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T lymphocytes consist of heterogeneous subpopulations of cells that can be
distinguished by their distinct pattern of cell surface antigen expression. The T4
antigen (CD4), which is thought to be the receptor for the MHC class II antigens,
is expressed on a subpopulation of T lymphocytes that provides helper function,
whereas the T8 antigen (CD8) is expressed on a subpopulation that provides
cytotoxic and suppressor activity (1). A monoclonal antibody, anti-2H4, further
subdivides the T4* T lymphocyte population into T4*, 2H4* cells which induce
suppressor activity, and T4", 2H4" cells, with helper function (2). The observa-
tion that the induction of suppressor activity is blocked by the anti-2H4 antibody
may suggest that the 2H4 antigen is directly involved in the induction process
(3). Recent biochemical analysis (4) has demonstrated that the anti-2H4 mAb
recognizes a subset of the cell surface glycoproteins known variously as leukocyte
common antigens (LCAs),! T200, or CD45.

The human LCAs are a family of several structurally related, high-molecular-
mass (170-240 kD) proteins that are found in abundance on the surface of
lymphocytes and other hematopoietic cells. Some anti-LCA mAbs react with all
forms of LCAs, which are resolved into four or more distinct proteins by SDS-
PAGE, while other anti-LCA mAbs, including anti-2H4, react only with subsets
of these proteins (4-9). It seems, therefore, that LCA molecules have both
common and variable epitopes in the extracellular region. B lymphocytes express
predominantly the higher-molecular-mass forms, whereas T lymphocytes express
mainly lower-molecular-mass forms. This pattern of LCA expression in different
lymphocytes also occurs in mice (10-12), rats (13, 14) and in chickens (15).

The primary structures of rat and mouse LCA molecules have been predicted
based on the nucleotide sequences of cDNA clones (16, 17). The amino acid
sequence suggests that the mouse LCA is an integral membrane protein with a
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402-amino-acid extracellular domain, a 22-amino-acid membrane-spanning pep-
tide, and a large, 705-amino-acid cytoplasmic domain.

The precise molecular basis for the generation of the different members of
the LCA family is not understood. Differences in the extent of glycosylation
have been suggested to account for the various LCA members (18, 19). The
possibility that LCAs are encoded by a multigene family has been rendered
unlikely by a preliminary analysis of the mouse LCA gene structure (17).
Northern blot analysis and S1 mapping experiments have shown the existence
of three different size classes of mouse LCA mRNAs (16, 17, 20, 21).

To establish the genetic basis for the generation of the diversity of LCA
molecules, it is essential to determine the primary structures of different LCA
forms and to correlate the protein structures to the gene structure. In this paper,
we present the complete amino acid sequence of a member of the human LCA
family deduced from cDNA sequences, and evidence that there are at least five,
and potentially eight different LCA mRNAs that are generated by the differential
usage of three exons of a single human LCA gene.

Materials and Methods

Molecular Cloning and Analysis. 'The constructions of the cDNA libraries derived from
poly(A)* RNAEs isolated from pooled human tonsils and from the SB cell line, and the
genomic DNA library derived from human placental DNA have been described (22, 23).
These libraries were screened essentially as described by Benton and Davis (24), with
minor modifications. The tonsil cDNA library was hybridized to the nick-translated **P-
labeled (25) 3.2 kb Xba I fragment isolated from the mouse LCA ¢cDNA clone pLY-5-68
(17), in the presence of 4X SSC, 50% (vol/vol) formamide, and 10% (wt/vol) sodium
dextran sulfate (26) at 28°C. The filters were washed at 44°C in 0.1X SSC, 0.1% SDS.
The SB cDNA library was probed with the cDNA insert of LCA.6, and the human
placenta DNA library was screened with probe 1 (see Fig. 1) in the presence of 4X SSC
and 10% (wt/vol) sodium dextran sulfate at 65°C. Filters were washed at 65°C in 0.2X
SSC, 0.1% SDS. Phage DNAs were prepared and analyzed by restriction mapping using
the methods described by Maniatis et al. (27) and by Southern blot analysis (28). DNA
fragments were subcloned into the plasmid vector pSP65 (29) before being sequenced
according to the method of Maxam and Gilbert (30) using the strategies outlined in Figs.
1 and 6.

