeling of aversion is a complex emotion, which contains
a series of basic emotions, such as disgust and fear (Chapman
et al., 2009). However, both disgust and aversion can induce
avoidance behavior.

DOPAMINE RESPONSES TO AVERSIVE
STIMULI

Even though DA was suggested to be the major neurotransmitter
for reward (Salamone et al., 1993), recent studies show that

various disgusting or stressful events also increased DA release or
metabolism in the NAc (Davidson et al., 2004), which indicates
that DAergic neurons in the limbic system may be involved
in the processing of aversive stimuli (Abercrombie et al., 1989;
Bradberry et al., 1991; Joseph et al., 2003; Barr et al., 2009; Fadok
et al., 2009). Other scholars, however, believe that aversive stimuli
belong to motivation valence, which usually induces low-level
DA activities (Liu et al., 2008; Roitman et al., 2008). In addition,
others suggested that this kind of DA activation is related to the
processing of stimulus arousal attributes (i.e., alertness) rather
than value (aversion). Further studies show that two mixed
activation modes of DAergic neurons exist in the limbic system
(Ventura et al., 2001).

They are coexisting high-level and low-level activation modes
of DA release in different brain regions (Pascucci et al., 2007). In
recent years, with the development of viral vector-based methods
(e.g., cell type-specific and projection-specific electrophysiology,
in vivo imaging, and optogenetics), researchers induce aversion
in mice by exposing them to chronic or acute aversive stimuli
(foot electric shock, foot shock, forced swimming test, hind
paw injection of formalin, social frustration stress, and fear
conditioned reflex) and by intraoral injection of the solution,
which leads to oral and facial reactions (Berridge, 2000; Fadok
et al., 2009; Lammel et al., 2012; Tye et al., 2013; Friedman
et al., 2014). Results show that DAergic neurons can be
divided into multiple subpopulations, which are responsible for
the processing of different stimuli information. The DAergic
neurons that are involved in processing of aversive stimuli are
multiple subpopulations of midbrain DA neurons (Kim et al.,
2016; Groessl et al., 2018; de Jong et al., 2019). For example,
Stephan Lammel’s laboratory has been dedicated to the study
of DA aversion function for many years; in their recent studies,
they injected viruses into the brains of mice and measured
the release of DA in different ventral striatal subregions of
mice with fiber photometry under different experimental task
conditions (aversion and reward conditioned reflex experiment,
real-time place preference experiment, open field experiment,
and approach-avoidance experiment. It is found that NAc
DAergic neuron terminals in the ventral NAc medial shell
(vNAcMed) was excited at aversive cues (de Jong et al., 2019).
This result indicates that although most DAergic neurons in
the NAc are excited by reward stimuli and reward cues, there
is a cluster of DAergic neurons in the NAc that are excited
at aversive stimuli and cues (Lammel et al., 2011, 2012, 2015;
Yang et al., 2018; Cerniauskas et al., 2019; de Jong et al., 2019).
Further studies show that during rewarding events and when
aversion to toxic events decrease, DA activity in the dorsomedial
NAc shell (dmNAc) increases. In contrast, the release of DA
in the ventromedial NAc shell (vmNAc) was increased by both
rewarding and aversive stimuli, while the DA-sensor signal
in the central vmNAc (ceNAc) and ventrolateral NAc shell
(vlatNAc) showed complex dynamics (Yuan et al., 2019). The
same result was also found in other projection terminals of
VTA DA and SN DA including the medial prefrontal cortex
(mPFC) (Kim et al., 2016; Ellwood et al., 2017; Morales and
Margolis, 2017; Vander Weele et al., 2018), amygdala (Fadok
et al., 2009; Lutas et al., 2019), and dorsolateral and caudal striata
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(Lerner et al., 2015; Menegas et al., 2015). In addition to
the traditional DAergic neuron aggregation areas such as the
VTA and SN, dorsal raphe nucleus (DRN), and midbrain
periaqueductal gray matter (PAG) have recently been found
to have relatively sparse DA neuronal activities at aversive
stimulation (Cardozo Pinto et al., 2019); however, there are
really some DAergic neurons in these regions, which have
been reported to be activated in response to aversive stimuli
(Matthews et al., 2016; Groessl et al., 2018; Verharen et al.,
2020). Therefore, the above research shows that some special
subtypes of DAergic neurons exist in multiple brain areas of
the limbic system (such as the striatum, which includes the
NAc, VTA, and SN) and show excitement when aversive stimuli
and cues appear.

However, some researchers still hold opposite views on
whether DAergic neurons are involved in the processing of
aversive stimuli. For example, Schultz doubts about the aversive
function of DAergic neurons; instead, he proposed reward
prediction error (Schultz, 2010). He suggested that that majority
of DAergic neurons in the limbic system showed excitement
toward reward stimuli and inhibition toward aversive ones.
According to Schultz, DAergic neurons are excited by the
learning process about both rewarding and aversive stimuli,
while they make no response to aversion itself. In some studies,
however, the response of DAergic neurons in the limbic system
to aversive stimuli is different studies with microdialysis, rapid
scanning cyclic voltammetry, and electrophysiological methods
(Roitman et al., 2008; Badrinarayan et al., 2012). Based on these
conflict results, some researchers proposed other assumptions
on the role of DAergic neurons in the limbic system in the
processing of aversive stimuli (Verharen et al., 2020). These
assumptions are as follows: (1) the aversive stimulus may reflect
the physical attributes rather than aversion itself (Lammel et al.,
2014; Menegas et al., 2018); (2) animals experience rewards or
relief when aversive stimuli terminate (Brodsky and Lajoie, 2013);
(3) a high-return environment may lead to excitement toward
aversive stimuli (Matthews et al., 2016); and (4) DAergic neurons
transmit safety signals when an animal successfully avoids nasty
events (Luo et al., 2018). These four assumptions are indeed the
symptoms of FND patients; however, further studies are needed
to address these problems and to provide further evidence for
the involvement of DAergic neurons in the limbic system in the
processing of aversive stimuli, especially in FND patients.

