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Abstract: A convenient, environment-friendly, and cost-effective method to keep anti-icing for a long
time was highly desirable. Slippery lubricant layers were regarded to be effective and promising for
anti-icing on different surfaces, but the drought-out of lubricants and the possible detriments to the
environment were inevitable. By combining super-high molecular weight sodium polyacrylate (H-
PAAS) with polyolefin through a one-pot method, a self-sustainable lubricating layer with extremely
low ice adhesion of un-freezable water hydrogel was achieved at subzero conditions. The lubricant
hydrogel layer could auto-spread and cover the surface of polyolefin after encountering supercooled
water, frost, or ice. Due to the reduction of storage modulus in the interface, the ice adhesion of
the specimen surfaces was far below 20 kPa, varying from 5.13 kPa to 18.95 kPa. Furthermore, the
surfaces could preserve the fairly low adhesion after icing/de-icing cycles for over 15 times and thus
exhibited sustainable durability. More importantly, this method could be introducing to various
polymers and is of great promise for practical applications.

Keywords: lubricant hydrogel; icephobic; polyacrylate; ice adhesion; self-sustainable

1. Introduction

Due to precipitation and cold conditions, ice froze and accumulated on various hori-
zontal and vertical surfaces, such as power lines [1], airplanes, heat exchangers [2], wind
turbines [3], telecommunication networks [4], ships [5], cars, trains, and refrigerators [6].
Unnecessary icing caused not only an economic loss but also loss of life. Generally, the
main methods of preventing or removing icing were classified into the active and passive
methods [7]. Active methods were currently widely adopted, including installation of
thermal system mechanical scraping [8] and spraying chemical deicers. However, many of
these methods were expensive, high energy-consuming, and harmful to the environment.
To avoid the shortcomings of active de-icing methods, passive methods, mainly includ-
ing preventing the ice from adhering or promoting the ice sliding away under the wind,
vibration, or solar radiation, had attracted the attention of scientists.

The traditional passive anti-icing surfaces mainly included nanostructured superhy-
drophobic surfaces (SHS) [9–11] and slippery liquid-infused porous surfaces (SLIPS). It
had been proved that those surfaces had anti-icing properties since surface-free energy
reduced [11]. According to the Cassie-Baxter model, the air trapped in the nano-texture
beneath the droplet contributed to the low ice adhesion of SHS, extremely large water
contact angle, and the icing delay [10,12]. However, moisture condensed in nanostructures
and finally anchored the ice in high humidity and sub-zero condition, leading to the re-
sult that the ice adhesion strength increased. More seriously, the ice accumulated on the
surface easily after the de-icing process destroying the textures [13,14]. Combined with
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thermal methods, the superhydrophobic/electrothermal method was another effective
way to prohibit ice formation [15]. Then, the SLIPS coated with a functional liquid layer
emerged as the times required to address the problem. Due to their hydrophobicity, low
evaporation, and ice-strength, silicon and fluorinated liquids were widely studied as ice-
phobic lubricant coatings [16–19]. Wang et al. [20] achieved a multi-fluorination strategy on
polydimethylsiloxane (PDMS) matrix to enhance the liquid impalement resistance without
sacrificing mechanical robustness. The ice-adhesion strength on all obtained surfaces could
descend below 100 kPa, a critical value of an icephobic surface [18]. Surfaces with ultra-low
ice adhesion strength below 20 kPa were a challenge. Because under this situation, ice
adhered to material surfaces could be left off under natural forces, such as gravity, wind,
or vibration without any extra energy consumed. Aiming at this goal, Golovin et al. [21]
demonstrated that the ice layer could fall off completely by its gravity on the LIT PDMS
(silicone B + 40 wt% silicone oil). Recently, much lower ice-adhesion strength, such as
2 kPa [22] and 0.4 kPa [21], was achieved. Although organ-oil infused slippery surface
exhibited excellent anti-icing performance, the durability of oil was limited by how long
the lubricant could be kept in the texture or block without leaking or evaporating [23].
Besides, the fluorinated liquid was high-cost and not environment-friendly [20]. Different
from normal snow melting agents, strategies with novel materials, such as saline water,
ethylene glycol, formamide, and water−glycerine, as an aqueous lubricating layer for
anti-icing turned into view again. A new type of aqueous lubricating layer made from
magnetic liquid [24], ferromagnetic liquid, antifreeze proteins [25], dopamine-modified
hyaluronic acid [26], polyelectrolytes [27], polypeptide or hygroscopic polymers came into
reality and showed excellent icephobic performance of ultra-low ice-adhesion strength
as well as sustainable, self-healing, durable and environment-friendly advantages. Due
to its water swelling, lower freezing point, fluidity, and no pollution, the hydrogel was
potential for producing the water lubricating layer for shedding ice. In this paper, we
designed a novel icephobic engineering material by blending polypropylene (PP) with
super-high molecular weight sodium polyacrylate (H-PAAS) through a one-pot method.
Only by one molding process, objects of various shapes with icephobic property were
produced to form the lubricant hydrogel on the surface when contacting super cool water,
frost, or ice in a cold environment. Both static and dynamic contact angles tests were
performed on the specimen surface to investigate the formation of the lubricant hydrogel
layer. The storage modulus (G’) of the hydrogel was tested through dynamic mechanical
analysis (DMA). Besides, ice adhesion strength and anti-icing durability were gauged in a
temperature-controllable chamber at −10 ◦C.