Northern Blot Hybridization. Preparation of poly(A)* RNA from cultured cell lines was
according to Maniatis et al. (27). ~2 ug of poly(A)* RNA was denatured with glyoxal (31),
and fractionated by electrophoresis through a 0.8% agarose gel in 10 mM sodium
phosphate buffer (pH 6.5), and the RNA was transferred to a nitrocellulose filter by
blotting. The filter was hybridized to various nick-translated probes in the presence of
‘4% SSC, 50% (vol/vol) formamide, and 10% (wt/vol) sodium dextran sulfate at 42°C,
and washed at 65°C in 0.2X SSC and 0.1% SDS. After each round of hybridization, the
filter was boiled in H,O for 5 min to remove the previously hybridized probe and exposed
to x-ray film to confirm that there was no remaining radioactivity bound.

Results

Complete Amino Acid Sequence of Human LCA Protein Deduced from cDNA Se-
quences. To isolate human cDNA clones, a A gtll cDNA library (22) was
screened with the 3.2 kb Xba I-Xba I fragment of the mouse LCA cDNA clone
pLy-5-68 (17), which contains most of the protein-encoding sequences. The
inserts of 18 independently isolated cDNA clones were subcloned into the
plasmid vector pSP65 (29) and restriction maps were constructed. The restriction
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FIGURE 1. Restriction maps and nucleotide sequence strategy of human LCA ¢cDNAs. A
summary of the restriction maps of LCA cDNAs as well as the protein structure of LCA.6/2
is shown at the top of the figure. The open boxes marked L (leader peptide), ECD (extracellular
domain), TM (transmembrane peptide), and CD (cytoplasmic domain) schematically represent
the domains encoded in the open reading frame defined by the two overlapping cDNA clones
LCA.6 and LCA.2. The stippled areas, marked 5’ and 3, represent the 5’- and 3'-untranslated
regions. Various LCA cDNA clones named LCA.6, etc. are shown below and are aligned with
the restriction map to indicate the sizes and relative location of each ¢cDNA. The arrows
indicate the direction and extent of the nucleotide sequences determined according to Maxam
and Gilbert (30). Open circles indicate *?P-labeling at the 5’ end. Dashed lines represent gaps.
Shaded areas represent sequences that are entirely different from the other LCA ¢cDNA
sequences. The hatched bars indicate hybridization probes used for screening of cDNA and
genomic DNA libraries, and for Northern blot hybridization.

maps of the relevant cDNA subclones are shown in Fig. 1. By comparing the
restriction maps, it was found that two overlapping clones, namely LCA.6 and
LCA.2, would together span ~4.3 kb. Therefore, the nucleotide sequences of
LCA.6 and LCA.2 were determined according to the method of Maxam and
Gilbert (30) using the strategy shown in Fig. 1. The two cDNA clones share the
identical sequences in the overlapping region. The combined nucleotide se-
quence of these two cDNAs, which is 4,315 bp long, is shown in Fig. 2. This
cDNA lacks the 3’ end of the sequence, since it does not contain a poly(A) stretch
or the poly(A) attachment signal sequence (AATAAA), (32). Indeed, the size of
mRNA detected by Northern blot analysis is 5.0-5.6 kb (see below). Neverthe-
less, the combined cDNA sequence (hereafter referred to as LCA.6/2) contained
all the information necessary to deduce the amino acid sequence of a human
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LCA protein. The reading frame shown in Fig. 2 is the only one that yields an
amino acid sequence long enough to encode a LCA protein. As seen with the
mouse LCA cDNA sequence, the human cDNA sequence also has two in-frame
methionine codons (ATG) separated by three nucleotides near the beginning of
the reading frame. We believe that the second ATG is the initiation codon for
translation, since the second ATG conforms better to the proposed translation
initiation consensus sequence, ACCATGG (33). Assuming this assignment of the
initiation codon, the human LCA.6/2 encodes a protein of 1,304 amino acids.

Using the hydropathy analysis of Kyte and Doolittle (34), two stretches of
strongly hydrophobic amino acids (indicated in Fig. 2 by underlining) can be
identified. The first hydrophobic stretch of 23 amino acids at the beginning of
the coding sequence is most likely the signal peptide necessary for the transfer
of the protein across the cellular membrane. The calculation according to the
algorithm of von Heijne (35) supports this conclusion, and predicts the NH,
terminus of the mature protein to be the glutamine residue assigned amino acid
position 1 in Fig. 2, although this assignment must be considered tentative. The
second highly hydrophobic sequence (amino acid positions 553-574) is 22 amino
acids long and is most likely the transmembrane peptide. The extracellular
domain contains 17 potential N-linked glycosylation sites (N-X-S or N-X-T),
which are indicated in Fig. 2 by short underlinings. In summary, the mature
protein deduced from these two overlapping cDNA sequences has a 552-amino-
acid extracellular domain, a 22-amino-acid transmembrane peptide, and a 707-
amino-acid cytoplasmic domain.

