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The accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale 
models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-

based modeling methods such as flux balance analysis (FBA). However, they require prior knowledge of the 
metabolic network of an organism and appropriate objective functions, often hampering the prediction of 
metabolic fluxes under different conditions. Moreover, the integration of omics data to improve the accuracy 
of phenotype predictions in different physiological states is still in its infancy. Here, we present a novel approach 
for predicting fluxes under various conditions. We explore the use of supervised machine learning (ML) models 
using transcriptomics and/or proteomics data and compare their performance against the standard parsimonious 
FBA (pFBA) approach using case studies of Escherichia coli organism as an example. Our results show that the 
proposed omics-based ML approach is promising to predict both internal and external metabolic fluxes with 
smaller prediction errors in comparison to the pFBA approach. The code, data, and detailed results are available 
at the project’s repository [1].
1. Introduction

Metabolic flux prediction is a central challenge in systems biology, 
with applications ranging from biotechnology to medicine [2–4]. In the 
last years, constraint-based modeling (CBM) have become an essential 
in silico tool to predict and optimize metabolic flux distributions in bio-

logical systems by flux balance analysis (FBA). These models rely on a 
set of constraints and assumptions to simulate the behavior of cell phe-

notypes, enabling the prediction of metabolic fluxes and cell growth 
at different conditions [5,6]. FBA enables the modeling of thousands 
of biochemical reactions simultaneously captured in the metabolic net-

work reconstruction, which requires prior extensive knowledge of the 
network and the stoichiometry of the reactions within a particular or-

ganism. The impact of genome-scale models (GEMs) in the biotechnol-

ogy field comes from their essential support in metabolic engineering, 
namely to optimize production yields [7,8]. The parsimonious FBA 
version called pFBA technique was later introduced [9]. FBA aims to 
maximize a specific objective function, which is usually biomass pro-
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duction and is subject to constraints imposed by the stoichiometry of 
the metabolic network; pFBA does not seek to maximize any particular 
objective, it finds a flux distribution that is both feasible and has the 
smallest possible sum of absolute flux values.

While GEMs have been successful in predicting fluxes and growth 
rates, they require prior knowledge of the entire metabolic network and 
the appropriate objective function (they are sensitive to the metabolic 
objective that is often unknown and likely context-specific) of an organ-

ism, limiting their applicability [10]. To overcome some of its short-

comings and improve prediction accuracy there have been successful 
attempts to integrate GEMs with omics datasets, namely through sev-

eral context-specific metabolic model extraction algorithms (e.g., iMAT 
[11], INIT [12] and GIMME [13]). In 2014, Machado et al. [14] per-

formed an extensive comparative study between various FBA-based 
approaches that integrate transcriptomic or proteomic data against the 
reference pFBA method. However, the surprisingly equal or poorer pre-

diction performance of these methods when compared to pFBA was 
found. Moreover, several input preprocessing steps are required to in-
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tegrate GEMs with large omics datasets. Alternatively, Sánchez et al. 
[15] incorporated proteomics data to improve GEMs predictions by in-

troducing enzyme kinetic-based constraints, given their known roles in 
metabolic pathways (GECKO method). Ravi et al. [16] extended FBA 
with differential gene expression data (deltaFBA approach) to predict 
metabolic flux differences between conditions. However, the former 
needs detailed enzyme kinetics and protein abundance data (i.e., ex-

perimentally measured turnover numbers) under different conditions. 
The latter approach requires multiple experimental datasets and does 
not generate the flux prediction for a given condition (i.e., only pro-

duces differences in the fluxes between two conditions).

To compensate for the identified limitations, there have been ef-

forts to integrate two computational frameworks – constraint-based 
modeling and machine learning (ML) – as pointed out in multiple re-

view studies ([17], [18] and [19]). Vijaykumar et al. [20] introduced 
a hybrid pipeline combining metabolic modeling with ML to analyze 
GEMs and refine phenotypic predictions. Culley et al. [21] compared 
ML-based data integration (combining gene expression profiles with 
predicted metabolic flux data) to predict yeast cell growth, observing a 
superior prediction accuracy for multimodal neural networks. Similarly, 
Magazzu and co-authors [22] explored the role of statistical learning 
methods against FBA using omics data integration to improve cellular 
growth rate predictions. More recently, Faure et al. [23] employed hy-

brid neural-mechanistic modeling which relies on an artificial metabolic 
network layer encasing the metabolic knowledge while the rest of the 
network is responsible for learning the FBA constraints by the use of 
a custom loss function, achieving superior phenotype predictions while 
also reducing the required training data. Schinn et al. [24] addressed 
challenges in real-time nutrient control in biotherapeutics manufactur-

ing by integrating statistical models with GEMs, enabling the prediction 
of amino acid concentrations in culture medium through time.