2. Materials and Methods
2.1. Materials

Polypropylene (PP, [CH2CH(CH3)]n) granules were obtained from Macklin Biochemi-
cal Co., Ltd. (Shanghai, China). Super-high molecular weight sodium polyacrylate powder
(H-PAAS, [CH2CH(COONa)]n) with Mn of 30,000,000 was purchased from Heowns Bio-
chemical Company (Tianjin, China).

2.2. Specimens Preparation

First, PP and H-PAAS were mixed for 5 min in a high-speed mixer (TPG 5IK60GN-CF,
Induction Motors, Jiangsu Jinchengbang Precision Motor CO., Ltd., Suzhou, China), and
then, the mixture was poured into a double screw extruder (CY-063, Sirocco Fan Industrial
Co., Ltd., Guangzhou, China) to make PP-H-PAAS granules after mixing for 30 min at
180 ◦C. Finally, circular specimens (PP-H-PAAS) with a diameter of 7 cm and a thickness of
3 ± 0.2 mm were produced by an injection molding machine (YS-255, Aolai Trading Co.,
Ltd., Shenzhen, China) under a pressure of 0.7 MPa for 30 s. The H-PAAS mass fractions
in the specimens were 0%, 5%, 10%, 15%, 20%, which were labeled as 0, 1, 2, 3, and 4,
respectively.
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2.3. Static and Dynamic Contact Angles and Delayed Icing Time

As was shown in Figure 1, a specially modified optical angle meter (CAM 200, KSV In-
strument Ltd., Helsinki, Finland) was used to gauge the contact angle (CA) in a temperature-
controllable chamber [28,29]. Because the CA on such a hydrophilic surface would decrease
in the time until the swelling had reached equilibrium. So, CA measurements were divided
into two parts: static CA (SCA) and dynamic CA (DCA) measurements. The traditional
method was used for measuring SCA within 1 min, and the photo intervals were set as
50 ms. However, the DCA within 2 h were gained by setting the photo intervals of 1 min
during the CA achieved equilibrium, as shown in Figure S1 and Video S1. The structure
details of the measurement chamber were shown in Figure S2. Because the whole CA
measurement lasted for about 2 h, both the environment humidity and droplet evaporation
would affect the water absorption. To avoid these influences, a rectangular-ambulatory
water sink was used to maintain the relative humidity balance in the measurement cham-
ber. So, when the measurement chamber was sealed during the CA test, the inner relative
humidity of the chamber was near 100% [30], in other words, the air in the inner space of
the chamber was saturated.

Figure 1. The schematic presentation of modified contact angle testing system.

The air-conditioning system was composed of a thermostatic bath, temperature control
platform, and a T-type micro temperature probe. The surface temperature of the specimen
was accurately controlled from 25 to −15 ◦C.