Comparison of Human and Mouse LCA Amino Acid Sequences. The human
LCA.6/2 amino acid sequence and a complete mouse LCA amino acid sequence
(17) were compared to find the degree of conservation between these sequences.
The homology between the two sequences is not uniform. The putative signal
and transmembrane peptides of the two species are very well conserved (91%
homologous), and the cytoplasmic sequences are ~84% homologous. In marked
contrast, the extracellular portions of the two species have diverged to an extent
that a unique alignment of two sequences is difficult. Another notable feature of
the extracellular domain is that the human sequence has an insertion of 161
amino acids near the NHs-terminus compared with the mouse sequence. The
nature of this insertion will be discussed in the following sections. Even if the
large insertion is excluded, the homology of the extracellular domains of the two
species is only ~39%. In spite of the extensive divergence, there are some
conserved features in the extracellular portion. In particular, all of the 16 cysteine
residues in the extracellular domain of the human sequence are found in
corresponding positions in the mouse sequence (there are two extra cysteine
residues in the mouse sequence that have no counterpart in the human sequence).
Among the 18 tyrosine residues in the extracellular domain of the human
sequence, 13 are conserved in the mouse sequence. Perhaps this conservation of
cysteine and tyrosine positions indicates that some higher-order structure, but
not the exact primary sequence, is important for the (unknown) function of the
extracellular portion of human and mouse LCA proteins.

LCA ¢DNA Clones with Different Structures Near the 5’ End. Two additional
c¢DNA clones isolated from the tonsil cDNA library (LCA.260 and LCA.1) have
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very similar restriction maps to that of LCA.6 (Fig. 1). However, it was noted
that two restriction sites (Bsm I and Nci I) that exist in LCA.6 were missing from
the other cDNA clones, even though all three cDNA clones share the Sph I site
located 5’ to these sites. Therefore, the nucleotide sequences of the 5’ portions
of these cDNA clones were determined and compared with the LCA.6 sequence
(Fig. 3). These three cDNAs do indeed share the 5’-untranslated sequence, as
well as the sequence encoding the signal peptide and the first eight amino acids
of the putative mature proteins. The 5’-untranslated sequences of the three
clones are slightly different from each other, probably due to the natural
occurrence of sequence polymorphism (the cDNA library was constructed from
a pool of several tonsils). More important, however, is the finding that the
LCA.260 and LCA.1 sequences have extensive deletions relative to the LCA.6
sequence. The deletions start at the same 5’ position, but the 3’ endpoints of
the deletions are different (Fig. 3). Because the number of bases deleted is a
multiple of three (198 bp for LCA.260 and 483 bp for LCA.1), the reading
frame is not affected by these deletions. As a result, the proteins encoded by
LCA.260 and LCA.1 are 66 and 161 amino acids shorter than the protein
encoded by LCA.6/2, respectively. This interpretation assumes that the missing
3’ sequences of LCA.260 and LCA.1 are the same as LCA.6/2. Another human
LCA cDNA clone (LCA.111), which was isolated from a cDNA library derived
from mRNA of a human B cell line SB was also characterized by restriction
mapping and partial nucleotide sequence determination (Figs. 1 and 3). The 5’
sequence of LCA.111 is the same as that of LCA.260, except for a few differences
ascribable to polymorphism. A comparison of these shorter protein sequences
with the mouse protein sequence revealed that the mouse cDNA sequence pLy-
5-R4 (17) corresponds to the human LCA.1 cDNA sequence. The three distinct
structures defined by the clones LCA.6, LCA.260/LCA.111, and LCA.1 dem-
onstrate that there are at least three different classes of human LCA mRNAs.

Two additional cDNA clones isolated from the tonsil library (LCA.4 and
LCA.9) have similar restriction maps to that of LCA.6 (Fig. 1). The determina-
tion of the partial nucleotide sequences of these cDNA clones confirmed that
the 3’ sequences are identical to that of LCA.6. However, based on the nucleotide
sequence data, these cDNAs seem to have derived from either aberrantly or
incompletely spliced LCA mRNAs (data not shown).