Recently, with the increased amount of omics data available, data-

driven approaches like ML have emerged as a promising alternative 
to model metabolic functionalities [25–27]. Their capacity to iden-

tify patterns in large datasets, reveals hidden relationships, and learn 
predictive models from complex omics data has been notable across 
different domains [28–32]. Namely, Wytock et al. [33] explored the k-

nearest neighbors algorithm to predict bacterial growth rate from gene 
expression data. Earlier, an Artificial Neural Network was used to pre-

dict the fluxes by using mass isotopomer data as the input [34]. Costello 
and colleagues [35] used a time series perspective of multiomics data 
and employed regressors to model the dynamic metabolic behavior of 
a cell. Wu et al. [36] predicted fluxes using an SVM model aided by a 
constraint programming module, with simple culture variables and de-

tailing the bacterial species. Freischem et al. [37] introduced a novel 
ML approach that predicts gene essentiality directly from wild-type flux 
distributions, achieving near state-of-the-art accuracy in identifying es-

sential genes through training binary classifiers on connectivity data 
from a mass transfer between reactions graph. Although the state-of-

art ML methods can disclose some relationships among the omics data, 
there has not been a supervised ML-based contribution focused on the 
sole use of transcriptomics and/or proteomics data (with no prior infor-

mation like stoichiometry) to predict metabolic fluxes.

In this study, we assess the role of state-of-the-art ML models, in-

cluding Linear Regression, Support Vector Machines, Decision Trees, 
Random Forests, XGBoost, and Artificial Neural Networks, for predict-

ing metabolic fluxes using transcriptomics and/or proteomics data. Our 
work consists of a benchmarking analysis that contrasts these mod-

els with the conventional pFBA method, underlining the substantial 
promise of ML techniques in addressing metabolic modeling challenges. 
Furthermore, the developed omics-based ML models for metabolic flux 
prediction set this work apart from other related contributions that 
tackle different predictive challenges [33,35,37,24] or different input 
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data [34,36,23].
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2. Methods

2.1. Experimental data

The two experimental datasets used in this work were obtained 
from the literature. Originally published by Ishii et al. [2], the first 
dataset contains experimental information (transcriptomic, proteomic, 
and fluxomic data) for the wild-type K12 E. coli culture in chemostat 
under different dilution rates (D = 0.1, 0.2, 0.4, 0.5, and 0.7 h−1) and 
for 24 single knockout mutant strains at a D = 0.2 h−1. This dataset 
contains microarray profiles for 79 genes and proteomics data for 60 
proteins of E. coli. Additionally, the dataset also provides information 
on the standard deviation of the transcriptomic and proteomic measure-

ments. This is one of the largest datasets available with both omic data 
features (transcriptomic and proteomic) and metabolic fluxes. There-

fore, it is the primary case study for training and validating the models 
under a nested cross-validation process.

The second dataset, published by Holm et al. [3], contains infor-

mation on E. coli strains growing aerobically in batch cultures. This 
study produced lower volumes of data, analyzing a wild-type strain 
and two over-expression mutants, nox (NADH oxidase) and atpAGD 
(F1-ATPase), to measure transcriptional responses to lowered levels of 
NADH and ATP. Given the lack of available instances, it is not possible 
to train an ML model with this dataset. For this reason, it was used as 
an independent validation set, to assess the generalization ability of the 
predictors.

2.2. Data preprocessing

All input data are numeric in nature and therefore a standardization 
process for the raw expression values using the z-score strategy was 
applied [38]. This involves transforming the features by removing the 
mean and scaling to unit variance, so the resulting distribution have 0 
mean and the standard deviation 1.

Multiple datasets can be used in accordance with the diverse possi-

ble feature spaces that will feed the target predictive models. Here, the 
proteomic, transcriptomic, or a combination of both layers was applied 
as input. There is also information available on the standard deviation 
(i.e., experimental uncertainty bounds) associated with the omics mea-

surements which was added to the input. Furthermore, the glucose and 
oxygen uptake rates were fixed, depending on the test scenario, by ap-

pending these fluxes’ values to the input. Note that when the fluxes for 
the uptake rates are fixed they are not considered in the predictive per-

formance metric.

2.3. Models and implementation

Different ML methods to predict metabolic fluxes are tested. The ML 
algorithms used consist of several widely-used regression models, in-

cluding Linear Regression (LR) [39], Support Vector Machine (SVM) 
[40], Decision Tree Regressor (DT) [41], Random Forest (RF) [42], 
XGBoost Regressor (XGB) [43], and Neural Networks (NN) [44]. The 
implementations for these models are imported from the Scikit-Learn 
package (version 1.2.0) [45], with the exception of XGB, which can 
be found in the xgboost package (version 1.7.5) [43], and the neural 
networks that were implemented using Tensorflow (version 2.9) [46]. 
The computations and calculations were performed using Python (ver-

sion 3.10) [47]. Regarding pFBA, all simulations are done using the 
COBRApy package (version 0.26.2) [48] with the iAF1260 genome-

scale metabolic reconstruction of E. coli [49]. To avoid the influence 
of random variations or redundancy across FBA simulations the pFBA 
approach was selected.

All code, data, and results are available in our GitHub repository 

[1].
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2.4. Computational setup

To predict the phenotypes all these ML models are trained and tested 
in a leave-one-out cross-validation process using the gene expression 
data and/or protein levels as input (depending on the test scenario), re-

trieving the average statistics. As for pFBA, considering Ishii’s dataset 
[2], it was used to predict growth rate, 7 secretion fluxes, and 37 in-

tracellular fluxes by the biomass growth objective maximization, given 
the experimental glucose and oxygen uptake rates as constraints. All 
the other bounds used the original flux bounds of the metabolic model. 
In order to simulate the genetic interventions (knockouts), the iAF1260 
metabolic network was modified based on each of the respective single-

gene deletion before the simulation. Similarly, for the validation in 
Holm’s dataset, pFBA was used to predict growth rate, 1 secretion flux, 
and 31 intracellular fluxes, given only the experimental glucose rate as 
a constraint.

