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Cytochrome P450 3A4 (CYP3A4) is an important member of the CYP family and responsible for

metabolizing a broad range of drugs. Potential drug–drug interactions (DDIs) caused by CYP3A4

inhibitors could lead to increasing risk of side-effects/toxicity or decreasing effectiveness. The evaluation

of CYP3A4 inhibitory activity is time-consuming, labor-intensive, and costly, and it is necessary to

establish virtual screening models for predicting CYP3A4 inhibitors. In this study, 4 classifier algorithms,

including support vector machine (SVM), naive Bayesian (NB), recursive partitioning (RP), and K-nearest

neighbor (KNN), were applied to discriminate CYP3A4 inhibitors from the non-inhibitors. Correlation

analysis and stepwise linear regression methods were used for descriptor selection and optimization. The

performance of classifiers was measured by 5-fold cross-validation, Y-scrambling and test set validation.

Finally, the optimal NB model with Matthews correlation coefficients of 0.894 for the test set was

developed to screen FDA-approved drugs and natural products database. As a result, 90 compounds

from FDA-approved drug databases were predicted as inhibitors, and 46% of them were identified as

known CYP3A4 inhibitors. 6 natural products were selected for further bioactivity assay and molecular

docking. 2 of them with good docking score also exerted significant CYP3A4 inhibitory activities with

IC50 values of 0.052 and 1.120 mM, respectively. This study proved the feasibility of a new method for

predicting CYP3A4 inhibitory activity and preventing the occurrence of DDIs at early stage in drug

development.
1. Introduction

The evaluation of drug–drug interactions (DDI) is one of the
important problems during drug research and development.1

Since most drugs are metabolized by Cytochrome P450
(CYP450), CYP450-mediated interactions between drugs are the
major cause of metabolic DDIs. CYP3A4 is an important
subfamily of CYP450, mainly distributed in hepatocytes, liver
bile duct epithelial cells and jejunum columnar epithelial cells.
It is the most abundant hepatic microsomal enzyme in the liver,
and is involved in about 50% of drug metabolism.2,3 Some drugs
which can inhibit the activity of CYP3A4 may lead to serious
problems in clinical practice.1,4 Therefore, CYP3A4 plays an
important role in assessing DDIs and avoiding adverse reac-
tions. The early screening of CYP450 inhibitors has important
theoretical and practical value for the development of innova-
tive drugs.
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Because the CYP3A4 inhibitory activity evaluation process is
time-consuming, labor-intensive and costly, it cannot achieve
large-scale screening. Therefore, it is very necessary to establish
a screening model for predicting CYP3A4 inhibitors.5 Several
crystal structures of CYP3A4 and inhibitors have been identi-
ed.6–8 Unlike other CYP enzymes, CYP3A4 interacts with
ligands in a complex manner. It has been found that there are
two “ligand binding” subunits and one “effect binding” region
in the active site of CYP3A4.9 Therefore, there may be two or
more ligands that can bind to and interact with the active sites
of CYP3A4 at the same time.10 The unique features of CYP3A4
make it more difficult to accurately predict CYP3A4-mediated
DDI only using molecular docking.

The quantitative structure–activity relationship (QSAR)
model uses various statistical methods to establish the corre-
lation between the chemical structure or properties of
a compound and its biological activity. Among these methods,
partial least square (PLS) is the main method to deal with linear
data analysis in QSAR. However, sometimes the relationship
between the physical and chemical properties of a compound
and its biological activity may be too complex to be described by
a linear function. In order to solve such problems, some
nonlinear methods are applied to QSAR research. In recent
years, neural network methods including radial basis function
RSC Adv., 2018, 8, 34783–34792 | 34783
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Fig. 1 Workflow for classification models building, validation, and virtual screening as applied to CYP3A4 inhibitors and non-inhibitors data sets.
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neural networks, backpropagation neural networks and Koho-
nen self-organizing feature map have attracted more atten-
tion.11,12 However, neural network methods have unavoidable
shortcomings, such as overtting problems and high uncer-
tainty in the model.