DOPAMINE RECEPTORS

The psychological effects of DA are mainly mediated by DA
receptors, which are composed of five different but closely
related G protein-coupled receptors, including D1, D2, D3,
D4, and D5 DA receptors (Beaulieu and Gainetdinov, 2011).
At first, Spano et al. (1978) found that only a subset of DA
receptors are positively correlated with the activity of adenylyl
cyclase (AC). Then DA receptors can be separated into D1-
like (D1 and D5) and D2-like (D2, D3, and D4) receptors
(Vallone et al., 2000; Beaulieu and Gainetdinov, 2011) based
on the structure, pharmacology, biochemical characteristics, and

downstream signaling pathways. D1-like receptors can enhance
the activity of AC by activating Gαs/olf family and can promote
the production of cAMP (response element-binding protein).
However, D2-like receptors activate Gs/ol family and inhibit
the activity of AC and the production of cAMP (Xia et al.,
2019). The five DA receptors are different in distribution and
function. D1 receptors (D1Rs) are expressed mainly in the
SNc; in midbrain limbic and middle cerebral cortex areas,
such as the caudate–putamen (striatum), NAc, SN, olfactory
bulb, amygdala, and frontal cortex; and at lower levels in the
hippocampus, cerebellum, thalamic areas, and hypothalamic
areas (Beaulieu and Gainetdinov, 2011). D1Rs can mediate PFC
and brain-derived neurotrophic factor (BDNF) to impact partial
working memory and learning process (Sarinana et al., 2014).
The activation of hippocampal dentate gyrus D1Rs promotes
the representation of explicit contexts and closely correlated to
semantic memory (Fan et al., 2010). Besides, D1Rs also play a
vital role in locomotor activity, rewarding reinforcement, and
motivation. D2 receptors (D2Rs) are mainly distributed in the
striatum, NAc septi, olfactory tubercle, SN, VTA, hypothalamus,
cortical areas, septum, amygdala, and hippocampus (Gerfen,
2000; Vallone et al., 2000; Seeman, 2006). D2Rs play an important
role in controlling motor action (Fan et al., 2010). The activation
of presynaptic D2-like receptors may reduce the release of DA
and then cause the reduction of motor action, but the activation
of postsynaptic receptors will promote locomotor activity. The
different functions of presynaptic and postsynaptic D2-like
receptors may be attributed to different subtypes. It should be
noted that the splice variants of the D2 DA receptors, D2RL (D2R
long) and D2RS (D2R short), seem to have different neuronal
distributions, with D2RS being predominantly presynaptic and
D2RL being postsynaptic (Usiello et al., 2000; Mei et al., 2009).
Like D1Rs, D2Rs are also vital to motivation, but they have totally
different functions. It is found that there are two types of neurons
projected in the dorsal striatum with two types of DA receptors,
with the first type representing D1Rs and projecting in direct
pathway in the basal ganglion to promote body motion, which is
called rewarding approach, and the second type represents D2Rs
and projects in an indirect pathway to suppress the body motion,
called aversion avoidance (Hikida et al., 2010; Kravitz et al., 2010).
And Kravitz et al., 2010, 2012 used ontogenetic stimuli and found
that D1-medium spiny neurons (D1-MSNs) selectively activate
the D1-type MSNs in the dorsal striatum, promote locomotion,
and induce persistent reinforcement. In contrast, activation of
the D2-type MSNs suppressed locomotion and induced transient
punishment (Kravitz et al., 2010, 2012). Thus, rewarding and
aversive stimuli can activate different DA neurons with different
receptors and lead to the approaching or avoiding behaviors.
This indicates that the rewarding and aversive neurons can be
separated by different receptors. However, Al-Hasani et al. (2015)
find that the activation of DAergic neurons in the ventral part
of the NAc is mainly overlapped with D1-MSNs but reacts to
aversive stimuli. Therefore, it is worthy further studying the
different types of DAergic neurons with different DA receptors.

Although considerable progress has been made in the
physiological function of D3, D4, and D5 receptors, the specific
physiological functions of these receptors are yet unknown
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(Beaulieu and Gainetdinov, 2011), especially the function of DA
neurons in rewarding and aversion. D3, D4, and D5 receptors
are mainly expressed in the limbic system (Leriche et al., 2006;
Rondou et al., 2010; Beaulieu and Gainetdinov, 2011). It is
proved that D3 is vital to cocaine addiction (Zhang et al., 2017)
and locomotion activity (Sibley, 1999). And the increase of D3
receptors (D3Rs) is closely related to tardive dyskinesia (TD) in
a non-human primate model (Mahmoudi et al., 2014). Recent
studies have shown that D4 receptors have the potential to
improve mental disorders and cognitive functions (Guo et al.,
2017). D5 receptor has beneficial effects on reward and novelty
and on improving cognitive impairment (Leriche et al., 2006;
Beaulieu et al., 2007; Mei et al., 2009; Shen et al., 2016). DA
receptors also play a vital role in the treatment of many mental
diseases, especially the FND, are targets of some psychiatric
pharmaceuticals, and the target of many medications that are
the main methods used to treat PD, restless legs syndrome,
schizophrenia, bipolar disorder, and major depressive disorder,
such as bromocriptine, pramipexole, ropinirole, chlorpromazine,
risperidone, metoclopramide, brexpiprazole, and cariprazine
(Pajonk, 2004; Bonuccelli et al., 2009; Fawcett et al., 2016; Kim
et al., 2016; Klein et al., 2019).