The hyperparameters for the majority of the ML models were left at 
the default values. The only exception is the deep learning approach, 
which underwent a hyperparameter optimization process that chooses 
the architectural aspects of the network as well as other relevant pa-

rameters like regularization strategy, dropout, and the learning rate (for 
details, see the GitHub repository [1]).

Moreover, in the case of neural networks, the training and testing 
process happens in a dual-loop cross-validation process. The outer loop 
executes in the same leave-one-out fashion that is used across all other 
models, but within each training iteration, there is an inner loop of 
cross-validation executing in 5 folds. In each of the 5 training folds, 
hyperparameter optimization is performed (using a Bayesian approach 
[50,51]). The best set of hyperparameters resulting from the search is 
used to build the neural network that is fitted and evaluated in the outer 
loop.

2.5. Performance metrics

The prediction performance is measured using the mean absolute 
error (MAE), where 𝐲 is the vector of the measured fluxes, �̂� is the 
vector of the predicted fluxes, and 𝑛 is the number of measured fluxes,

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (1)

the root mean squared error (RMSE),

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (2)

the normalized error (NE),

𝑁𝐸 =
‖�̂� − 𝐲‖
‖�̂�‖ (3)

and the R2,

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
. (4)

Additionally, the Wilcoxon signed-rank test is used to obtain statis-

tical guarantees in the comparison of ML models against pFBA [52]. 
The paired testing handles data without relying on any specific assump-

tions regarding its distribution. To derive a single p-value from the set 
of pairwise comparisons, the median p-value approach is considered.

3. Results

The aim of our work was to assess the predictive ability of ML 
models using transcriptomics/proteomics data and other input varia-

tions for estimating metabolic fluxes, comparing them with the standard 
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pFBA method. The performance metrics are averaged firstly across the 
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predicted vector and later across the range of testing instances in the 
cross-validation process.

3.1. Impact of different inputs on the predictive performance

To assess the influence of each input component (i.e., the type of 
omics data used as input, uptake rates constrained, and the use of the 
standard deviation of the omics measurements) in the prediction of 
metabolic fluxes, we compared the predictive capability of the differ-

ent models for a variety of conditions and scenarios.

Fig. 1 provides an overview of the results for the best settings per 
model in the Ishii data [2], using the introduced cross-validation pro-

cess. Our comparative analysis demonstrated that the best flux predictor 
was the RF model (NE = 0.261) trained with transcriptomic data (with 
glucose and O2 uptake rates fixed), outperforming all the other models 
and with a p-value < 0.01 against pFBA. Overall, the best configurations 
from the ML regressors seem to present a normalized error value that 
is inferior to that of pFBA (NE = 0.381). A more detailed comparison 
of all the methods and scenarios is given in Table A.1 for Ishii’s dataset 
[2]. For all the comparisons, we found that when the uptake rates are 
fixed, superior results are achieved across all settings (Table A.1). This 
outcome is unsurprising due to the relaxation of the problem resulting 
from the addition of two fluxes to the input data.

The Ishii dataset provides information about two omic layers, tran-

scriptomic and proteomic, but also provides the associated standard 
deviation of the omics measurements. Taking RF, the best predictor 
under analysis, Fig. 2 assesses the predictability of each omic layer as in-

put, as well as the impact of including the respective standard deviation 
of the omics measurements. It can be observed that the prediction error 
is lower in all settings that do not use the standard deviation, reflect-

ing the benefit of having lower dimensionality in the input. Regarding 
the impact of the type of omics data, transcriptomics alone seems to im-

prove the flux predictions, outperforming settings where proteomics is 
used, alone or in combination.

3.2. Comparison of intra and extracellular fluxes prediction

In order to illustrate in more detail how the phenotype predictions 
vary between the best suggested ML model (RF model without stan-

dard deviation and including glucose and O2 uptake rates fixed) and 
pFBA, we compared the intracellular and extracellular flux predictions. 
Fig. 3 shows the prediction metrics between intracellular and extracel-

lular fluxes. We noted that intracellular fluxes have noticeably higher 
absolute prediction errors. However, when the error is normalized, we 
identified a reduction in the NE values for the intracellular fluxes. This 
is likely due to the fact that the majority of extracellular fluxes are 
zero-valued and therefore small deviations from zero will lead to great 
penalizations in a normalized view. Figs. 3a and 3b further reinforce the 
performance differences between the RF predictive model and pFBA, 
since the latter is associated with higher normalized prediction errors 
in both scenarios. Furthermore, Fig. 3a also strengthens the claim of 
higher predictive power through transcriptomics data as input, show-

ing decreased predictive error values in both intra and extracellular 
fluxes.

3.3. Prediction of individual fluxes

Fig. 4 shows the distributions for the normalized error across 
metabolic fluxes, for both RFs and pFBA. As previously reported, on 
average, RFs yield lower error predictions when compared to pFBA. 
There are 10 fluxes where pFBA performs better than RFs, they roughly 
coincide in 7 other fluxes (including growth), but RFs outperform pFBA 
in 28 of the metabolic fluxes, with 4 of those fluxes showing irregularly 
increased normalized error values from pFBA (i.e., ACKr, PTAr, EX_Ac-
etate, and EX_Formate). Similar distribution plots between the same 
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Fig. 1. Comparison of the best regressors in cross-validation (see bold lines in Table A.1) and pFBA, for different prediction scores (including the intracellular, 
extracellular, and growth fluxes) across all experimental conditions in the E.coli Ishii’s dataset. Sorted by increasing normalized error.