Isolation and Characterization of Genomic DNA Encoding Variable Portion of
Human LCAs. To define the genetic basis of the diversity of LCA mRNAs, a
genomic DNA clone (LCA.204) was isolated from a human placental DNA
library (23) using the Eco RI-Ban II fragment of LCA.6 as the hybridization
probe (probe 1 shown in Fig. 1). The restriction map of the 13 kb LCA.204
insert is shown in Fig. 4A. Using the combination of restriction mapping and
Southern blot hybridizations (28) with the insert of LCA.6 as a probe, we
identified and located six exons in this cloned genomic DNA. During the
subsequent sequence analysis of these exons, however, it became clear that a
small exon of 27 bp existed in the LCA gene. This exon was located by blot
hybridization using a synthetic oligonucleotide predicted from the cDNA se-
quence. The locations of the seven exons, as well as the strategy for determining
the nucleotide sequence, are indicated in Fig. 4B, and the nucleotide sequences
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FIGURE 4. Restriction map and sequence strategy of a human LCA genomic DNA segment.
A. The exon-intron organization in a 13 kb genomic fragment of the human LCA gene is
schematically represented. Exons, designated A~G, are indicated by solid boxes. B. The
restriction maps of four Eco RI fragments containing LCA exons are shown. The sequencing
strategy for the seven exons are indicated. Other symbols are the same as in Fig. 1.

of the seven exons are shown in Fig. 5. Each of the seven exons is flanked at its
5’ and 3’ ends by sequences that conform to the consensus splice acceptor and
donor signal sequences (36). Interestingly, all the splice junctions of the seven
exons occur between the first and second bases in a triplet codon.

Because the complete exon-intron organization of the human LCA gene is not
yet known, we can not assign definitive exon numbers to each exon. In the
following sections, we will tentatively call these exons A-G (Fig. 4). Although we



1557

STREULI ET AL.

VNG? 3/9'vD1 3y3 u1 suonitsod proe ourue 3y 01 19§31 SISquInu Y ], "UMOYS

‘aouonbos  aie saouanbos Sumueyy ¢ pue ,g 2y PIM 192801 UOXd Yoea Jo sadusnbos
apNoapnU 3y |, *9-y SUOXI yO'T Uewny jJo saduanbas apnoapnyN "¢ TN

........ OLIDLLIOLVVIVOODLOLLLLLLLILYVOVOYOOVOLLVOVYIVLIVVOVVLD O hw._. umu

ste
k“—.-:—_ <m< UM.— uwc ._.*< ._.u< u“o <w< ._.Mc ._.w._. _—.w< ._.Mh Uw< <MG .—.*< Lvv <«< MM” VYV v, .—.w.__ .—.*< Fw< ._.W< ._.n<o <wu <“< <NU F»u
<WO <w< ._.w._. .—.«0 ._.mo <*h UMO ._.%h ovv <M0 110 ww OVOLOLLOLIOLYIDLOLLIVILLOVYILVVIOVIVYVOLVLIVOVOVIY " "o r oo

..... OVIOLILLIOLODLOLOLOLLILLIOVOVIOVIVVYVVLIVILIVVVIVVLLLLOLLIVILIIVVOLIVIVVVLD O <Mu <wu Owu
.-.“0<mk<*<<*k<w<3kMG.—WD.—.@°kw<_—.WH<mkkihmv.—.w_-.<*<uw.-.%uwkuwehiikgtﬁw<w<k*oo<<.—mucwo
Q“Ohd‘gtw<Owhhw<h<<u<<<wo.-.w~.<“00»uh=§“0hs=o_n<<<ﬁ0«<§<ﬁh¢<ﬁh<«<kﬂ< u«to:hﬁ—.

1_*_-. UM_-. kNQ 0»0 nw< 0*1 Q“G <n<vo .-.Mh 1«1 1«6 wmu OVLLLIOLLLILVIDLIOLIVYDIOVIVVAVYVVYODLOLIVLLIVLILLIOVIOL -~ """ - "

..... LAVILIOLLLDIVOVLIVVILIOVOOVIVVDDLLLOVILOOVIVODVOLVYDVILOVLLLIY

00I0LILLLLLIVOVEILIVVAVVLLLLVVVVODYVVAOLLYSVEVODOLVIVOLY ** * °
LoV D ....w..” V¥ v wm” 98 v WV Lpv .”m. OVOVLLY: VOVLLLVVIVVLILLLVVVVOOVVVAILLVIVEVIDDIVIVOLY