According to our previous research [28], in situ observation of 8 µL water on a surface
at −10 ◦C and delayed icing time (Tdi) were determined when transparent hemispherical
shape changing to a dark opaque triangular-like peak.

2.4. Contact Angle Hysteresis (CAH)

The CAH also measured the specially modified optical angle meter as shown in
Figure 1. Before the testing, the temperature control platform was replaced with another
tiltable platform and the specimens were stuck on the tiltable platform one by one. Then,
a water droplet of 24 uL was added to the specimen. During the characterization, the
platform was tilted until the water droplet began to slide away. Finally, the advancing
contact angle (θAdv) and receding contact angle (θRec) were gained by the computer software.
The θAdv minus θRec was the CAH value.

2.5. Ice Adhesion Strength and Anti-Icing Durability

As shown in Figure 2, the iced specimens were in a temperature-controllable chamber
(FH-408R, TuoDe Industrial Co., Ltd., Shanghai, China) with a vertical self-adjust tension
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acquisition system (PosiTest AT-A, DeFelsko Corporation, New York, NY, USA) according
to ASTM D4541. The adhesion strength could be acquired through the following formula:

τice =
F
A

(1)

where A was the ice covering area, F was the vertical tension. Given that τice was dependent
on the thickness of the ice layer [31], a plastic ring with a diameter of 50 mm was stuck
on the specimen in advance, and the ice thickness was precisely controlled at 2.0 mm by
inserting three globes of 2.0 mm diameter apart to form a small gap between the spindle
and the specimen. Then, a medical injector was used to inject enough deionized water into
the gap and the spindle-water-specimen “sandwich” was deposited in the temperature-
controllable chamber with the temperature of −10 ◦C and the relative humidity of 0% for
icing. The deionized water was sealed between the spindle and specimen without being
influenced by the relative humidity. For testing the low ice adhesion strength, spindles
with 50 mm diameter were selected. All the ice adhesion experiments were performed at
−10 ◦C in the temperature-controllable chamber. The icing time for both ice adhesion and
icing/de-icing cycle tests was 20 h, which was believed to be ample for complete icing.
When testing ice adhesion, a drawing machine was used to pull the spindle with an ice
layer beneath itself off the specimen surface. The open bottom part of the drawing machine
would be able to get a good grip on the top hump part of the spindle. Then, the motor
drove the open bottom part and the spindle to raise at 2 kPa/s or 20 kPa/s until the spindle,
together with ice, was separated from the specimen surface. The drawing machine had
the function of auto-alignment to ensure throughout verticality. The dial would show the
maximum value of vertical extension force that represented the ice adhesion strength.

Figure 2. The schematic presentation of modified system for testing ice adhesion tension strength.

The icing/de-icing cycle test was carried out on the Specimen 3 by repeating the
same procedures of ice adhesion measurement for 15 times. Each time, after the drawing
machine was used to divorce the spindle and the ice layer from the center of the specimen
surface, another three globes were inserted to control the gap height at 2 mm. Afterward,
the deionized water was injected to form an ice layer again for next icing/de-icing cycle.
After completing the de-icing process, the ice layer still adhered to the bottom of the spindle
as shown in Figure S3.

2.6. Surface Morphology and Elemental Analysis

The surface morphology and elemental analysis of the specimens were recorded by
the scanning electron microscope (SEM, S-4800, Hitachi, Japan) equipped with an energy
diffraction spectrum (EDS) at 5.0 kV. Besides, the roughness of the specimen surfaces was
tested by the atomic force microscope (AFM, Dimension Edge, Bruker, Germany). The
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scan size was 20 µm × 20 µm, the scan rate was 60 µm/s and sample lines were 256. The
chemical composition was further investigated by X-ray photoelectron spectroscopy (XPS,
K-Alpha, Thermo Scientific Co., Ltd., Waltham, MA, USA). The number of scans was 5, the
source gun type was Al K Alpha, the spot size was 400 µm, and the energy step size was
0.100 eV.