Compared with traditional neural networks, Support Vector
Machine (SVM) has the advantages of good stability, simple
geometric interpretation, kernel functions and slack variables
for nonlinear decision making.13,14 Machine learning method
has the characteristics of high efficiency and high accuracy in
computer-aided drug design application. In recent years, SVM
has been successfully applied to CYP450 enzyme studies,
including the identication of substrates from non-substrates
and the identication of inhibitors from non-inhibitors of
CYP3A4,15–17 as well as substrate classication of other CYP450
enzymes such as 2D6 or 2C9.18–20 Kriegl et al. used the SVM
method to distinguish inhibitors and drug-like molecules and
to predict the inhibitory activity of the compounds. Their work
shows that the SVM method can be a powerful tool for ltering
compounds, predicting potential inhibitory effects on CYP3A4,
and roughly estimating their inhibitory capacity. However, the
prediction models developed by them include too many
descriptors, and the model prediction accuracy is relatively low.
In addition to SVM and neural network algorithms, common
classication algorithms for machine learning include naive
Bayesian (NB),21,22 recursive partitioning (RP),23,24 and K-nearest
neighbor method (KNN),25,26 which are rarely reported in the
application of CYP3A4 inhibitor prediction model. Therefore, in
order to improve the reliability of the model and reduce the
overtting of themodel, we should optimize the descriptors and
use a variety of machine learning models for analysis and
comparison to enhance the prediction accuracy.

In this study, we constructed virtual screening models of
CYP3A4 inhibitors using a variety of machine learningmethods.
Firstly, we collected a large number of CYP3A4 inhibitors and
non-inhibitors, which were divided into training set and test
set. The descriptors were calculated for each compound and
further were optimized through correlation analysis and
34784 | RSC Adv., 2018, 8, 34783–34792
stepwise linear regression methods. The models were con-
structed by SVM, NB, RP, and KNN approaches and estimated
by cross-validation, Y-scrambling and test set validation
methods. Next, the best prediction model was nally selected
for the virtual screening of FDA-approved drug database and
natural product database. Finally, the prediction results were
validated in vitro CYP3A4 inhibition assay and molecular
docking was used to analyze the binding modes for the
compounds with high activities. The workow of virtually
screening CYP3A4 inhibitors is shown in Fig. 1.
2. Materials and methods
2.1 Data assembly and preparation

The CYP3A4 inhibitors with the values of IC50 less than 10 mM
were downloaded from the BindingDB database.27 Aer elimi-
nating the duplicate structures, we obtained 2803 CYP3A4
inhibitors. The decoy dataset including 1404 compounds was
generated from “mubd-decoymaker” protocol. Mubd-
decoymaker was originally developed for building unbiased
benchmarking sets for ligand-based virtual screening (LBVS).28

We also collected 1306 CYP3A4 non-inhibitors from Bind-
ingDB and ChEMBL29 database. Totally, 2830 CYP3A4 inhibitors
and 2710 non-inhibitors/decoys were divided into training set
and test set randomly. The training set included 2102 CYP3A4
inhibitors and 2033 non-inhibitors. There were 701 CYP3A4
inhibitors and 677 decoys in test set. Then, inorganic salt atoms
of compounds were deleted, and subsequently the compounds
were added hydrogen atoms, deprotonated strong acids,
protonated strong bases, built valid three-dimensional confor-
mation, and minimized of energy by Molecular Operating
Environment (MOE) 2010.10 (Chemical Computing Group Inc.:
Montreal, Quebec, Canada). All CYP3A4 inhibitors and decoys
were marked with “1” and “0”, respectively.
2.2 Molecular descriptor calculation and selection

In our study, Discovery Studio (DS) 2016 package (Accelrys Inc.:
San Diego, CA) was used to compute molecular descriptor.
This journal is © The Royal Society of Chemistry 2018
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There were 256 2D descriptors calculated by the DS 2016
including the fat distribution coefficients A log P, states keys,
and molecular property descriptors, number of molecular
properties, surface area and volume, and topology descriptors.
Extended-connectivity ngerprint (ECFP) was also calculated
with this soware. Taking into account that molecular structure
fragments should not be too large and not too small, we used
a molecular ngerprint descriptor with a diameter of 6.