T 10BLOLYDLEOLIIDLOLVIOODIVIIVIVIODVIDDVILOVOLODOVIIVIVELD O MﬂQ <m< dwt uw< ﬁwﬁ. n*< OWU P«u DMt 1% .-.mk Hwo Ow<
@*u Fw< Uw< <w< <MQ .-.w.—. Uﬂe h“< .—.*u OMF 0@5 h“- OVIOLLOLLLIVILIVIOLLOLLYALLLOOVLIIVYLIVVDOVVLIVIVVILLLOOVOLLLOLL  ~~  °

oet
T IVEALLOLODVIOIVVILIOVVVVILOVVVOOLVVVDIVVIVOVIVLILOVOLIOLOLOVIOVIOLO0IOBLVIOVOLOLY B <Mh Dw< U“t. »&o twt 0*1 ow<

R oY % Y 9P WP AP i P Hp 18 Oy PP O P 4 O 24D oW a0 WY ot VP o 1o v o vy ap

FW.—. Ow< OMG u@o 1w< .-.WQ é ONG 1.&5 <WO uwe hm HVODLLYVALOLLIOOD98LVOLIDIOVIVDLOVVOVOVIVOVOLEODLILOD0DIIVAOODIOL - * ©°

* T D0VVIDLYVVOOVOLOL00LVVOVVILLVIOLIOVIOVDOVALVIVIOVVVVOLYLYVVIOLOLIOVOVIIIOOLODOOOLIID D V)L OV h«& EAAS Ow< OWG

%é%%%ééé%é@%é%é%é%é%%%%é%§%éé
ow< uwu .—.*D avo uw"u 61 QMO <W0 <mh GW._. FWG ._.W OVILIOVIOOLLLOVOLILVAIVVIOLVDLOVOVVIODDDLIOVIOLOLYOLIVLIIVVVIOVL -~~~

T DLIOVYOLIVILLLIVOLOLVLIOVVIOLLLIOVIVODLLLIVIIVVVLLIOLOLLOVVIVIOVOLVLLOVOVLIDLLVVVDVILLVOLDLVVIDOVOLVIVVVLILOVVLLOLIOVY

VVOVOVDDOlLlD 9 <N< Uw< h“< ._.*h hwv kw: .-.wu hk< kMU w*—. hw.-. UMG Gwo Uw.-. <MU <“U Ow< 0L .—.m< vy Umu 1%0 .—.m< .—.*0 F..Wv.-.
.—.w< Yov Ow< o¥o ¢m.-. a3 8 8 U«O vy 3 <«U F.W__ uw< Um< <w¢ Owu <mh DW.—. <«U 0V Uw< OMU .—.w< .-.wo <*h uwo J¥9 hm< <m.—.
110 <Uu k.—b ._.Uc Owo uﬁ< oyv 100 <U< .rw< U«-—L. v u<u<<.rh<<h._.<quh<BUEOSE<E<~.<O<O:<OH<.—§<E<u<k ....

4 uoxy

g uwoxy

q uoxy

o uoxy

| uoxy



1558 DIFFERENTIAL EXON USE OF HUMAN LEUKOCYTE COMMON ANTIGEN

do not know whether there are one or more exons encoding the 5’-untranslated
and leader peptide, we will call the putative 5’-exon(s) L.

The comparison of the exon sequences with the cDNA sequences clearly
indicates that the deleted sequence in LLCA.260 and LCA.111 corresponded
precisely to the exon A sequence, while the deletion in LCA.1 corresponds to
the sequences of exons A, B, and C. The three different mRNA structures can
be described as LABCDE . .. (LCA.6), LBCDE ... (LCA.260 and LCA.111)
and LDE . . . (LCA.1). The comparison of the LCA cDNAs and gene sequences
formally proves that the variable LCA mRNA structures are generated by
differential usage of exons.