PREDICTION ERRORS AND
FUNCTIONAL NEUROLOGICAL
DISORDER

The concept of reward prediction error proposed by Schultz et al.
(1997) is regarded as a milestone in the study of DA function.
Along with his colleagues, Schultz found that there is a significant
relationship between the activation level of VTA DAergic neurons
and the reward prediction before the appearance of stimuli. Later
on, Gu et al. (2019b) deduced the famous reward prediction error
formula through modeling:

DAergic neurons predicting response =

Reward occurred − Rewardpredicted,

which quantifies the relationship between DAergic neuron
excitement and reward prediction error. That is to say, the
joy at reward stimuli is determined not only by the amount
of reward but also by individual’s expectation of the reward
stimuli (Wang F. et al., 2020). Chances are that the joy of a fully
expected big reward is less than that of an unexpected small
reward. Correspondingly, DAergic neurons perform differently
at expected errors (as expected, better than expected, and worse
than expected). Rewards regarded as “expected” might incur
tonic DA release, those as “better than expected” produce phase
burst signals, and those as “worse than expected” generate
suspension of activation of DAergic neurons. Bursts of action
potentials induce more DA release in a specific projection area
than spikes of the same number in the spaced action potential
tissue (Pignatelli and Bonci, 2015). It is worth noting that DAergic
neurons in the limbic system are traditionally believed not to
be sensitive to aversion prediction errors, because the midbrain
DAergic neurons might only process the information of reward

prediction errors, while they make no response in accordance
with the occurrence of aversive clues [conditioned stimuli (CSs)]
(Fiorillo et al., 2013; McHugh et al., 2014).

However, a recent study showed a totally different result, in
contrast to previous studies that showed that the VTA and SN
in the traditional DA neuron aggregation area are not activated
by aversion prediction errors (Mileykovskiy and Morales, 2011;
Schultz, 2015), and even showed inhibitory response to aversion
prediction cues (Ungless, 2004; Tan et al., 2012). However, related
results show that midbrain DAergic neurons are distributed not
only in the VTA and SN but also in the PAG and DRN (Dougalis
et al., 2012). Despite sparse distribution in the VTA and SN,
these DAergic neurons are highly likely to play an important
role in aversion prediction errors according to the characteristics
of neurons in these brain areas (Matthews et al., 2016;
Cardozo Pinto et al., 2019). Groessl et al. (2018) investigated
the activities of DAergic neurons at CSs (such as noise) and
unconditioned stimuli (USs; such as foot shock). Results showed
that PAG and DRN DAergic neurons are activated by the
aversive stimuli clues (noise). These mice showed three kinds of
prediction errors: as expected, worse than expected, and better
than expected. It turns out that the DAergic neurons of the PAG
and DRN produced a potential activity similar to that of the
DAergic neurons of the VTA during the reward prediction error.
In other words, aversion regarded as “as expected” will incur
tonic release; reward as “worse than expected” will incur a phase
burst signal; and aversion as “as expected” will incur a suspension
of activation. These results suggest that the DAergic neurons of
the PAG and DRN are likely to be involved in the processing of
aversive prediction errors.

Besides, human beings might also follow this principle in
the process of decision making. Nobel Prize winner Professor
Kahneman proposed in his classic loss aversion theory that
human beings also follow the principle of seeking advantages
and avoiding disadvantages in the process of decision making.
Decision making under risk usually expresses different levels of
aversion preferences and shows higher sensitivity to potential
aversion than the same level of acquisition (Kahneman and
Tversky, 1979). The involvement of the PAG in the processing of
aversive prediction errors has been demonstrated in a functional
magnetic resonance imaging (fMRI) study on the human brain
(Roy et al., 2014). Roy et al. (2014) compared two different
tests on aversion to avoid acquisition and degree of pain, and
then they established two types of prediction errors. One is
“all or nothing” and the other “continuous change.” Changes
in relevant brain regions under three prediction errors (as
expected, worse than expected, and better than expected) are
recorded using fMRI. With Bayesian statistics processing, the
results showed that the PAG is the key brain region of prediction
error processing; at the same time, an important loop of
aversive prediction error is identified: PAG–mPFC. Due to the
intrusive nature of neuronal imaging (Verharen et al., 2020),
it is not yet determined whether it is DAergic neurons that
are activated by aversive prediction errors in the PAG. But
with research results in mice by Groessl et al. (2018), it can
be speculated that there exist a cluster of DAergic neurons
in the PAG of animals that respond to aversive stimuli and
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engage in the processing of aversive prediction errors. The
activation of aversive prediction errors in the human brain is
likely to be incurred by a subgroup located in the area of
DAergic neurons.

According to the description of the Diagnostic and Statistical
Manual of Mental Disorders, fifth edition (DSM-5), FND is
defined as a neurological disease with symptoms (such as motor
and cognitive disorder) that cannot be explained by current
neurological theories. When it comes to behavior research,
FND patients are different in emotion and recognition from
normal people, embodied by their more negative emotion and
worse prediction (Pick et al., 2019). An fMRI study of FND
patients found that the PAG activation increases when they
face facial expressions, and the connection of the dorsolateral
PFC (dlPFC) and insula increases according to an emotion-
related study on them (Aybek et al., 2015; Espay et al., 2018;
Szaflarski et al., 2018). Therefore, it is fair to say that the
behavior and fMRI results are both strongly correlated with
DAergic neurons in the PAG area. Accordingly, it is predicted
that the abnormality of DAergic neurons in the PAG area
is one of potential causes of FND. FND patients often show
hysterical behaviors in stressful situations. FND patients tend
to be more negative at loss and gain lower feelings of
happiness from reward than healthy people. Consequently,
they feel exhausted, indifferent, and even depressed, which
appears to be consistent with symptoms of lacking DA (Logan
and McClung, 2019; Xia et al., 2019; Liang et al., 2021). In
conclusion, it is necessary to further explore the activation
difference of DAergic neurons between FND patients and healthy
people with predicting reward or aversion, so as to uncover
the causes for FND.