Pearson correlation analysis30 can be used to eliminate low-
correlation and high-auto-correlation descriptors by calcu-
lating the correlation coefficient between activity and descrip-
tors. The descriptor whose correlation coefficient with the
activity value was lower than 0.1 was deleted, and if the coeffi-
cient between the two descriptors was greater than 0.9, then
descriptor with a lower correlation coefficient would also be
excluded, and descriptors with a higher correlation coefficient
would be retained; the last remaining descriptors were further
optimized using a stepwise regression method, which consid-
ering the size of the variable, signicance, or contribution. The
initial regression equation was created by the rst descriptor.
Then, other descriptors were imported to the equation one by
one. At the same time, every new regression equation would be
subjected to a signicance test for evaluating the addition of
a new descriptor. For example, the new descriptor would be
removed, if the regression equation was not “statistically
signicant.” In addition, the descriptors were also deleted when
they did not conform to “statistically signicant” in the equa-
tion. The process would be completed if there were no
descriptors imported or deleted.31 Finally, we selected 20
molecular descriptors, including A log P, ES_Count_aasC,
ES_Count_dS, ES_Count_sOH, ES_Count_ssNH2, ES_Count_
ssS, ES_Count_sssN, ES_Count_sssNH, ES_Sum_aaN, ES_Su-
m_aaS, ES_Sum_aasC, ES_Sum_dNH, ES_Sum_dO,
ES_Sum_sCl, ES_Sum_sF, Num_AromaticRings, CHI_V_3_C,
Kappa_2_AM, SC_3_CH and Wiener.
2.3 Machine learning algorithm

Based on the molecular descriptors, we utilized naive Bayesian
(NB), recursive partitioning (RP), K-nearest neighbor (KNN) and
support vector machine (SVM) classication algorithms to
construct CYP3A4 inhibitor and non-inhibitor classication
models. NB and RP were performed using DS 2016, and KNN
and SVM were performed in Orange Canvas 3.13.

2.3.1 Naive Bayesian (NB). Bayesian categorization method
is widely used as probabilistic classication model.32 Bayesian
inference derives the posterior probability as the result of the
two likelihoods, the prior probability, and the “likelihood
function” derived from the probability model of observed data.
Bayesian algorithm calculates the posterior probability directly
based on the kernel function of the equation (P(A|B) ¼ P(B|A)
P(A)/P(B)). P(A|B) represents that the probability of A assuming B
is true, which is the posterior probability of the model; P(A) is
called the prior probability and refers to the probability in the
hypothesis space, P(B|A) is the likelihood of the model.31

Bayesian statistics can use information from the training set of
inhibitors and non-inhibitors and remove features that are
This journal is © The Royal Society of Chemistry 2018
considered unimportant from the model. Therefore, Bayesian
model has a relatively stable classication probability, is less
sensitive to missing data, and has the smallest error rate
compared to other classication methods. In this study, NB
classiers were carried out by DS 2016. The parameters
remained their default values.

2.3.2 Recursive partitioning (RP). The RP model, also
known as the decision tree model, classies samples according
to certain hierarchical rules by simulating human learning and
classication capabilities. The results of recursively segmenting
the model can be displayed visually through the “decision tree”
graph. Compared with other machine learning methods, the
decision tree is easy to understand and implement and can have
a greater impact on the prediction accuracy of shorter time
types. In general, the greater the decision tree depth is, themore
accurate the model would be. But it may also result in over-
tting. Therefore, choosing the appropriate decision tree depth
is a key issue for constructing a decision tree model.33 In RP
model, to avoid excessive partitioning, the minimum number of
samples per node was set as 10 and the maximum tree depth
was used as 20.