Analysis of LCA mRNA Expression in Human Lymphocyte Cell Lines. To deter-
mine if the three LCA ¢cDNA structures could account for all the LCA mRNAs
expressed in various T and B lymphocytes, Northern blot analysis (31) was
carried out. To make the comparison between several different probes meaning-
ful, one RNA blot filter containing mRNA isolated from three T cell lines
(Molt3, HSB2, and Hut78) and four B cell lines (Raji, SB, Daudi, and Namalwa)
was recycled for this analysis. Hybridizations using either a cDNA probe corre-
sponding to the 5’ variable region (probe 2, Fig. 1) or a probe corresponding to
the cytoplasmic region (probe 3, Fig. 1) resulted in essentially the same hybridi-
zation pattern, except that the degradation of mRNA is more prominent with
the cytoplasmic region probe (Fig. 6,A and B). More important, however, is the
observation that the LCA mRNA sizes, which range between 5.0 and 5.6 kb, are
variable in different cell lines, and that there appear to be multiple size species
of mRNA expressed by a single cell line. For example, Raji cells seem to express
at least three different-size mRNAs, while Molt3 cells express at least two.

Because the analysis of cDNAs and gene structure has demonstrated that
different-size mRNAs could be produced by differential usage of three exons
(A, B, and C), the expression of individual exons in the lymphocyte cell lines was
examined by using exon-specific probes. As the leader exon probe, we used the
Eco RI-Ban II fragment derived from LCA.1 (probe L, see Fig. 1), which
contains 174 bp from the putative leader exon sequence, and 35 bp from exon
D. Other probes specific to exons A, B, C, or F were made from the genomic
DNA clone (probes A, B, C, and F, See Fig. 4B). The hybridization patterns of
the leader (L) exon probe and exon F probe are not significantly different from
that of the cytoplasmic region probe (Fig. 6B and C). This result is consistent
with the idea that the leader exon, exon F, and the cytoplasmic exons are
included in any LCA mRNA. However, when the exon A probe is used, the
pattern of hybridization is substantially different. The T cell line Molt3 and the
B cell line Raji strongly express exon A, the B cell lines Namalwa and Daudi
weakly express exon A-containing mRNA, while the B cell line SB and the T

FIGURE 6. Northern blot analysis of T and B lymphocyte mRNAs with LCA probes.
Northern blot analysis of poly(A)* RNA isolated from the T cell lines Molt3, HSB-2, and
Hut78, and the B cell lines Raji, SB, Daudi, and Namalwa was done as described by Thomas
(31). 2 ug of each RNA was used per lane. Ribosomal RNA was run in parallel as a size marker.
Hybridization probes were: A, the cDNA probe 2 (see Fig. 1); B, the cDNA probe 3 (Fig. 1);
C, the exon-specific probes, L, A, B, C, and F depicted in Fig. 5. One Northern blot filter was
reused for all seven hybridizations. After each hybridization the probes were removed by
boiling the filter in water for 5 min. A and B: Autoradiography was without an intensifying
screen for 5 d. C: Autoradiography was with an intensifying screen for 2-5 d.
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cell line HSB2 and Hut78 do not express this exon (Fig. 6 C). Exon B is expressed
in all of the lymphocyte cell lines tested (Fig. 6C). Exon C is expressed very
strongly in Raji cells, only weakly in the other three B cells, and is barely
expressed in the three T cell lines.

The interpretation of these results is not straightforward, since each cell line
may produce multiple forms of LCA mRNA. Nevertheless, some tentative
conclusions can be deduced. The most abundant mRNA expressed in the B cell
line Raji probably contains all three exons and has the structure corresponding
to the cDNA clone LCA.6 (LABCDE. . .). This conclusion is consistent with Raji
cells having the larger-size mRNA as the predominant species (Fig. 6). Daudi
and Namalwa cells seem to have a pattern similar to the Raji cells, except that
the overall levels of expression are much lower. On the other hand, the most
abundant LCA mRNA detected in the B cell line SB contains exons B and C,
but not A. This mRNA species is consistent with the structure of a cDNA clone,
LCA.111 (LBCDE. . .)isolated from the same cell line. The predominant mRNA
species of the T cell lines HSB2 and Hut78 contain only exon B and not exons
A or C (Fig. 6C). Therefore, it is necessary to assume the existence of a mRNA
with the structure of LBDE. . . . The other T cell line, Molt3, expresses exon A
and B equally well, but the expression of exon C is very weak (Fig. 6C). This
can be interpreted as the expression of mMRNA having the LABDE . . . structure,
or alternatively it is possible that the cell expresses similar amounts of two
different mRNAs or LADE . .. and LBDE ... structures. Whatever the case
may be, one also has to assume yet another structure of LCA mRNA (LABDE
...or LADE .. .). The existence of a LCA mRNA species without any of the
three exons, A, B, and C, is predicted from the cDNA clone LCA.1, but it is
difficult to assess the expression of this mRNA species by Northern blot analysis.
However, the lowest-molecular-mass bands visible in the three T cell lines (Molt3,
HSB2, and Hut78) using either the leader exon or exon F probes (Fig. 6 C) may
correspond to this LCA mRNA species.