PARKINSON’S DISEASE AND
FUNCTIONAL NEUROLOGICAL
DISORDER

There are symptoms of movement disorders at the onset stage
of both PD and FND, for example, tremors; and related studies
have found that the activation patterns of the basal ganglia
are abnormal in patients with both diseases (Lehn et al.,
2016; Klein et al., 2019). One of the main input areas of the
basal ganglia is the striatum. Ninety percent of neurons in
the striatum are GABAergic spiny projection neurons (SPNs),
which highly express D1Rs and D2Rs and control movement
by DAergic projections (Gerfen and Surmeier, 2011). Nowadays,
it has proved that PD is related to the abnormalities in the
pathway (Bonuccelli et al., 2009; McKinley et al., 2019), and
recent studies of FND have also found that motor conversion
disorders in FND patients may be related to abnormalities in
this area (Voon et al., 2010; Lehn et al., 2016). PD is a common
neurodegenerative movement disorder (Klein et al., 2019), which
can be mainly divided into two subtypes. The first type is tremor-
dominant PD whose symptoms are mainly motor retardation,
muscle rigidity, resting tremor, and posture and gait disorder.
The second type is non-tremor-dominant PD, which usually

progresses faster and has higher functional disability than tremor-
dominant PD (Jankovic et al., 1990; Kalia and Lang, 2015).
The common incidence of PD happens in the elderly over
60 years old, and the incidence rate is about 13 cases per 100,000.
And the incidence rate of men is higher than that of women
(Williams-Gray and Worth, 2016).

The main motor symptoms of PD are caused by the
degeneration of SN DAergic neurons (Suárez et al., 2014), which
mainly project in the dorsal striatum. The main function of
the striatum is to evaluate the “action plans” produced by the
cerebral cortex; to construct a movement diagram based on the
sensory state, motivational state, and past experience; and then
to transmit the evaluation to other basal ganglion nuclei (Zhai
et al., 2019). At the receptor level, the abnormal regulation of
the direct and indirect pathway spiny projection D1Rs and D2Rs
in the dorsal stratum is the cause of the main motor symptoms
of PD (Gerfen and Surmeier, 2011). It was suggested that D1Rs
and D2Rs control the “direct pathway” and “indirect pathway”
and promote or inhibit body movements, respectively (Xia et al.,
2019). And it has been found that the excitability of D1 and
D2 shifted in opposite directions in PD patients, causing an
imbalance in the regulation of the thalamus movement (Gerfen
and Surmeier, 2011). Meanwhile, some studies have shown that
the lack of DA alters the induction of long-term plasticity at
glutamatergic synapses, and the lack of D1R signal may cause the
long-term bias of the direct pathway of glutamatergic synapses,
but the lack of D2Rs signal can cause long-term potentiation
(LTP) of direct pathway glutamatergic synapses (Mallet et al.,
2006). Thus, the current treatment for PD is using drugs that
increase DA concentration or directly stimulate DA receptors for
symptomatic treatment.

Similarly, FND symptoms are characterized by physical
symptoms without disease pathology, mainly manifested as
tremor, myodystonia, and gait disorder (Voon et al., 2010).
FND patients account for about 30% of neurological outpatients
(Carson et al., 2003). FND patients also suffer more than other
known mental illness patients, because the causes of FND are
not yet clear. At the same time, severe FND can also cause
physical disability (Pick et al., 2019). In addition to physical
symptoms, FND patients often report a series of emotional
dysfunctions, such as anxiety, depression, alexithymia, and/or
affective regulation disorder (Brown and Reuber, 2016; Carson
and Lehn, 2016). Recently, some researchers have begun to
study the differences between FND patients and normal people
from the perspective of emotional processing and put forward
some hypotheses for the causes of FND from the perspective
of emotion. For example, Voon et al. (2010) applied an fMRI
in studying the difference in brain activation between normal
subjects and FND patients in recognizing emotional faces.
They found that there was no difference of the activation
of the amygdala when normal people watch emotional faces
(happiness, neutral, and fear). And further analysis has found
a greater interaction between the right amygdala and the right
supplementary motor area in FND patients compared with
normal subjects (Voon et al., 2010), which indicates some
abnormalities in the amygdala of FND patients. The basolateral
amygdala receives the signals from the hippocampus and cerebral
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cortex and then projects to the dorsal and ventral striata.
Meanwhile, the basolateral amygdala can also send projections
to the central nucleus of the amygdala and the terminal striae
of the lateral basilar nucleus (extended to the amygdala) and
then project to the gray matter around the aqueduct, the LHa
(autonomous responses), and the midbrain nucleus, such as the
VTA (Lang and Davis, 2006). The DAergic neurons projected via
both pathways are related to motor control (Zhai et al., 2019)
and reward prediction errors (Schultz et al., 1997; Groessl et al.,
2018). The greater functional connectivity of the marginal zone in
FND patients affects the motor preparation zone, which may be a
pathophysiological basis of FND (Voon et al., 2010). Schrag et al.
(2013) have some similar findings. Anyway, the causes of FND
are complicated, and FND may not be caused by a dysfunction of
a single brain area. Therefore, future studies are needed to start
with the interactions between emotion and motor brain area and
to study the DAergic projection in different neural networks.