2.7. Water Swelling Ratio

The water swelling ratio (S) was defined as

S =
w2 − w1

w1
(2)

where w1 and w2 respectively referred to the weights of the H-PAAS powder and the
hydrogel after absorbing sufficient water [32]. After immersing in the water for 4 h, the
hydrogel on the PP-H-PAAS surface was collected and the value of w1 was obtained. w2
was obtained from drying the collected hydrogel in a hot oven at 120 ◦C for 2 h.

2.8. DMA

As shown in Figure 3, by pouring the collected hydrogel into the cup of the dynamic
mechanical analyzer (DMA+ 450, 01DB-MetraviB, Lyon, France), the pasty material model
was selected to testing the G’ of H-PAAS hydrogel or water, respectively, when temperature
varied from −30 ◦C to 25 ◦C at 0.1 ◦C/min with a frequency of 1 Hz. The piston diameter
was 7 mm, the internal cup diameter was 10 mm and the sheared height was 20 mm.

Figure 3. The schematic presentation of the dynamic mechanical analyzer.

3. Results and Discussion
3.1. Surface Morphology

Figure 4 showed SEM images of PP-H-PAAS surfaces with no rough structures as
compared to the typical superhydrophobic surfaces [32]. The PP-H-PAAS surfaces were
both flat and hydrophilic. It was suitable for the aqueous slippery layer to extend and flow
on such surfaces in Wenzel’s model without any barrier.
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Figure 4. SEM images of PP-H-PAAS surfaces; (a–d) were the smooth surfaces of specimen 1, 2, 3, 4,
respectively.

The situation of the H-PAAS phase dispersed in the continuous PP phase was suitable
for the typical sea-island model. Figure 5 illustrated the size of H-PAAS islands scattered in
the PP sea in SEM images. The H-PAAS powder aggregated together to form bright white
particles (islands), which dispersed in the PP phase (sea). The particle size of H-PAAS
fluctuated from several hundred nanometers to several microns, whose average value was
approximately 500 nm. Note that the particle size of H-PAAS was suitable for forming a
continuous aqueous slippery layer when absorbing super cooler water or melting frost and
ice in a cold environment [33].

Figure 5. The size of H-PAAS islands scattered in the PP sea; (a–d) represented four kinds of H-PAAS
island sizes.

The surface roughness of the specimens tested by AFM was shown in Figure 6. The
root mean square roughness (Rq) varied from 22.5 nm to 79.3 nm, which was independent
of the H-PAAS mass fraction. It was worthy to note that the injection molding machine was
used to inject the melting PP-H-PAAS into the circular plate under a pressure of 0.7 MPa
during specimen fabrication. This pressure was high enough to cause inevitable mechanical
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scratches during the injection process as shown in Figure 6b,c. Besides, these scratches
appeared randomly on the specimen surfaces. Therefore, there was no linear relationship
between Rq and H-PAAS mass fraction.

Figure 6. The Rq of specimens with different H-PAAS mass fractions (a). 2D image (b) and 3D image
(c) of Specimen 3.

3.2. Static and Dynamic Contact Angles

Figure 7 showed the CA as a function of time for specimens. To investigate the
instantaneous CA as soon as the water droplet contacted the specimen surface, the photo
intervals of the high-speed camera were set as 50 ms. So, the first computable CA could be
determined by checking these photos recorded in 1 s. Then, the first CA value that was
the starting point of every curve, as shown in Figure 7, could also be accurately calculated.
That was the reason why every curve did not start at 0.0 s. These CA values of the starting
points were the traditional SCA. It was more difficult for the water droplet to form a stable
hemispherical shape as quickly as possible when the H-PAAS mass fraction increased. So,
the time of starting point in the curves was delayed for PP-H-PAAS with a higher H-PAAS
mass fraction. The curves of the PP-H-PAAS surface with lower H-PAAS mass fractions
decreased at first and gradually leveled out, while the curve of the pure PP surface kept
unchangeable.

Figure 7. Static contact angles as a function of time for specimens with different H-PAAS mass frac-
tions.