In conclusion, Northern analysis supports the existence of three different
forms of human LCA mRNA predicted from the isolated cDNA clones. Fur-
thermore, the existence of at least two more species of mRNA was demonstrated.
Fig. 7 summarizes the structures of human LCA mRNAs.

Discussion

Although an accumulated body of evidence has made it plausible that the
different forms of the LCA molecules are encoded by a single gene, the exact
mechanism of the:generation of diversity was not known. In this paper, it was
demonstrated that a single human LCA gene can generate multiple forms of
mRNAs that encode proteins of different structures. The isolation of the LCA
cDNA clones and Northern blot analysis demonstrate the existence of at least
five distinct LCA mRNAs. Furthermore, it was shown that these different
mRNAs result from differential usage of three exons by alternative splicing.
Each exon can be either included or excluded from a LCA mRNA independently
of the other two exons, and without disturbing the coding frame. Therefore, it
is possible that the number of different forms of the LCA mRNAs and proteins
is as large as eight (2%). This calculation, of course, assumes that only exons A,
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FIGURE 7. Summary of the differential exon usage of the human LCA gene. The LCA gene
and the possible LCA mRNA products are schematically shown with boxes representing exons.
The mRNA structures LCA.6, LCA.260, and LCA.1 are derived from cDNA cloning, and
the existence of HSB2(?) and one or the other of Molt3(?) mRNA structures are demonstrated
by Northern blot data (for details, see text). Not drawn to scale.

B, and C are used differentially and that the LCA gene does not contain exons
for which we have not found any corresponding cDNAs. So far there is no
convincing evidence that any other exon, particularly exon D, might be used
differentially. Therefore, at the moment, the best estimate of the diversity of the
human LCA mRNAs and proteins is between five and eight.

The generation of multiple structures of mRNAs and proteins by differential
splicing is not uncommon among eukaryotic genes (for a review, see reference
37). For example, the troponin T gene can produce at least 10 different mRNAs
and protein structures (38). Other examples, among integral membrane proteins,
are the N-CAM (39) and Lyt-2 (40) genes, which produce two alternative forms
of mRNAs. The alternative splicing of these genes encodes proteins with differ-
ences in the cytoplasmic domains. The LCA gene is, however, unusual in that
the diversity occurs in the extracellular domain, that the degree of the diversity
is large, and that the pattern of exon usage is not stochastic.

Because of the similar sizes of the three variable exons, together with the very
large sizes of the LCA mRNAs and proteins, it will be very difficult to distinguish
some mRNAs or their products from each other solely based on their electro-
phoretic mobilities. For example, mRNAs or proteins of the structure LABDE
..., LBCDE ..., and LACDE ... will most likely be indistinguishable. This is
probably a reason that the true complexity of the LCA system is often overlooked.
Of course, it is possible that a regulatory mechanism of LCA mRNA splicing
somehow precludes one or more of the potential combinations of these three
exons. The evaluation of the complexity of the LCA gene system in a more
quantitative manner will require an exhaustive series of experimentation using
S1 nuclease protection, primer extension, and blot hybridization with various
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probes, and perhaps more cDNA cloning. The knowledge of the general struc-
ture of the LCA mRNAs, as well as the structure of variable exons, that are
reported in this paper, will make this type of approach feasible. Another useful
tool to study the complex expression of various members of the LCA family at
the protein level will be mAbs directed against epitopes expressed by the
individual variable exons. Some mAbs with these properties are already available
(e.g., anti-2H4 [4]). However, even such mAbs may not be able to distinguish
two or more different LCA proteins that share the exon to which they are
specific. For example, anti-exon B antibodies would react to both LABDE . . .
and LBCDE ... structures, which may not be distinguishable by SDS-PAGE
analysis. For this reason, antibodies specific to the joints of two segments will be
particularly powerful since they will have a very limited specificity.