NEURAL NETWORKS FOR DOPAMINE
PROJECTION

The limbic system has been called the emotional brain, which
is located at the underside of the brain and the inner side
of the brain [including the anterior cingulate cortex (ACC)],
the lower corpus callosum, the hippocampal structures in the
hippocampus and deep hippocampus, and some subcortical brain
structures, including the thalami, VTA, and SN (Shen and Lin,
1993; He et al., 2009). The VTA and SN in the ventral side of
the limbic system have long been considered as the main source
of DA transmitters in the cerebral cortex and subcutaneous
tissue (Bjorklund and Dunnett, 2007). This area is also involved
the processing of reward prediction error calculation (Schultz
et al., 1997), with gamma-aminobutyric acid (GABA) in the
VTA regulating the amount of reward by inhibiting the activity
of DAergic neurons (Roberts et al., 2021), thereby calculating
the reward prediction error (Cohen et al., 2012). At the same
time, some animal studies have indicated that there are multiple
clusters of neurons in this region that are responsible for different
motivational functions and may be involved in different neural
circuits to process reward and aversive information (Lammel
et al., 2011). However, most studies mainly focus on the reward
function of DA in the limbic system, lacking studies on the
aversion function and its neural circuits. In addition, some
researchers even questioned the aversive function of DA neurons
in the limbic system (Schultz, 2010).

Bromberg-Martin et al. (2010) proposed that DAergic neurons
of the limbic system act on different motivational controls when
they participate in different neural networks. Therefore, it has
been a vital research direction in the related field to find the
aversive circuit of DAergic neurons of the limbic system. In recent
years, with the development of virus-tracking technology, some
aversive circuits of DA have been discovered (Hu, 2016; Verharen
et al., 2020). For example, some studies have reported four limbic
system brain areas: the VTA, SN, PAG, and DRN. The next
discussion about the aversive circuit of DAergic neurons in the
limbic system will also focus on these brain areas.

THE AVERSION FUNCTION OF
DOPAMINERGIC NEURONS IN THE
VENTRAL TEGMENTAL AREA

The VTA is an important nucleus for DAergic neurons, which
play an important role in reward prediction error. Indeed, the
mesolimbic DA system (refer to the DA pathway from VTA
DAergic neurons to the NAc) has always been considered to
play an important role in processing information about rewards,
approaching behaviors and positive reinforcement (Saunders
et al., 2018; Yuan et al., 2019). However, some researchers
suggested that the DA release of neural circuits connected to
DAergic neurons in this region is involved in the processing
of aversive stimuli. For example, Lammel et al. (2011, 2012)
discovered a circuit of VTA DAergic neurons processing aversive
stimuli. Many new ways of studying have shed some light in this
field, by injecting viruses and fluorescent tracers into the VTA of
mice; applying conditioned place preference (CPP), conditioned
place aversion (CPA), and open field tasks to these mice; and
recording the activities of DAergic neurons in the VTA. And
these results showed that there are two kinds of VTA DAergic
pathways: the rostromedial tegmental nucleus (RMTg)→ VTA
DA → dorsal NAc pathway, which is mainly responsible for
processing rewarding stimuli, and the other one is the LHb →
VTA DA→ mPFC pathway, which is involved in processing the
aversive stimuli (Figure 1). Besides, there are studies that further
reported several subgroups of DAergic neurons in the dorsal
VTA, which are embedded in different circuits and participated
in different behavioral functions. However, these pathways have
been questioned by some later studies (Tian and Uchida, 2015;
Tian et al., 2016); for example, Tian et al. (2016) showed that
aversive stimulus processing function was not affected by VTA
impairment, which suggested that the reaction is insensitive to
the decline of the frequency of rewards. However, this aversive
pathway is supported by many other studies (Pignatelli and
Bonci, 2015; Hu, 2016). Alternatively, de Jong et al. (2019)
reported another pathway for aversive processing associated with
VTA DAergic neurons, which is LHb → RMTg → VTA DA
→ vNAcMed (Lerner et al., 2015). In all, these studies indicate
that some DAergic neurons participate in the processing of
aversive stimuli through the VTA as a start point projecting to
different brain regions.

THE AVERSIVE FUNCTION OF
DOPAMINERGIC NEURONS IN THE
SUBSTANTIA NIGRA

Like the VTA, the SN is also an important nucleus of DAergic
neurons. Some recent studies also found some aversive pathways
related to SN DAergic neurons. Matsumoto and Hikosaka (2009)
conducted a study about Pavlov’s classical conditioned reflex and
found that the LHb→ SN DA→ dorsal striatum (dVS) pathway
is likely responsible for processing aversive stimulus. And the
same result was also found in the SN DA→ ventral striatum (VS)
pathway. Menegas et al. (2017, 2018) found that the SN DA→VS

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 September 2021 | Volume 9 | Article 713762

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-713762 September 14, 2021 Time: 19:23 # 8

He et al. Aversive Dopaminergic Function in FND

FIGURE 1 | Neural circuits for DA projection. DA, dopamine; OFC, orbitofrontal cortex; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; LHb, lateral
habenula; VS, ventral striatum; CEA, central amygdala; VTA, ventral tegmental area; SN, substantia nigra pars compacta; RMTg, rostromedial tegmental nucleus;
DRN, dorsal raphe nucleus; PAG, periaqueductal gray matter; LDT, laterodorsal tegmental nucleus.

pathway played an important role in the fear aversion learning
task of rats. The discovery of the pathway is consistent with their
previous findings that lateral SN DAergic neurons are involved in
the processing of aversive stimuli.