2.3.3 K-nearest neighbor (KNN). In data segmentation
clustering methods, the most widely used and well-known
method is the K-nearest neighbor method, also known as the
“Forgy algorithm”. The main goal of the KNN method is to
process large amounts of high-dimensional data to nd repre-
sentative data. These representative data are also called cluster
centers.34 These cluster centers can be used to perform data
classication and compress large amounts of data. In this
study, the nearness is measured by Euclidean distance metrics
and the number of neighbors (k) was set to 5.

2.3.4 Support vector machine (SVM). SVM is a supervised
machine learning method. SVM is a family of edge-based clas-
siers and is considered to be a very effective method for
dealing with prediction, classication, and regression prob-
lems. The SVM nds the optimal hyperplane that maximizes the
distance between the hyperplane and the nearest sample from
each of the two categories. The basic idea of SVM is to construct
a function set as a sequence of function subsets, so that each
subset is arranged according to the size of the Vapnik Chervo-
nenkis (VC) dimension, and then nd the minimum experience
risk in each subset, and comprehensively consider the empir-
ical risk between the subsets and the scope of condence, which
achieves the minimum actual risk and avoids the “overtting”
of learning methods such as neural networks.35
2.4 Model performance

The models built by SVM, NB, RP, and KNN methods were
estimated by 5-fold cross-validation, Y-scrambling and test set
validation. The predictive power of the models can be measured
by some parameters, including true positives (TP), true nega-
tives (TN), false positives (FP), false negatives (FN), sensitivity
(SE), specicity (SP), prediction accuracy of inhibitors (Q+),
prediction accuracy of inhibitors (Q�), matthews correlation
coefficient (MCC).31 The higher the MCC value means the better
the predictive power. The MCC value is between �1 and 1. The
RSC Adv., 2018, 8, 34783–34792 | 34785
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meanings and calculation formulas of each parameter are as
follows:

SE ¼ TP

TPþ FN

SP ¼ TN

TNþ FP

Qþ ¼ TP

TPþ FP

Q� ¼ TN

TNþ FN

MCC ¼ TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp
2.5 Molecular docking

Molecular docking conducted by CDOCKER protocol of DS 2016
was investigated to further study the binding mode of CYP3A4
with natural products predicted by NB classiers. The crystal
structure of CYP3A4 was downloaded from the Protein Data
Bank (PDB ID: 4NY4). The structure of CYP3A4 rstly was
prepared through removing water, adding hydrogen, and we
also utilized clean protein module to address some problems,
such as nonstandard naming, protein residue connectivity,
missing side-chain or backbone atoms, and so on. The natural
products were also prepared by adding hydrogen, conversing
into 3D structures, pH based ionization and charge neutrali-
zation. The original ligand was used to dene the active pocket
of CYP3A4. Then, re-docking was performed to calculate the
root-mean-square deviation (RMSD) values between the dock-
ing and initial poses, which proved that the reliability of the
docking model.
Fig. 2 Diversity distribution of the training set and test set. Chemical
space was defined by molecular weight (MW) as X-axis, and A log P as
Y-axis. In the picture, red stands for training set compounds, and blue
stands for the test set compounds.
2.6 CYP3A4 inhibition assay