Fig. 2. Comparison of the performance given by the RF model using different omics (P = Proteomics, T = Transcriptomics, P+T = Proteomics and Transcriptomics), 
with (left) and without (right) the standard deviation of the omics measurements as input.

Fig. 3. Comparison of the performance between (a) RF model using different omics (P = Proteomics, T = Transcriptomics, P+T = Proteomics and Transcriptomics) 
4963

as input and (b) pFBA approach for prediction of the intracellular (intra) and extracellular (extra) fluxes.
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Fig. 4. Average of the normalized error (NE) of RF and pFBA for all reactions in the E.coli Ishii’s dataset across different dilution rates and gene knockouts.
models for the MAE, RMSE, and R2 metrics can be found in appendix 
(Figs. A.1, A.2, and A.3, respectively).

To explore phenotype predictions in scenarios where pFBA estimates 
are less accurate (i.e., higher dilution rates), caused by sub-optimal cell 
growth due to overflow mechanisms, we analyze two specific cases in 
detail. Fig. 5 shows the predictions for each metabolic flux at a dilution 
rate of 0.5 h−1. The prediction errors for this environmental condition 
was NE = 0.153 (MAE = 0.529, RMSE = 0.720, R2 = 0.976) for RF 
model and NE = 0.281 (MAE = 0.899, RMSE = 1.321, R2 = 0.906) for 
pFBA, respectively. For most of the fluxes, both the RF model and pFBA 
perform well and predict values close to the experimentally measured 
flux value. However, there are a few exceptions where their perfor-

mance diverges. Namely for the PFK, FBA, PYK, CO2, and acetate fluxes, 
the RF is close to the experimental value while pFBA yields high error 
results. On the other hand, for ME2, ICL, MALS, Succinate, and Pyru-

vate the RF model tends to overestimate flux values. Interestingly, most 
of the fluxes where the RF fails by slightly overshooting have zero or 
otherwise very low values. In most of these cases, the fluxes could be 
accurately predicted by other models, like DTs or XGB. This raises the 
question of whether increasing the volume of training data would ad-

dress these challenges, contributing to a stronger ensemble. Since RFs 
may face hindered generalization capacity, due to their lower variance 
and higher bias character, especially noticeable in smaller datasets, re-

sulting from each tree in the ensemble using only part of the training 
data (bootstrapping and subspace selection) and the reduction of used 
features at each branch split.

A comparison between the predicted and measured fluxes for D = 
0.7 h−1 is given in the appendix (Fig. A.4). In this specific dilution set-

ting, both the RF model (MAE = 4.411, RMSE = 6.055, NE = 0.62, 
R2 = 0.959) and pFBA (MAE = 4.214, RMSE = 6.031, NE = 0.618, 
R2 = 0.621) show comparable results. The performance of both models 
is similarly poor in 10 out of 45 fluxes, with the exception of LDHD and 
lactate where their results match correctly. On average, across all dilu-

tion and knockout settings, the RF model performs the best out of the 
range of models under assessment, but here they can only outperform 
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pFBA in 21 out of 45 fluxes, while pFBA has better predictive power 
in 14 out of 45 fluxes comparing to the RF. Interestingly, similarly to 
what happened at D = 0.5 h−1, for most of the fluxes in which the RF 
model deteriorates its performance, the DT model appears as a better 
alternative, outperforming the RF in 34 out of 45 fluxes. Another good 
candidate would be the XGB model which is on par with DT, outper-

forming the RF model in 37 out of 45 fluxes.

Finally, the results for the reference dilution rate, D = 0.2 h−1, are 
also provided in appendix, Fig. A.5. The RF (MAE = 0.118, RMSE = 
0.227, NE = 0.105, R2 = 0.994) performs significantly better than pFBA 
at the reference dilution rate (MAE = 0.540, RMSE = 0.763, NE = 
0.353, R2 = 0.856) on average. The only model able to surpass the pre-

dictive power of RF for this specific dilution is XGB (MAE = 0.129, 
RMSE = 0.188, NE = 0.087, R2 = 0.995).

3.4. Generalization to an independent test set

Lastly, to assess the ability of the developed ML models to gen-

eralize to experimentally independent data, we applied them to the 
Holm dataset [3] (composed of three instances/conditions), training 
with Ishii’s data [2]. Table 1 shows the detailed results on the inde-

pendent validation dataset for the RF predictor and pFBA. Unlike gene 
knockouts (as in Ishii’s data [2]), overexpressions portrayed in Holm’s 
experiments [3] do not alter the network topology. Consequently, this 
limits pFBA’s capacity to accurately predict the phenotypes [14]. For 
instance, it can be observed that pFBA (in contrast to the RF) does not 
predict correctly the growth rate and some other intracellular fluxes. 
However, despite this limitation, the RF model exhibits increased aver-

aged prediction errors compared to pFBA for these cases. This indicates 
that the generalization ability of the ML models is limited as training 
observations are scarce.