The complete amino acid sequence of one member of the human LCA family
has been determined based on the nucleotide sequence of LCA ¢cDNA clones,
and the amino acid sequence of two other LCA family members is inferred based
on incomplete ¢cDNA structures. The differences in the sizes of the primary
structures (1,304, 1,238, and 1,143 amino acids) as well as the variation in the
number of potential N-linked glycosylation sites in the extracellular domain (17,
14, and 11 sites, respectively) are consistent with the observed range in molecular
masses (~170-240 kD) of the human LCA members. Furthermore, the variability
of the amino acid sequences in the NHy-proximal region of these three LCA
members is compatible with studies, using mAbs that have suggested that the
LCAs have common and variable epitopes (4, 6, 12). The human LCA amino
acid sequences have no significant homology with any known protein sequence
(except to the rat and mouse LCAs) in the database of the Protein Identification
Resource. There is, however, an internal sequence homology of amino acid
numbers 588-878 and 879-1,194 located in the cytoplasmic domain. A similar
homology was previously shown for the rat LCA sequence (16).

The rate of amino acid change in the various domains of the LCA is uneven.
While the signal peptide, transmembrane peptide, and cytoplasmic domain are
well conserved (91, 91, and 84% amino acid homology between mouse and
human), the extracellular domain is poorly conserved (~39% homology). How-
ever, the conservation of cysteine residues in the extracellular domain suggests
that higher-order structure may be maintained. Because there is no sequence
information of the rodent counterparts of the human LCA exons A, B, and C,
the possibility that these exons are more homologous remains. Nevertheless, the
degree of the conservation of the LCA extracellular domain sequences appears
to be much less than most known membrane proteins. Another example of a
membrane glycoprotein that has uneven rates of amino acid changes is the T8
(Lyt-2) molecule, which has ~42% homology between the human and mouse
extracellular V-like domains (41, 42). In this case, it has been suggested that the
high degree of sequence divergence may reflect coevolution of the T8 protein
with the MHC class I antigens, which are believed to be the ligands of T8. The
elucidation of the possible ligand(s) and the significance of the uneven evolution
of the LCA domains require further study.

A unique feature of LCA proteins that distinguishes them from most known
membrane glycoproteins is that both the extracellular domain (either 552, 486,
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or 391 amino acids) and the cytoplasmic domain (707 amino acids) are very
large. Among the few membrane proteins that have an extracellular and a
cytoplasmic domain comparable in size to the LCA domains are the receptors
for epidermal growth factor (EGF) (43) and platelet-derived growth factor (44),
the product of the protooncogene c-fms (45), and the oncogene product neu (46,
47). Although the LCA proteins have no primary sequence homology to these
growth factor receptors and epidermal growth factor receptor-related proteins,
the similarity in overall architecture, as well as the finding that LCAs are
phosphoproteins (48, 49) might suggest that LCAs also function as cell-surface
receptors. If the LCAs are indeed receptors, the fact that potentially five to eight
distinct extracellular forms of the LCA molecule exist might suggest that there
could be several different ligands.

The expression of the different LCA forms appears to correlate with the
function of cells. For example, T4" cells that induce suppressor activity express
LCAs with the 2H4 epitope, while T4" cells that have helper activity do not
express the 2H4 epitope. The precise localization of the 2H4 epitope is not yet
known, although it is within the variable portion encoded by the exons A, B,
and C of the LCA gene (our unpublished results). The molecular basis of this
structure-function relationship might be analogous to that of T4 molecules. The
biological function of the T4 molecules is, among other things, to facilitate the
interaction of T4" cells with antigen-presenting cells, which bear MHC class 11
molecules. Therefore, it is plausible that the function of LCAs is to facilitate the
interactions of lymphocytes among themselves and with other cells of the immune
system. Furthermore, different LCA forms might specify the way(s) the cells
bearing those forms interact with other cells.

Since the completion of this work, papers by Ralph et al. (50) and Barclay et
al. (51) appeared that drew similar conclusions based on ¢cDNA sequences
concerning the sequences of human LCAs, and the basis of heterogeneity in
human and rat LCAs.

Summary

Leukocyte common antigens (LCAs, also known as T200 and CD 45) are
integral membrane proteins expressed exclusively on hematopoietic cells. These
molecules exhibit varying molecular masses and epitopes when expressed in
different cell types. To determine the genetic bases for the generation of this
diversity, three classes of human LCA cDNA clones that are different near their
5’ ends have been isolated. These differences arose as a result of differential
usage of three exons as determined from an analysis of a genomic DNA clone.
Furthermore, Northern blot analysis with LCA exon-specific probes demon-
strates the existence of at least two more LCA mRNA forms that are generated
by differential splicing. A comparison of the human and mouse LCA protein
sequences revealed a marked difference only in the extracellular domain.
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