CYP3A4-Glo™ Screening System (V9920) (Promega Corpora-
tion, Madison, WI, USA) provides a complete set of reagents for
performing luminescent cytochrome CYP3A4 assay. The system
included a membrane preparation containing recombinant
human CYP3A4 enzyme, negative control membranes,
Luciferin-IPA (the most sensitive and selective substrate for all
CYP3A4 applications), NADPH regeneration system (1.3 mM
NADP+, 3.3 mM glucose 6-phosphate, 3.3 mMMgCl2, and 0.4 U
mL�1 glucose-6-phosphate dehydrogenase), reaction buffer,
luciferin detection reagent and luciferin-free water. The
membranes were prepared from baculovirus-infected insect
cells and contain human CYP3A4 enzyme and P450 reductase
(and cytochrome b5 for 3A4). The negative control membranes
were devoid of CYP activity. The assays were ideal for testing the
effects of chemical entities on CYP3A4 enzyme activities.
34786 | RSC Adv., 2018, 8, 34783–34792
Luciferin detection reagent was prepared for luciferin-IPA
reactions with reconstitution buffer with esterase. Test
compounds and control inhibitor ketoconazole were added to
the corresponding wells and luciferin-free water or vehicle was
added to untreated and minus-P450 control wells. Reactions
were performed in opaque white 96-well plates that were incu-
bated in 37 �C for 30 min. The reaction was initiated by adding
25 mL NADPH regeneration system. Reactions were stopped,
and luminescence was initiated by adding 50 mL of Fluorescein
Assay Reagent. Aer 20 min at room temperature, luminescence
was read as relative light units (RLU) on Spectra Max M5
(Molecular Devices, Sunnyvale, CA, USA) was applied to read the
luminescence.
3. Results and discussion
3.1 Chemical space analysis

The prediction performance of classication model constructed
by machine learning largely depends on the chemical space
diversity of molecules in training set and test set. Generally, due
to the narrow chemical space covered by small samples, clas-
sication model leads to lots of limitations in the application of
these models. In our study, we investigated the chemical space
distribution characteristics by calculating the two common
physicochemical properties of training set and test set, molec-
ular weight (MW), and lipid-water partition coefficient (A log P),
respectively. The results are shown in Fig. 2. MW values of
training set and test set ranged from 30 to 1500 and their A log P
values ranged from �15 to 15. Therefore, it suggested that
chemical space distributions were dispersive for all
compounds, and most of the compounds in test set were well
within the chemical space of training set.
3.2 Performance of machine learning models

In this study, we used molecular descriptors calculated by DS
2016 soware, and SVM, KNN, RP and NB classication algo-
rithms to construct CYP3A4 inhibitor and non-inhibitor clas-
sication models. The performances of the four models were
This journal is © The Royal Society of Chemistry 2018



Table 1 Performance of classification models for training set and test seta

Validation method Model SE SP Q+ Q� MCC

Training set 5-fold cross-validation SVM 0.987 0.986 0.951 0.986 0.967
KNN 0.993 0.993 0.986 0.993 0.998
RP 0.874 0.875 0.919 0.875 0.899
NB 0.813 0.793 0.770 0.793 0.869

Test validation SVM 1.000 1.000 0.006 1.000 0.502
KNN 1.000 1.000 0.004 1.000 0.502
RP 0.796 0.801 0.844 0.801 0.886
NB 0.852 0.809 0.211 0.809 0.842

a SE: Sensitivity, SP: specicity, Q+: prediction accuracy of inhibitors, Q�: prediction accuracy of inhibitors, MCC: matthews correlation coefficient.
SVM: support vector machine, NB: naive Bayesian, RP: recursive partitioning, KNN: K-nearest neighbor.