To further assess RF’s generalization capacity, the learning curves 
in Fig. 6 assess the changing loss with increasing training set sizes. 
It is interesting to observe that the NE for the RF model slowly de-

creases across time, stabilizing after less than 10 training instances 
(from Ishii’s data). When looking at the NE improvements while testing 

on Holm’s data, a clearly steeper trend line is presented. The absence 
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Fig. 5. Comparison between predicted and experimentally measured (true) [2] physiology: intracellular fluxes, extracellular fluxes (mmol/gDW/h), and growth rate 
(h−1), for D=0.5 h−1 using different models. Details on nomenclature can be found in the metabolic reconstruction model [49]. Models refer to the settings (bold 
4965

lines) in Table A.1.
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Table 1

Error metrics for the RF model with transcriptomics data as input and pFBA on the Holm dataset [3]. The best model is represented in bold and ± indicates the 
standard deviations.

Model Uptakes Deviations MAE RMSE NE R2

RF

Yes
Yes 3.556 ± 1.283 4.652 ± 1.631 0.492 ± 0.14 0.795 ± 0.066

No 3.508 ± 1.336 4.527 ± 1.807 0.469 ± 0.12 0.801 ± 0.065

No
Yes 3.519 ± 1.29 4.595 ± 1.672 0.484 ± 0.135 0.799 ± 0.065

No 3.557 ± 1.293 4.637 ± 1.669 0.489 ± 0.135 0.794 ± 0.066

pFBA Yes N/A 2.157 ± 0.538 2.727 ± 0.558 0.292 ± 0.048 0.912 ± 0.046

Uptakes – glucose uptake rate fixed/constrained or not; Deviations – standard deviation of the omics measurements used or not as input; ‘N/A’ means the option 
is not available; ‘No’ means the option was not included but may be available in other settings.
Fig. 6. Normalized error (NE) evolution with increasing training set size, testing 
on Ishii’s and Holm’s data.

of a stabilizing trend could suggest that the learning process can ben-

efit from additional observations to promote a greater generalization 
ability. These observations further back the claims for limited general-

ization on Holm’s dataset due to the scarcity of training observations.

4. Discussion

This work explores the role of ML methods to predict pheno-

types (metabolic fluxes) from transcriptomics and/or proteomics data. 
The primary objective was to develop a proof-of-concept, rather than 
proposing a new comprehensive methodology to address the task of 
flux predictions. Our results point to the competitive performance of ML 
models compared to pFBA, a state-of-the-art method representative of 
knowledge-driven approaches for flux distribution prediction. Next, we 
delve into the broader interpretation and significance of the obtained 
results, while also addressing limitations and suggesting new avenues 
for future research.

From the set of ML models tested, we observed that RFs generally 
show the best predictions in cross-validation (p-value < 0.01 against 
pFBA). Still, there are specific fluxes for which the predictive perfor-

mance deteriorates, where other models may outperform. This can ei-

ther be due to the low amount of training data hindering the completely 
accurate modeling and/or inherent model limitations. Utilizing an en-

semble of predictors to address situations where one model may yield 
outlying predictions could be a promising next step toward strengthen-

ing the predictive ability of ML-based methods. The argument for a less 
than ideal training data volume is further enforced when considering 
the good results obtained for the predictions at the reference dilution 
rate, D = 0.2 h−1, which is the dilution rate used to record the major-
4966

ity of our dataset (25 out of 29 instances). Although the performance 
deteriorates for higher dilutions, ML models nevertheless remain com-

petitive with pFBA.

However, the same advantage from RFs could not be verified in the 
independent test set, except in predicting growth rate. This may be in-

dicative of a limited generalization performance but is likely due to the 
scarcity of training examples, as illustrated in Fig. 6, combined with the 
added difficulty of Holm’s data being generated under different condi-

tions from the training data in Ishii’s dataset. Therefore, broader testing 
using additional case studies is needed to acquire more comprehensive 
results that may in fact advocate for the use of one specific predictor. In-

deed, the potential of ML models as a promising approach (if such omics 
data are available) is signaled, but it is still unclear how they would 
perform in other scenarios/conditions, such as different organisms and 
experimental conditions, which require more extensive training data to 
enable more reliable testing of their generalization ability.

As highlighted in the introduction section, prior studies have ad-

dressed similar challenges using diverse methodologies, different types 
of inputs, or outputs. In our approach, the core sources of information 
for metabolic flux predictions can either be transcriptomic or proteomic 
data sources. However, our results suggest that the use of mRNA data 
seems generally sufficient to yield good flux predictions. These find-

ings could indicate that for these reactions, the fluxes are controlled 
at the gene expression level [53]. However, other works found that a 
combination of both omics yields slightly better results [54], while oth-

ers point to higher predictive power from proteomics data [55,56]. In 
essence, it seems that the two omics contain relevant information for 
metabolic modeling and it would probably be best to use a combina-

tion of both in order to maximize the amount of available information. 
On the other hand, the inclusion of the standard deviation of the omics 
measurements as a variable of experimental error was also found to 
be detrimental to the predictive capacity. Regarding the applications 
and possible extrapolations, the ML-based modeling of other types of 
cells/organisms should be achievable given that there are efforts in 
creating similar datasets (i.e., with both transcriptomic/proteomic and 
fluxomic data at the same condition/strain).