AVERSIVE FUNCTION OF
PERIAQUEDUCTAL GRAY MATTER AND
DORSAL RAPHE NUCLEUS
DOPAMINERGIC NEURONS

Unlike the VTA and SN, the presence of DAergic neurons in
the PAG and DRN has only been discovered in recent studies
(Cardozo Pinto et al., 2019). Therefore, there is still some
controversy about whether there are DAergic neurons in these
two brain regions. With the advent of electrophysiology and other
biological imaging techniques, some researchers have begun to
study the characteristics of DAergic neurons in these two regions
(Dougalis et al., 2012; Li et al., 2016) and have made a series of
reports, which further support the existence of DAergic neurons
in these two brain regions. Similarly, some studies have reported
about the aversive function of PAG and DRN DAergic neurons,
which have shown that the two brain regions (the PAG and
DRN) play an important role in coping with pain stimuli (Eippert
and Tracey, 2014; Gadotti et al., 2019), and the amygdala is an
important targeting area of these two brain regions (McNally and
Cole, 2006). Therefore, it is important to explore whether the
PAG/DRN→ amygdala circuit is involved in the processing of
aversion stimuli. The study conducted by Groessl et al. (2018)
found that PAG and DRN DAergic neurons play an important
role in the processing of aversive stimulus and aversive prediction
error processing (Charney, 2004). At the same time, it is found
that PAG and DRN DAergic neurons projected to the central
amygdala (CE) and confirmed that the PAG/DRN→ CE circle
is responsible for the aversive stimulus and the processing
of aversive clues.

In addition to the above regions, DAergic neurons in other
areas in the limbic system have also been found to be engaged
in the processing of aversive stimuli. A recent study of Kramar
et al. (2021) showed that the VTA DA release promotes the

activation of DAergic neurons in the dorsal hippocampus,
which reinforces late consolidation of aversive memory (Clewett
and Murty, 2019; Shao et al., 2021). The hypothalamus is an
important area of emotional processing in the limbic system with
its medial and lateral nuclei processing different information.
The medial nucleus is mainly responsible for the processing
of reward stimuli such as food intake and sexual behavior,
while the lateral nuclei are responsible for the processing of
aversive information including stress and tension (Barbosa et al.,
2017). It is worth noting that a recent study found that LHb
projection to LHA neurons is responsible for encoding aversive
information (Lazaridis et al., 2019). As Lammel et al. (2012)
previously reported that aversive information is processed by
DA transmission of (LHb) → VTA DA → mPFC circle, is the
LHb→ LHA projection related to DAergic neurons? Therefore,
further research should focus not only on traditional distribution
of DAergic neurons mentioned above but also on whether other
areas of the limbic system and DAergic neurons in nuclei are
involved in the processing of aversive information.

DOPAMINE AND NOREPINEPHRINE

Dopamine and norepinephrine (NE) neurons project widely in
the whole brain (Charney, 2004). NE is mainly produced by
neurons in the locus coeruleus (LC), and the LC–NE systems
respond to stress by globally priming neurons in the brain
(Nestler and Aghajanian, 1997; McCall et al., 2015). The already
known functions of NE are alerting (Mandalaywala et al.,
2017), arousal (Carter et al., 2010), recognition (Wagatsuma
et al., 2018), sleep/awake transitions (Carter et al., 2012),
and drug addiction (Cao et al., 2010). Some recent studies
have also found that the LC–NE is related to stress recovery
(Valentino and Van Bockstaele, 2015; Liang et al., 2021; Sullivan
and Ballantyne, 2021) as the function of the pursuit of reward
and the avoidance of punishment in DA and the function of
alerting and arousal in norepinephrine are respectively relative
to the valence and arousal in the theory of emotional dimension.
Wang F. et al. (2020) added serotonin (5-HT) as another
neurotransmitter and put up “three primary color model” of
basic emotions (Gu et al., 2019b). The theory proposed that
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all emotions are composed of some basic emotions, such as
happiness, sadness, and anger and fear, which are subsided
respectively by the three neurotransmitters: DA, happiness; 5-
HT, sadness; and NE, fear (anger). Recent studies have indicated
that the VTA is a downstream projection area of the LC
(Isingrini et al., 2016), and the LC–NE neurons manage negative
emotion through suppressing VTA DAergic neurons. Current
studies on the effect of NE transmitter to DAergic neurons
focusing on addictive behavior (Grace et al., 2007) and the
treatment of depression (Friedman et al., 2016; Gu et al., 2020)
suggested that the LC–NE neurons projection to midbrain DA
neurons and that their target structures play a vital role in
the changes of neural circuits. These changes might be the
causes for pathological behaviors, including the development
and maintenance of addiction and the alteration of the reward
and aversion neural circuits in patients with addiction or
depression (Everitt and Robbins, 2005; Hyman et al., 2006;
Schultz, 2007; Admon et al., 2017). It is crucially important to
explore the mechanisms of changes of DAergic neurons, which
are modulated by NE neurotransmitters. Relevant studies have
shown that DAergic neurons are tensely distributed with α1 and
β3 adrenergic receptors (Zhang et al., 2019). In the process of
reward, the VTA DAergic neurons mainly receive the projection
of glutamic acid (Mingote et al., 2019; Wang J. et al., 2020), GABA
(Bouarab et al., 2019), and NE neurons. And the main function
of DAergic neurons is to suppress the activation of GABAergic
neuron. On the one hand, α1-Ars receptors can promote release
of DA from DAergic neurons (Mitrano et al., 2012). In addition,
α1-Ars receptors can also affect the release of GABA directly in
the VTA DAergic neurons (Velasquez-Martinez et al., 2015) and
further strengthen the activation of DAergic neurons (Figure 2).
Velasquez-Martinez et al. (2015) found that cocaine-induced
inhibition of monoamine reuptake may further enhance the
availability of NE in synapse and invoke stronger stimulation of
α1-ARs but may reduce the release of GABA in the VTA neurons
(Martins et al., 2019). It may reverse neurotransmitter actions
related to aversive behaviors, increase the nervous excitability
of DAergic neurons, and then cause sensitization to drugs like
cocaine (Clewett and Murty, 2019; Velasquez-Martinez et al.,
2020). Zhang et al. (2019) reported in a study of social pressure
and sensitivity that mice with stronger psychological resilience
will release more NE than those with weaker psychological
resilience in the circumstance of depression. After depressive-
like behaviors were reversed, NE release increased rapidly, which
indicates that the LC–NE system has an important function in
mediating the psychological resilience of humans and animals.