Table 2 Performance of optimized NB and RP models with ECFP-6 for training set and test set

Validation method
Model with DS
2D descriptor + ECFP-6 SE SP Q+ Q� MCC

Training set 5-fold cross-validation NB 0.948 0.946 0.960 0.955 0.946
RP 0.875 0.877 0.907 0.916 0.877

Test validation NB 0.902 0.894 0.954 0.886 0.894
RP 0.827 0.832 0.917 0.880 0.832
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rstly estimated by 5-fold cross validation. In cross validation,
the training set was split into 5 groups. Each group was le out
in turn; a model was built with the remaining data, and the
model was used to make predictions for the le-out data. Then,
the models were applied to predict the test set containing 1378
compounds (701 inhibitors versus 677 inactive compounds).
From the results of 5-fold cross validation (Table 1), we found
that sensitivity, specicity, predictive accuracy and MCC of SVM
and KNN methods were better than NB and RP models.
However, when the models were validated by test set, the
prediction accuracy of SVM and KNN inhibitors was very low,
0.006 and 0.004, respectively, indicating that their ability to
predict true positives was poor, which was unfavorable for
prediction of CYP3A4 inhibitors. Thus, the performance of NB
and RP models was better in test set validation, but the
prediction accuracy of NB model inhibitors is also not satis-
factory, only 0.211, which suggested that 2D descriptors could
describe the basic properties of molecules, but they cannot
extract the important substructure fragments or dominant
molecular fragment features of CYP3A4 inhibitors.

Therefore, on the basis of the original DS_2D descriptor, we
introduced ECFP-6 for rebuilding the prediction models using
NB and RP classication algorithms. The results of the
modeling were shown in Table 2. Aer the addition of the
molecular ngerprint descriptors, the prediction capabilities of
NB and RP models were signicantly improved. The accuracy of
test set's inhibitors and MCC values were higher than those of
originally built models based on DS_2D descriptors. In partic-
ular, prediction accuracy of NB model introduced ECFP-6
improved signicantly (from 0.211 to 0.954). MCC values of
training set and test set were 0.946 and 0.894, respectively,
which were superior to those of RP model. In order to eliminate
This journal is © The Royal Society of Chemistry 2018
the contingency of the model's forecasting ability, we also
utilized the Y-scrambling method to validate the NB model.
Aer disturbing 30 times, the average MCC value was 0.503,
indicating that the accidentality of NB's prediction ability was
very low. Therefore, we used the NB model with DS 2D
descriptor and ECFP-6 for further study.

3.3 Good and bad fragments given by naive Bayesian
classier

The advantage of Bayesian classication method based on
molecular ngerprint descriptors such as ECFP_6 is that it can
identify dominant structural fragments for different taxonomic
attributes (CYP3A4 inhibitors or non-inhibitors), which is
particularly important for identication of CYP3A4 inhibitors.
In Fig. 3, Bayesian scoring based on the NB model summarized
the dominant fragments of 10 CYP3A4 inhibitors and 10 non-
inhibitor dominant fragments. By analyzing the dominant
fragments of CYP3A4 inhibitors, it was not difficult to nd that
most of non-inhibitor fragments contained positively charged
nitrogen atom. These compounds were not conducive to
inhibiting CYP3A4 enzyme activity. Most of inhibitor fragments
contained saturated nitrogen heterocyclic ring, and the
nitrogen atom was not protonated. For example, uconazole(2-
(2,4-diuorophenyl)-1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol) is
an antifungal agent that is used to treat oropharyngeal candi-
diasis and cryptococcal meningitis in AIDS and is also a typical
CYP3A4 inhibitor. Fluconazole contains 6 saturated nitrogen
atoms. In addition, the dominant fragment also included
phenolic hydroxyl groups, which contributes to inhibiting
CYP3A4 enzyme activity. It was also reported that phenolic
hydroxyl groups probably play an important role in the CYP3A4
inhibition for some natural products.36
RSC Adv., 2018, 8, 34783–34792 | 34787



Fig. 3 Examples of the top 10 good (top) and bad (bottom) fragments estimated by NB model. The Bayesian score (score) is given for each
fragment.