While our study has shown promising results, the major limitation 
is the amount of data, due to the scarcity of coordinated transcriptomic 
and flux profiles, obtained in the same conditions. Also, the omics data 
used in the learning [2] are limited to the central pathways. Having 
more data would be important to further assess the models’ general-

ization ability. Nevertheless, a sound cross-validation methodology was 
adopted to reduce the impact of these limitations, providing the most 
statistically significant assessment possible, while a small external vali-

dation is also presented.

It is also important to delve into the intricacies of model design 
and constraints, as they play a pivotal role in shaping our findings. 
We acknowledge the comparison made in our work between ‘structure-

naive’ models optimized on experimental data and pFBA. pFBA derives 
its predictive power from the underlying metabolic stoichiometry and 
imposed flux constraints rather than direct optimization from exper-

imental data. The lack of generalization observed with some of the 
machine learning models may extend beyond mere data volume; it is 

intrinsically tied to the complex landscape of predictive model con-
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figurations explored during learning. These models tend to traverse a 
vast space of plausible configurations, which may not necessarily align 
with out-of-distribution data, as it is evident in our validation with the 
Holm’s dataset. Therefore, it is imperative to consider not only the data-

driven aspects of our study but also the underpinning model design 
choices and constraints as prior knowledge to guide the learning pro-

cess. This is precisely the gap that hybrid modeling methodologies (i.e., 
combined use of CBM and ML) [17–22] help to fill. However, the full 
departure from GEMs imposes the aforementioned costs that can only 
be truly mitigated via more extensive learning processes that can ulti-

mately be carried under the foundations presented in our work.

In the future, it would be relevant to extend this work with more 
extensive datasets for the same organism. Learning models with more 
data can improve the predictions and it enables better validation of the 
approach, which is vital for ensuring generalization. Future work may 
also complement this study by exploring alternative supervised regres-

sion models, using different hyperparameterizations, exploring complex 
model ensembles, or extending the current principles with constraint 
programming [36].

GEMs are so well established today that the cost and labor of their 
use have become marginal, but there are still efforts to create and 
improve these models, with successive updates promising more com-

plete and accurate metabolic modeling. However, classical GEMs have 
met their limits with new contributions turning to omics-integrating 
variants [11–13,15,16], hybrid methods [17–22], or pure ML-models 
[26,27,33–36]. We now witness the first efforts to introduce ML-based 
methods for metabolic modeling which can achieve similar results, or 
even surpass the performance of pFBA. Furthermore, omics data pro-

files are being generated faster and more often than ever before. So one 
can only expect that ML-based methodologies are employed more fre-

quently and with increasingly improved results. This is contrasting to 
condition-specific GEMs, where the large dimensionality of such data 
is difficult to handle, need gene-protein-reaction mapping and the se-

lecting of arbitrary thresholds in the gene expression levels can be a 
problem.

To conclude, the findings presented here motivate the use of ML 
models for future work in this area, specially to less studied pheno-

types/microorganisms. From a temporal perspective, recent contribu-

tions are moving towards the fusion of information from pre-acquired 
metabolic networks and ML [20–22,57]. However, pure omics-driven 
modeling approaches show promise, given the proof of principle pre-

sented here. Furthermore, to the best of our knowledge, this is the only 
study aiming to link transcriptomics/proteomics to metabolic fluxes via 
supervised ML methods, suggesting that it can be used as a comple-

mentary approach (e.g., offer flux constraints/features to reduce the 
solution space and/or provide an overview of metabolic phenotypes) to 
the traditional FBA. Currently, this research gap is yet to be fully ad-

dressed and there is still room for further contributions, particularly as 
more omics data will become available.
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Appendix A

Table A.1

Detailed metrics for all models and scenarios in the Ishii dataset with different inputs. Values in bold represent the best result for each model, ± indicates the 
standard deviations, and asterisk (*) indicates the best performance overall.