In summary, NE (especially α1-Ars) participates in the
processing of reward information of the VTA DAergic neurons,
which directly promote the activation of DAergic neurons
and hinder the release of antagonist GABA of DA. It
will further affect the processing of reward information
to the VTA DA and is significantly meaningful to the
relevant treatment of addictive behavior, depression, and
some diseases. Meanwhile, other studies (Mitrano et al.,
2012) have found that the function of DA system and NE
system interacts in other brain regions, which affect many
psychological processes.

DOPAMINE AND SEROTONIN

5-HT was first suggested as a neurotransmitter for aversion in
Bradley et al. (1986), and there is a great overlap in function
of both 5-HT and DA (Yagishita, 2020). But 5-HT plays a
vital role in motivation-related functions, such as reward and
aversion learning, incentive processing, decision making, and
goal-oriented behavior (Hu, 2016). The main gathering area
for 5-HT neurons is the DRNs. The 5-HT neurons of the
DRN send projection to the entire brain, including the striatum
and thalamus (including the posterior complex and the lateral
geniculate nucleus, the anterior ventral nucleus, and the anterior
ventral nucleus), cingulate cortex, PFC (including medial PFC),
temporal lobe, and sensory cortex (Conio et al., 2020), and
receive the input from the hypothalamus, amygdala, midbrain,
and the anterior neocortex (Weissbourd et al., 2014). The types
of 5-HT receptors are more complicated than those of DA.
There are 14 types of 5-HT receptors and can be divided into
seven main families according to different G-proteins coupled.
Different receptors in different families have different functions.
For example, 5-HT1 plays a role in rewards (Akizawa et al.,
2019) and anxiolytics (Ramboz et al., 1998), 5-HT2A receptors
are correlated to hallucinations and insights (Vollenweider
et al., 1998); 5-HT4 receptors have an effect on memory,
depression, and feeding (Bockaert et al., 2008); and 5-HT7 is
related to cognitive processes, such as learning and memory
(Zareifopoulos and Papatheodoropoulos, 2016).

Although the psychiatric DA hypothesis has been the main
hypothesis in the field of psychiatry in the past 50s, almost
all drugs for the treatment of psychosis involve DA receptors,
especially D2Rs (Stahl, 2018). However, more and more studies
have found that 5-HT is also vital to treating mental disorders.
Some symptoms of mental patients can also be alleviated by
drugs interfered with 5-HT or 5-HT receptors in related brain
regions (Stahl, 2016). Therefore, some scholars put forward
that psychosis is a condition involving the disorder of multiple
neurotransmitters in multiple pathways, but DA and 5-HT
may be functioned in some psychosis processes at the same
time (Rolland et al., 2014). New therapies for pathways and
receptors besides D2Rs in the mesolimbic pathway have received
more and more attention. The classic psychiatric DA hypothesis
indicates that the abnormal DA pathway in the middle-marginal
DA pathway is the cause of most psychosis, and almost all
antipsychotic drugs block D2Rs there (Stahl, 2018).

However, a large number of clinical researches have indicated
that blocking the D2Rs in this pathway will simultaneously block
the D2Rs in the pathway of the SN to the dorsal striatum, leading
to some motor disorders, such as meditation, drug-induced
PD, and long-term TD (Stahl, 2016). Meanwhile, although
the method of blocking D2Rs is effective for patients with
manic, depressive psychosis and schizophrenia, it is not ideal
for treating PD, Alzheimer’s, and other types of psychosis and
even makes the symptoms worse (Ravina et al., 2007; Fénelon
et al., 2010). Therefore, researchers have started to study other
neurotransmitters in the treatment for psychiatric patients. The
5-HT theory is proposed in this context, which believes that
psychosis may be the result of excessive activation of 5-HT2A
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FIGURE 2 | Neural mechanism of LC–NE affecting DA in addictive behavior. LC, locus coeruleus; NE, norepinephrine; DA, dopamine.