RSC Advances Paper
3.4 Virtual screening of CYP3A4 inhibitors

Based on NB model with DS 2D descriptor and ECFP-6, we
screened in-house natural product database (including 13 144
compounds) and FDA-approved drug database (including 1046
drugs). Firstly, we excluded drug and natural products in the
training set, and then separately calculated DS 2D descriptor
and ECFP_6 for each compound. Next, NB model was applied to
predict the probability of each compound as CYP3A4 inhibitor.
According to classication of NB model, 90 drugs were pre-
dicted to be CYP3A4 inhibitors. As the result of Fig. 4, drugs
predicted as CYP3A4 inhibitors mainly involved anticancer
drugs, neuro/psychotic drugs, antifungal drugs, antiviral drugs,
diabetes/obesity-related drugs, dermatological drugs, antihy-
pertensive drugs, lipid regulating drugs, hormone agents and
immunomodulators. According to investigation on Drugbank
database,37 46% of the predicted 90 drugs had been reported to
have CYP3A4 inhibitory activity, while 23% were substrates,
27% had not been reported for inhibitory activity, and 4% were
inducers. It suggested that established NB prediction model
could predict CYP3A4 inhibitors with a good positive rate and
could improve the efficiency of high-throughput screening, but
the model needs to be further improved for the differentiation
of substrates and inhibitors, which might require the structural
information of substrates to establish deep learning methods.

Similarly, 116 natural products were predicted as potential
CYP3A4 inhibitors by NB model. The EstPGood score indicates
34788 | RSC Adv., 2018, 8, 34783–34792
the positive probability of the compound as a CYP3A4 inhibitor.
Based on the score ranking and the dominant fragment, we
nally selected six compounds that have not been reported
CYP3A4 inhibitory activity for subsequent screening in vitro.
They were isoimperatorin, bergaptin, bisdemethoxycurcumin,
azulol, pterostilbene, and ellipticine.

Then, the 6 compounds were further evaluated by
CDOCKER. RMSD value calculated through redocking between
the docking and initial poses was 1.136 Å, which suggested the
reliability of CDOCKER methods. The 6 compounds could dock
to CYP3A4 with a range of -CDOCKER interaction energy from
13.430 to 47.241. Ketoconazole, as a positive drug, had the
greatest affinity and azulene was lowest affinity.
3.5 Validation in vitro

CYP3A4-Glo™ Screening System was utilized to evaluate the
CYP3A4 inhibitory activity of the above 6 compounds (Table 3).
Among them, pterostilbene and elliptisine had the strongest
inhibitory activities and IC50 values of them were 1.120 mM and
0.052 mM, respectively, which could be compared with that of
ketoconazole (0.047 mM). The CYP3A4 inhibition activity of
isoimperatorin, bergaptin, bisdemethoxycurcumin and azulene
were weaker. Elliptisine has a good interaction with CYP3A4
through forming hydrogen bond and pi–pi stacked bond with
ARG372, ALA370 and PHE215 (Fig. 5). Pterostilbene could also
bind to CYP3A4 well, and the amino acids included ARG212,
This journal is © The Royal Society of Chemistry 2018



Fig. 4 The prediction of CYP3A4 inhibitors from FDA-approved drug database. (A) drug distribution of predicted CYP3A4 inhibitors. (B) the
performance of NB prediction model.

Table 3 The IC50 values and -CDOCKER interaction energy of 6 natural products and ketoconazole determined by P450-Glo™ CYP3A4 assay
and CDOCKER approach, respectively

Name Structure
-CDOCKER interaction
energy IC50 (mM)

Ketoconazole 65.399 0.047 � 0.002

Isoimperatorin 36.424 18.231 � 1.721

Bergaptin 47.241 12.921 � 1.171

Bisdemethoxycurcumin 42.251 14.821 � 2.087

Azulene 13.430 22.485 � 2.539

Pterostilbene 33.310 1.120 � 0.056

Ellipticine 34.819 0.052 � 0.003

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 34783–34792 | 34789
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Fig. 5 The interaction between CYP3A4 and pterostilbene/ellipticine. (A and B) Elliptisine has a good interaction with CYP3A4 through forming
hydrogen bond and pi–pi stacked bond with ARG372, ALA370 and PHE215. (C and D) Pterostilbene binds to CYP3A4 by interacting with the
amino acids including ARG212, SER119 and ALA370 via conventional hydrogen bond/attractive charge and pi–alkyl interaction.
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SER119 and ALA370 via conventional hydrogen bond/attractive
charge and pi–alkyl interaction (Fig. 5). SER119 plays an
important role in the interaction between ligand and CYP3A4,
which was also proved by the original ligand.