Model Omics Uptakes Deviations MAE RMSE NE R2 p-value

DT

P

Yes
Yes 0.782 ± 1.142 1.123 ± 1.561 0.438 ± 0.645 0.946 ± 0.058 1.40e-03

No 1.065 ± 1.518 1.504 ± 2.074 0.571 ± 0.851 0.934 ± 0.066 1.57e-02

No
Yes 0.982 ± 1.354 1.412 ± 1.867 0.581 ± 0.918 0.952 ± 0.051 4.11e-03

No 0.741 ± 0.842 1.071 ± 1.203 0.449 ± 0.727 0.944 ± 0.06 4.44e-03

T

Yes
Yes 0.706 ± 0.941 1.013 ± 1.286 0.338 ± 0.286 0.951 ± 0.048 8.59e-03

No 0.642 ± 0.905 0.909 ± 1.229 0.306 ± 0.268 0.951 ± 0.059 5.16e-03

No
Yes 0.793 ± 0.912 1.136 ± 1.237 0.405 ± 0.312 0.957 ± 0.034 5.57e-03

No 0.729 ± 0.728 1.052 ± 0.999 0.407 ± 0.362 0.941 ± 0.063 6.69e-04

T+P

Yes
Yes 0.746 ± 0.936 1.076 ± 1.282 0.381 ± 0.364 0.947 ± 0.053 6.45e-03

No 0.697 ± 0.917 0.992 ± 1.253 0.333 ± 0.271 0.944 ± 0.061 5.99e-03

No
Yes 0.765 ± 0.937 1.086 ± 1.275 0.381 ± 0.351 0.952 ± 0.061 1.29e-02

No 0.667 ± 0.692 0.963 ± 0.944 0.361 ± 0.272 0.952 ± 0.04 4.44e-03

LR

P

Yes
Yes 0.69 ± 0.558 1.007 ± 0.753 0.415 ± 0.375 0.903 ± 0.158 1.21e-02

No 0.686 ± 0.526 0.953 ± 0.688 0.392 ± 0.325 0.908 ± 0.121 7.46e-03

No
Yes 1.017 ± 0.898 1.442 ± 1.234 0.592 ± 0.587 0.872 ± 0.207 4.31e-02

No 1.071 ± 0.978 1.483 ± 1.323 0.603 ± 0.587 0.853 ± 0.235 4.55e-02

T

Yes
Yes 0.691 ± 0.867 0.989 ± 1.198 0.401 ± 0.51 0.936 ± 0.181 1.29e-02

No 0.653 ± 0.763 0.9 ± 1.038 0.368 ± 0.454 0.913 ± 0.183 5.57e-03

No
Yes 0.723 ± 0.901 1.034 ± 1.246 0.419 ± 0.529 0.936 ± 0.18 1.29e-02

No 0.699 ± 0.899 0.961 ± 1.194 0.39 ± 0.508 0.91 ± 0.188 5.57e-03

T+P

Yes
Yes 0.689 ± 0.86 0.987 ± 1.189 0.401 ± 0.507 0.936 ± 0.181 1.29e-02

No 0.652 ± 0.763 0.9 ± 1.038 0.368 ± 0.454 0.913 ± 0.183 5.57e-03

No
Yes 0.723 ± 0.904 1.034 ± 1.248 0.419 ± 0.53 0.936 ± 0.18 1.29e-02

No 0.699 ± 0.897 0.961 ± 1.193 0.39 ± 0.507 0.91 ± 0.188 5.57e-03

NN

P

Yes
Yes 0.653 ± 0.944 0.937 ± 1.313 0.338 ± 0.335 0.966 ± 0.037 4.13e-05

No 0.653 ± 0.944 0.937 ± 1.314 0.339 ± 0.342 0.966 ± 0.037 4.13e-05

No
Yes 0.684 ± 0.931 0.969 ± 1.294 0.361 ± 0.357 0.969 ± 0.037 4.13e-05

No 0.684 ± 0.93 0.969 ± 1.293 0.361 ± 0.357 0.969 ± 0.037 4.13e-05

T

Yes
Yes 0.656 ± 0.946 0.94 ± 1.317 0.341 ± 0.347 0.967 ± 0.036 4.13e-05

No 0.67 ± 0.938 0.968 ± 1.303 0.353 ± 0.346 0.964 ± 0.036 4.13e-05

No
Yes 0.705 ± 0.931 1.0 ± 1.294 0.375 ± 0.361 0.968 ± 0.036 4.13e-05

No 0.684 ± 0.93 0.969 ± 1.293 0.361 ± 0.357 0.969 ± 0.037 4.13e-05

T+P

Yes
Yes 0.656 ± 0.945 0.941 ± 1.314 0.34 ± 0.337 0.967 ± 0.036 4.13e-05

No 0.652 ± 0.945 0.936 ± 1.314 0.338 ± 0.338 0.967 ± 0.036 4.13e-05

No
Yes 0.684 ± 0.931 0.969 ± 1.294 0.361 ± 0.357 0.969 ± 0.037 4.13e-05

No 0.65 ± 0.798 0.922 ± 1.111 0.354 ± 0.355 0.967 ± 0.038 3.63e-05

RF

P

Yes
Yes 0.627 ± 0.822 0.893 ± 1.134 0.355 ± 0.408 0.968 ± 0.039 1.03e-05

No 0.571 ± 0.826 0.816 ± 1.138 0.324 ± 0.428 0.971 ± 0.038 1.84e-05

No
Yes 0.733 ± 0.941 1.043 ± 1.3 0.412 ± 0.464 0.97 ± 0.037 2.43e-05

No 0.672 ± 0.909 0.951 ± 1.255 0.379 ± 0.482 0.97 ± 0.038 1.38e-05

T

Yes
Yes 0.542 ± 0.823 0.777 ± 1.132 0.282 ± 0.295 0.97 ± 0.038 1.03e-05

No 0.502 ± 0.777* 0.716 ± 1.067* 0.261 ± 0.299* 0.969 ± 0.038* 7.58e-06*

No
Yes 0.592 ± 0.814 0.841 ± 1.118 0.316 ± 0.333 0.969 ± 0.037 2.11e-05

No 0.53 ± 0.803 0.756 ± 1.106 0.283 ± 0.36 0.97 ± 0.036 1.19e-05

T+P

Yes
Yes 0.542 ± 0.787 0.77 ± 1.081 0.286 ± 0.311 0.97 ± 0.037 8.84e-06

No 0.507 ± 0.804 0.729 ± 1.105 0.271 ± 0.347 0.97 ± 0.037 7.58e-06

No
Yes 0.584 ± 0.846 0.829 ± 1.165 0.312 ± 0.362 0.97 ± 0.038 8.84e-06

No 0.531 ± 0.804 0.758 ± 1.104 0.278 ± 0.316 0.969 ± 0.036 1.03e-05

(continued on next page)
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Table A.1 (continued)