As shown in Table 1, static contact angles of specimens at room temperature decreased
from 98.0◦ to 89.1◦ as the H-PAAS mass fraction increased from 0% to 20%, which indicated
that the origin hydrophobicity of PP was changed to hydrophilicity due to the addition of
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H-PAAS. With the existence of H-PAAS, the surface could easily absorb water to extend
and form a flowing hydraulic gel layer. The SCAs of four compound specimens were
close to the CA value calculated from Cassie-Baxter’s equation (Equation (3)), while the
SCAs of PP and PAAS were 98.0◦ and 0.0◦, respectively. Being made from two parts of
hydrophobic PP and hydrophilic H-PAAS, the compound surface was just like H-PAAS
islands dispersed in the PP sea as shown in Figure 5. Therefore, the wetting model that
followed Cassie-Baxter’s equation was similar to a superhydrophobic surface. The only
difference was that SHS contained hydrophobic air clumbers while the PP+H-PAAS surface
had hydrophilic H-PAAS dots.

cos θPP−H−PAAS = fPP × cos θPP + fH−PAAS × cos θH−PAAS (3)

where fpp and fH−PAAS were the mass fraction of PP and H-PAAS, respectively.

Table 1. Static contact angles of specimens.

Specimen CApp CAH-PAAS fpp fH-PAAS CAPP-H-PAAS CATested

0 98.0 0.0 1.00 0.00 98.0 98.0
1 98.0 0.0 0.95 0.05 95.8 95.0
2 98.0 0.0 0.90 0.10 93.5 93.9
3 98.0 0.0 0.85 0.15 91.3 91.7
4 98.0 0.0 0.80 0.20 89.0 89.1

As shown in Figure 8, the DCAs of pure PP kept unchangeable at room temperature
during all time. However, for compound specimens, the effect time on the DCA was
dependent on the H-PAAS concentration. The DCA of the compound with 5% H-PAAS
decreased slowly in time and leveled out after 20 min. With the further increase of H-PAAS
concentration, the DCA decreased rapidly in both time and H-PAAS concentration, while
the time for DCA to level out decreased in the H-PAAS concentration. At first, the isolated
H-PAAS absorbed water and auto-spread. Consequently, the hydrophilic area gradually
connected as time went by. Not surprisingly, therefore, the DCA of compound specimens
decreased in both time and H-PAAS concentration. Due to its super-high molecular weight
with many long main chains and side chains, it takes a really long time for H-PAAS to
absorb water until main chains and side chains unfolded completely [34].

Figure 8. Dynamic contact angle versus time curves of PP and its H-PAAS compounds.

Note that, during the absorption, there was an H-PAAS lubricant hydrogel layer (H-
PAAS-LHL) formed in the interface of specimen and water. Figure 9 illustrated a scheme for
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the formation of a lubricant hydrogel layer on the interface between water and specimen.
Before adding water, the long H-PAAS main chains were embedded in the PP substrate
field and only a small part of the whole polymer was exposed to the specimen surface,
which contained some hydrophilic salts (-COONa) at the end of the side chains. After
adding water to the specimen surface, the water droplet not only contacted the PP chains,
but also the side chains of H-PAAS. Then, the hydrophilic salts (-COONa) began to ionize
and release Na+. At the same time, the remaining -COO− began to capture and combine
with water molecules. Those captured water molecules were fixed on the top surface of
the specimen, in other words, the interface between the water phase and the specimen
phase. With the number of fixed water molecules increasing, a continuous hydrogel layer
to separate water and specimen formed.

Figure 9. Scheme for the formation of lubricant hydrogel layer on the interface between water
and specimen.