Pterostilbene has phenolic hydroxyl group, and elliptisine
contains two saturated nitrogen atoms, which is consistent with
the good fragments given by NB model. Pterostilbene is the
main antioxidant of blueberry, and is also a naturally dime-
thylated analog of resveratrol, but it has higher in vivo
bioavailability. A large body of evidence suggests that pter-
ostilbene may have numerous preventive and therapeutic
properties in a variety of human diseases including the nervous
system, cardiovascular system, metabolic system and blood
system diseases.38 Pterostilbene has been shown to be an
effective anticancer drug in several malignancies.39 In view of
the wide range of pharmacological activities of pterostilbene, we
should pay attention to safety and toxicity in future research
and biomedical uses. We rstly validated that pterostilbene has
strong CYP3A4 inhibitory activity and DDI through CYP3A4
should be considered, especially when eating foods, like blue-
berry, rich in pterostilbene. Ellipticine is an alkaloid isolated
from the oleander family. It is one of the simplest natural
alkaloids with a planar structure. In the past few decades,
ellipticine has become a very promising anti-tumor drug, and
interaction with DNA is one of the most studied effects of
ellipticine on cell division.40 Many anticancer drugs are
metabolized by CYP3A4. Therefore, when combined with
34790 | RSC Adv., 2018, 8, 34783–34792
ellipticine, we should pay special attention to its strong inhib-
itory activity against CYP3A4, which may inuence the thera-
peutic effect of other anti-tumor drugs.

It was suggested that their DDI occurrence based on the
inhibition of CYP3A4 had low probability. Therefore, 2 of 6
compounds accurately were predicted CYP3A4 inhibitors with
high activity, which indicated that the application of NB clas-
sication model could improve the positive rates of identica-
tion for CYP3A4 inhibitor remarkably.
4. Conclusions

In this study, 4 classication models were constructed to
discriminate CYP3A4 inhibitors from non-inhibitors by means
of SVM, NB, RP and KNN algorithms. Through molecular
descriptors selection and optimization by correlation analysis
and stepwise regression method, we found 20 molecular
descriptors playing a vital role in the construction of the
prediction models. In addition, combined with the ngerprint
descriptor (ECFP-6), the models could signicantly improve
their prediction accuracy. Variety of validations including cross-
validation, test set, and Y-scrambling veried the prediction
reliability of the models. Finally, NB model was selected as the
optimal model, and it was successfully developed and used in
the identication of CYP3A4 inhibitors combined with molec-
ular docking.
This journal is © The Royal Society of Chemistry 2018
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Based on the prediction results, 90 compounds from FDA-
approved drug databases were predicted as inhibitors, and
46% of them had been reported to have CYP3A4 inhibitory
activity. For natural product database, 33.3% of compounds
showed high CYP3A4 inhibitory activities, indicating that the
prediction model could remarkably increase the probability of
identifying CYP3A4 inhibitors while reducing the cost of early
drug development. We also rstly reported that pterostilbene
and ellipticine had strong inhibitory activity with IC50 value of
1.120 � 0.056 mM and 0.052 � 0.003 mM, respectively. In
general, this study is the rst report usingmultiple ligand-based
machine learning methods and structure-based docking
approach, validated with a successful pilot study of virtual
screening in identifying CYP3A4 inhibitors, which is able to
predict early adverse reactions and provide new ideas for drug
development.
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