receptors in glutamate neurons. Thus, blocking the overdose
neurotransmission of 5-HT in patients with 5-HT2A receptors
in psychosis can theoretically restore the balance between 5-
HT and DA and can reduce visual hallucinations and delusions
instead of worsening motor symptoms. It can effectively treat
PD and Alzheimer’s (Stahl, 2018). Current studies have shown
that the loss of DA in the dorsal striatum due to the SNc
in patients of PD will change the normal balance between
5-HT and DA. Meanwhile, the 5-HT neurons in the fissure
will degenerate with the original loss of 5-HT and worsen
with the PD. Pyramidal neurons in 5-HT-related brain regions
degenerate, and the number of 5-HT2A receptors is increased
in the remaining neurons in the cerebral cortex, which leads
to hallucinations in patients (Ballanger et al., 2010; Huot et al.,
2010). In other words, 5-HT abnormalities are not significantly
related to motor symptoms in PD but may be related to non-
motor symptoms. Related clinical studies have found that 5-
HT2A antagonists without d2 antagonists have been shown to
be effective in the treatment of psychotic symptoms caused
by PD. Among the second-generation antipsychotic drugs, 5-
HT2A receptors are also important targets for drug theory.
Simultaneous targeted therapy of DA D2Rs and 5-HT 5-HT2A
receptors shows better performance than a single intervention on
D2Rs and fewer side effects (Xia et al., 2019). To sum up, FND

patients show obvious physical symptoms and mood disorders.
5-HT is related to many affective and executive functions.
Related researches have indicated that 5-HT is associated with
anxiety (Deakin and Graeff, 1991), depression (Kraus et al.,
2017), alexithymia (Li et al., 2020), and emotion regulation
disorder (Stiedl et al., 2009). Meanwhile, the function of 5-
HT and FND patients in rewarding and aversion processing
has received more and more attention. The aversive function
of 5-HT has been early discovered (Bocchio et al., 2016), and
behavior inhabitation (Crockett et al., 2009) has also been
proved to be a vital function of 5-HT. And it is found that
the NAc, meanwhile, receives the projection of 5-HT, and these
neurons projected by 5-HT are also activated when receiving
the projection of rewarding stimuli, which shows that it is
closely related to rewarding (Barot et al., 2007). And DRN 5-
HT neurons are excited about the actual reward (Liu et al.,
2014) regardless of whether the reward is predicted or not.
Therefore, considering that 5-HT is involved in the two major
obstacles of FND at the same time, drug intervention in the
5-HT concentration of FND patients or drug treatment with
5-HT receptors as a target may alleviate some symptoms of
FND patients to a certain extent. In the future, it is necessary
to further clarify the role of DA and 5-HT in the common
projection area (such as the NAc) domain, which is meaningful
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to intervene related transmitter receptors precisely and cue some
related mental diseases.

SHORTCOMINGS AND PROSPECTS

The aversive function of DAergic neurons in the limbic system
has been confirmed by many experiments, and the results have
gradually obtained unanimous agreement. Many regions in the
limbic system such as the VTA, SN, PAG, DRN, and VS (NAc)
are suggested to be involved in processing aversive stimuli, and
more relevant studies are gathering momentum. However, there
are still some concerns in this area of research.

First, the technology of DA measurement is of concern.
Problems still exist despite that significant progress has been
done in the DA measurement with improved technology of
electrophysiology, imaging, and virus tracking; DA imaging
is still impossible to be applied to the human brain due
to its invasive nature (Verharen et al., 2020). It can be
speculated that DA in the human brain is engaged in the
processing of aversive stimuli according to research on mice and
rhesus monkeys. Humans, however, as higher organisms, show
significant difference on brain structure and function with mice
and monkeys. Further studies are needed on whether DAergic
neurons in the limbic system of the human brain operate and
function the same as the brains of mice and monkeys.

Second, whether DAergic neurons can be identified accurately
emerges as a more important question. Morales and Margolis
(2017) raised doubts about the identification of DAergic neurons
in the VTA in the experiments. For example, neurons in mice
can produce mRNA for tyrosine hydroxylase (TH) but cannot
synthesize the enzyme required for DA. Therefore, false positives
may be caused by identifying or manipulating DA neurons in the
experiment on TH mRNA of mice (Yamaguchi et al., 2015).

Another concern relates to the ambiguous definition of
aversion. Biologically, an aversive feeling is defined as an inner
feeling when a creature avoids potential harm of stimuli (toxins,
predators, and mechanical stress) on body for survival (Tovote
et al., 2016). This definition, however, is too broad, as it includes
almost all negative emotions and it leads to many problems in
specific experiments. Stimuli in psychology and biology such
as fear, pain, and social isolation are all considered as aversive
stimuli; their value and degree of arousal, however, lack clear
distinction (Lammel et al., 2012; Li et al., 2016; Matthews et al.,
2016). So which stimulus incurs the reaction of DAergic neurons?

Is it fear, pain, or the psychological effects of social isolation?
Failure to distinguish value (aversion) and arousal (alertness)
will lead to the confusion between aversion and alertness. Which
feature of the stimulus produces a high level release of DA
(Bromberg-Martin et al., 2010; Gu et al., 2019a)? Therefore,
more studies are needed in studying how to further distinguish
biological aversive stimuli, especially the distinction between
value and arousal.

CONCLUSION

To sum up, the article starts with the aversion function of
DA, discussing the definition of aversion. Then according to
series of studies, it discusses some special subtypes of DAergic
neurons that exist in multiple brain areas of the limbic system.
Though some researchers hold opposite views on whether
DAergic neurons are involved in the processing of aversive
stimuli, they show excitation when giving aversive stimuli and
cues. Then, the article discusses the prediction error function
of DA. According to some performances of FND patients in
event prediction, it is speculated that the abnormal prediction
error loop of DA may be the potential cause of FND. Next, the
article summarizes the neural circuits that DA neurons in the
limbic system participate in the processing of aversive stimuli
and propose some assumptions about neural circuits of DA
projection. After that, it discusses the relationship of NE and DA
based on the researches of addictive behavior and the treatment
of depression. Finally, shortcomings of current researches and
prospects of future study are summarized, attempting to help
further research on DA.
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