The emergence of the lubricant hydrogel layer lowered the DCA, so it took more
than one hour for the whole CA equilibrium process, as shown in Figure 8. At last,
the spontaneously spreading H-PAAS-LHL expanded on the specimen surface to form
a hydrogel film of the H-PAAS layer, during which the DCA of each surface also kept
decreasing. Until the H-PAAS on the interface absorbed enough water to form a relatively
saturated station, the area of the hydrogel stopped increasing at the maximum value,
representing that the hydrogel had completely auto-spread. That is why a plateau appeared
at the end of every curve in Figure 8. With the mass fraction of H-PAAS increasing, the
initial DCA value decreased. It was seen that by adding 5% H-PAAS, the final CA only
declined to about 88◦ as compared to 98◦ of the pure PP. However, when the mass fraction
of H-PAAS increased to 10%, the final DCA lowers to about 33.3◦, which was 64.7◦ lower
than that of the pure PP. As discussed previously, DCA declined faster in time as the
H-PAAS mass fraction increased. When the H-PAAS mass fraction reached 15% and 20%,
it took 96 min and 77 min, respectively, for the DCA to level out. As shown in Figure 10,
when the compound surface met water, the top surface of single H-PAAS dots absorbed
water, and then, extended along the surface. Finally, nearly all H-PASS dots connected
each other by forming a flowing hydraulic gel layer. The spread speed of the hydraulic
gel layer was controlled by the distance of H-PAAS dots and the water absorption. So, the
compound materials of 20% H-PAAS spent the minimum time to cover the surface by a
hydraulic gel layer. Moreover, the continuous decrease in the DCA was helpful to extend
the freezing time, because the contact line kept decreasing during the whole auto-spreading
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process and inhibited small ice crystals joining into blocks, which prevented the surface
from icing.

Figure 10. Scheme for auto-spread of H-PAAS-LHL between water and surface.

3.3. Dynamic Mechanic Analysis of Water and Hydrogel

According to Equation (1), the water swelling ratio was about 300. To determine the
dynamic mechanical properties of the hydrogel, the hydrogel on the surface of specimens
was collected in the cup of the DMA instrument. As shown in Figure 11, the G’ value
of hydrogel was lower than that of water and the difference remained at about 0.6 MPa
when the temperature was below 0 ◦C. The freezing points of water and hydrogel were
−0.3 ◦C and −3.7 ◦C, respectively, indicating that the freezing point of water lowered
when the water formed an unfrozen hydrogel layer due to the existence of H-PAAS. The
hydrogel reduced the G’ of the interface between ice and specimen. The lower G’ value
represented lower stiffness and higher flexibility of a material, which led to less resistance
to deformation including elongation and shear. This was the reason why the hydrogel
layer decreased greatly the ice adhesion strength. Golovin et al. [35] demonstrated that low
interfacial toughness within the ice allowed ice to be shed by self-weight.

Figure 11. G’ versus temperature curves of water and hydrogel.

3.4. Anti-Icing Property

Table 2 summarized the icing time and Tdi of specimens. The Tdi at −10 ◦C increased
in the H-PAAS mass fraction. For the SHS, the higher and bigger the contact angle was, the
longer the delay time of ice formation [36]. Quite different from that, generally, smooth
and hydrophilic surface iced easily and the delay icing time was short. Indeed, the PP-
H-PAAS specimen was an anion-rich polymeric surface. When the specimen surface met
super cooler water on its surface, the -COO− of H-PAAS exposed to the external surface
quickly to capture water under the side-chain extension motion and extended an extra
thin lubricant hydrogel layer between the water phase and substrate material phase as
seen in Figure 12. During this extension, sodium ion of H-PAAS diffused into the lubricant
hydrogel layer. The more Na+ of polyelectrolyte proliferated in the lubricant hydrogel layer,
the lower the freezing point due to the hydration [37–39]. Notably, the lubricant hydrogel
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layer suppressed the heteronuclear crystallization, resulting in a much lower crystallization
temperature and a longer icing time during the cooling process. The hydrogel layer that
showed a small DCA value (less than 90◦) was definitely a high surface energy layer.
For a general high surface energy layer, it would lower the critical Gibbs free energy
of crystallization. However, as a key icephobic material, H-PAAS generated a special
hydrogel layer. On the one hand, with the addition of H-PAAS, there were numerous Na+

and -COO− having entered the hydrogel layer and these ions could reduce the freezing
point to delay icing. On the other hand, the main chains of H-PAAS were long enough
to take nearly 2 h for these main chains to stretch completely when encountering water,
which led to the continuous decrease in the DCA value as shown in Figure 8. The hydrogel
layer was not completely formed in one second but in 2 h until the main chains absorbed
enough water. Further, during this absorption process, Na+ and -COO− of side chains
of H-PAAS kept entering the hydrogel layer. The decrease in the DCA value also meant
the decrease of the contact line, which resulted in the consequence that the interface area
between the water phase and specimen phase kept increasing. This could damage the
formed ice crystallization and delayed icing. Therefore, the super cooler water near the
lubricant hydrogel layer was difficult to freeze and the icing time was delayed. Therefore,
Specimen 4 attained a super long unfrozen level of 3048 s, which was 126-fold of PP.