Model Omics Uptakes Deviations MAE RMSE NE R2 p-value

SVM

P

Yes
Yes 0.589 ± 0.941 0.854 ± 1.304 0.318 ± 0.43 0.971 ± 0.037 3.63e-05

No 0.567 ± 0.944 0.822 ± 1.307 0.305 ± 0.421 0.971 ± 0.038 1.84e-05

No
Yes 0.6 ± 0.948 0.87 ± 1.315 0.327 ± 0.465 0.971 ± 0.037 6.84e-05

No 0.586 ± 0.94 0.852 ± 1.303 0.322 ± 0.466 0.971 ± 0.038 4.13e-05

T

Yes
Yes 0.613 ± 0.934 0.883 ± 1.293 0.321 ± 0.352 0.971 ± 0.037 2.43e-05

No 0.597 ± 0.934 0.861 ± 1.296 0.315 ± 0.378 0.969 ± 0.037 2.11e-05

No
Yes 0.614 ± 0.935 0.885 ± 1.294 0.323 ± 0.355 0.971 ± 0.037 3.63e-05

No 0.602 ± 0.937 0.869 ± 1.299 0.318 ± 0.384 0.97 ± 0.037 2.43e-05

T+P

Yes
Yes 0.613 ± 0.934 0.883 ± 1.293 0.321 ± 0.352 0.971 ± 0.037 2.43e-05

No 0.597 ± 0.934 0.861 ± 1.296 0.315 ± 0.378 0.969 ± 0.037 2.11e-05

No
Yes 0.614 ± 0.935 0.885 ± 1.294 0.323 ± 0.355 0.971 ± 0.037 3.63e-05

No 0.602 ± 0.937 0.869 ± 1.299 0.318 ± 0.384 0.97 ± 0.037 2.43e-05

XGB

P

Yes
Yes 1.229 ± 1.558 1.823 ± 2.238 0.724 ± 0.911 0.906 ± 0.09 1.74e-04

No 1.229 ± 1.558 1.825 ± 2.245 0.725 ± 0.912 0.903 ± 0.089 8.88e-04

No
Yes 1.33 ± 1.601 1.96 ± 2.295 0.781 ± 0.935 0.905 ± 0.089 4.08e-04

No 1.381 ± 1.576 2.034 ± 2.255 0.818 ± 0.941 0.899 ± 0.088 2.54e-03

T

Yes
Yes 0.575 ± 0.703 0.882 ± 0.972 0.316 ± 0.26 0.928 ± 0.083 6.05e-05

No 0.559 ± 0.693 0.866 ± 0.96 0.314 ± 0.271 0.93 ± 0.074 2.17e-04

No
Yes 0.664 ± 0.761 0.998 ± 1.057 0.366 ± 0.318 0.924 ± 0.089 8.09e-04

No 0.647 ± 0.721 0.977 ± 1.008 0.358 ± 0.311 0.925 ± 0.084 8.09e-04

T+P

Yes
Yes 1.006 ± 1.193 1.647 ± 1.898 0.643 ± 0.745 0.908 ± 0.085 6.84e-05

No 0.997 ± 1.201 1.635 ± 1.903 0.642 ± 0.748 0.91 ± 0.082 4.99e-04

No
Yes 1.095 ± 1.174 1.749 ± 1.871 0.686 ± 0.739 0.902 ± 0.09 1.67e-03

No 1.065 ± 1.172 1.719 ± 1.872 0.671 ± 0.733 0.902 ± 0.095 1.82e-03

pFBA N/A Yes N/A 0.692 ± 0.733 1.058 ± 1.029 0.381 ± 0.185 0.823 ± 0.156 N/A

Omics – P = proteomics, T = transcriptomics, T+P = combination of transcriptomics and proteomics; Uptakes – glucose and O2 uptake rates fixed/constrained 
or not; Deviations – standard deviation of the omics measurements used or not as input; ‘N/A’ means the option is not available; ‘No’ means the option was not 
included but may be available in other settings.
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Fig. A.1. Average mean absolute error distributions of RF and pFBA for all reactions in the E.coli Ishii’s dataset across different dilution rates and gene knockouts.
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Fig. A.2. Average root mean squared error distributions of RF and pFBA for all reactions in the E.coli Ishii’s dataset across different dilution rates and gene knockouts.

Fig. A.3. Average R2 metric distributions of RF and pFBA for all reactions in the E.coli Ishii’s dataset across different dilution rates and gene knockouts.
4970
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Fig. A.4. Comparison between predicted and experimentally measured (true) [2] physiology: intracellular fluxes, extracellular fluxes (mmol/gDW/h), and growth 
rate (h−1), for D=0.7 h−1 using different models. Details on nomenclature can be found in the metabolic reconstruction model [49]. Models refer to the scenarios 
4971

(bold lines) in Table A.1.
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Fig. A.5. Comparison between predicted and experimentally measured (true) [2] physiology: intracellular fluxes, extracellular fluxes (mmol/gDW/h), and growth 
rate (h−1), for D=0.2 h−1 using different models. Details on nomenclature can be found in the metabolic reconstruction model [49]. Models refer to the scenarios 
4972

(bold lines) in Table A.1.
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