Table 2. Icing time and delay icing time of specimens.

Specimen Icing Time/s Delayed Icing Time/s

0 24 ± 3.2 -
1 29.8 ± 6.4 5.8 ± 6.4
2 69.8 ± 9.1 45.8 ± 9.1
3 106.8 ± 5.9 82.8 ± 5.9
4 3072 ±376.4 3048 ± 376.4

Figure 12. Scheme of H-PAAS lubricant hydrogel layer (H-PAAS-LHL).

As shown in Figure 13, the elemental distributions of Na and O increased rapidly after
absorbing water on the four PP-H-PAAS surfaces through the assistance of EDS, the maps
of EDS could be seen in Figures S4–S7. This indicated that the H-PAAS chains transferred
from their original position to the whole compound surface after absorbing enough water.
When the H-PAAS chains, more specifically, the side chains of H-PAAS, encountered with
water, the Na+ and -COO− combined with water molecules began to form an H-PAAS-LHL
and spread to further sites which drove the H-PAAS main chains to move, contributing to
the auto-spread of H-PAAS-LHL. In consequence of this, both H-PAAS islands and PP sea
were covered by a smooth H-PAAS-LHL as seen in Figure 14, while the original H-PAAS
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islands (Figure 4) were missing [40]. Further, the enrichment of Na+ iron on the topmost
H-PAAS-LHL layer lowered the freezing point and formed an ultra-thin un-freezable water
layer. The slippery layer beneath ice decreased the ice adhesive strength of the surface of
compound materials.

Figure 13. Na (a) and O (b) atomic fractions before and after water absorption.

Figure 14. H-PAAS-LHL covered the whole PP-H-PAAS surfaces. Noted that the image (a–d) referred
to sample 1 to 4 respectively, as compared to the surfaces in Figure 2 (a–d).

To intensively investigate the detailed chemical composition changes before and after
water absorption, XPS tests were performed. Figures 15 and 16 presented the XPS spectra
of Specimen 3 before and after water absorption. The Na and O atomic fractions were
calculated by the integral of the area between the peak curve and background curve, as
shown in Table 3. After the water absorption, the Na atomic fraction increased to 6.11%,
which was 29.1 times higher than the original value. Correspondingly, the O atomic fraction
increased to 26.94%, which was 7.6 times higher than the original one. Because when the
specimen surface encountered the water, the salt (-COONa) of the H-PAAS side chains
released Na+ ions which was of less weight and could move randomly in the water phase
at a higher speed. However, the -COO− anions were fixed on the H-PAAS main chains
by the C-C binding, so the displacement of -COO− anions was limited. That is why the
migration speed of Na was more rapid than that of O.
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Figure 15. XPS spectrum of Specimen 3 before water absorption: the whole scanning region (a); the
region of Na (b) and the region of O (c).

Figure 16. XPS spectrum of Specimen 3 after water absorption: the whole scanning region (a); the
region of Na (b) and the region of O (c).

Table 3. Na and O atomic fractions before and after water absorption.

Process Status Na Atomic Fraction/% O Atomic Fraction/%

Before water absorption 0.21 3.53
After water absorption 6.11 26.94

Receding contact angle was another important factor in close relation with the ice
adhesion strength. Figure 17 showed the correlation between receding contact angle and
H-PAAS mass fraction. Meuler et al. [41] studied the correlation between wettability and
ice adhesion of 21 slippery coatings and found the negative relationship between θRec
and τice. However, our experiment presented a positive relationship. Because the PP-H-
PAAS was not a kind of low surface energy material, the θRec was also less than 60◦, not
like the SHS whose θRec was supposed to exceed 150◦. Nevertheless, there was still a
decreasing trend in θRec when the H-PAAS mass fraction increased due to the formation of
an H-PAAS-LHL. Because the formation of an H-PAAS-LHL was the process of H-PAAS
chains capturing water molecules, when there were more H-PAAS chains on the interface
of the specimen with higher H-PAAS mass fraction, it was more difficult for the water
droplet to spread. Since the H-PAAS had a very large value of water swelling ratio, a small
amount of water droplet was more likely to be absorbed by the specimen surface to form
an H-PAAS-LHL, rather than move freely, which contributed to an increase in the surface
lubricity and icephobicity. So, the lower the θRec was, the larger the H-PAAS-LHL area was.
Consequently, the specimen surface became more lubricant and softer.
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Figure 17. Receding contact angles of the surfaces of PP and PP-H-PAAS.

The ice adhesion strength of the specimens was shown in Figure 18. In comparison to
the bare Al surface with a τice of more than 1.56 MPa [42], the τice on the PP surface was also
fairly strong (over 1100 kPa). In this case, it was laborious to clean the icy PP surface in the
low-temperature environment. Although the PP surface was merely mildly hydrophobic
for its CA reached around 98◦, the water droplets could hang on the surface because of its
high adhesion strength. After mixing with 5% H-PAAS, however, the specimen surface
exhibited an apparent anti-icing property. The τice decreased to 18.95 kPa with a decline of
98.28%, and the surface became a great icephobic surface that could promise to complete
the de-icing process under the force of a nature strong breeze. As shown in Figure 16b, the
ice adhesion of four specimens was all below 20 kPa, which was a critical value of ice shed
off under a natural force. This demonstrated that all the designed surfaces could be applied
in snow weather with the self-deicing function. Interestingly, there came a plateau for τice
that emerged at the H-PAAS mass fraction of 15%. The adhesion strength maintained the
value of 5.14 kPa even if H-PAAS mass content was increased to 20%. It could assume
that the H-PAAS was saturated for the adhesion strength of the H-PAAS-LHL when the
H-PAAS mass fraction reached 15%.

Figure 18. The ice adhesion strength of the surfaces of PP and PP-H-PAAS; (a) represented the ice
adhesion of specimen 0 to 4, (b) represented the ice adhesion of specimen 1 to 4.

Durability was another essential aspect considered for an icephobic material [43]. To
evaluate the durability of PP-H-PAAS materials, icing/de-icing cycle experiments (15 times)
were implemented on Specimen 3, which exhibited the minimal τice value as discussed
previously. After the durability test, the adhesion strength had slightly risen from 5.14 kPa
to about 10 kPa as shown in Figure 19. As compared to the threshold for self-removal of
snow and ice, the ice adhesion was still fairly low after cycles for 15 times, which was even
lower than the half value. So, the H-PAAS-PP surface performed the outstanding durability.
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Figure 19. Ice adhesion change during icing/de-icing cycles.

4. Conclusions

A novel icephobic engineering raw material was introduced by blending polypropy-
lene with super-high molecular weight sodium polyacrylate through a one-pot method.
Objects with icephobic properties were produced by simple molding processing to form
a lubricant hydrogel on the surfaces even in a cold environment. The designed surfaces
performed greatly low ice adhesion properties. Compound materials with 20% H-PAAS
attained a super long unfrozen level of 3048 s, which was 126 fold of the pure PP. The adhe-
sion strength on the sample surfaces was all below 20 kPa. The minimal value (5.14 kPa)
was obtained with 15% H-PAAS being added. Furthermore, the surfaces could maintain
this low adhesion level during icing/de-icing cycles for over 15 times. Therefore, a con-
venient, environment-friendly, self-sustainable, and cost-effective method on different
materials provided more opportunities for producing polymeric materials with durable
and anti-icing properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13071126/s1. Figure S1: CAs of Specimen 3 at different time. Figure S2: Structure details
of the temperature-controlled measurement chambers. Figure S3: Ice layers adhered to the spindles
after de-icing. Figure S4 to S7: EDS spectra of the specimens with different H-PAAS mass fractions.
Video S1: CA measurement of Specimen 3.
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