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Autophagy is a process that degrades and recycles superfluous organelles or damaged
cellular contents. It has been found to have dual functions in renal cell carcinoma (RCC).
Many autophagy-related proteins are regarded as prognostic markers of RCC.
Researchers have attempted to explore synthetic and phytochemical drugs for RCC
therapy that target autophagy. In this review, we highlight the importance of autophagy in
RCC and potential treatments related to autophagy.
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BACKGROUND

Renal cell carcinoma (RCC) is the 14thmost common type of cancer globally, which comprises about
80 to 90% of malignant renal tumors (Hancock and Georgiades, 2016). Its incidence has been
increasing at a rate of about 2% annually, with more than 200,000 new cases worldwide per year
(Siegel et al., 2019). Despite advances in surgical techniques, the overall 5-year survival rate of
patients in early-stage RCC is approximately 93%, whereas that of patients with metastatic RCC is
approximately12% (Siegel et al., 2017; Attalla et al., 2020). Therefore, it is imperative to develop novel
targets against RCC. Nevertheless, many studies have recently reported intimate relationships
between autophagy and RCC, which may offer new options for the treatment of RCC.

Based on the different transport modes of intracellular components to the lysosome, autophagy
could be categorized into three subtypes: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA) (Jacob et al., 2017). Macroautophagy is the most common subtype.
The process of autophagy could be divided into four stages: initiation, elongation and completion,
maturation, and fusion or degradation (Limpert et al., 2018; Cao and Bai, 2019). These ultrastructural
studies indicate that at the autophagosome initiation stage, inhibition of mTOR induced the
formation of ATG1/Unc-51-like kinases (ULK) complex (ULK1/2, ATG13, FIP200, and
ATG101). This complex activates phosphatidylinositol 3-phosphate (PI3P) production through
class III phosphatidylinositol 3-kinase complex (VPS34, ATG14 L, VPS15, and Beclin1). The
production of PI3P recruits certain effectors, including proteins like double FYVE-containing
protein 1 (DFCP1), and WD-repeat protein interacting with phosphoinositides (WIPIs) to form
omegasomes (nucleation sites) (Mizushima et al., 2011; Devereaux et al., 2013). Possible sources of
the autophagosomal membrane may include the endoplasmic reticulum (ER), mitochondria, Golgi
apparatus, plasma membrane, and recycling endosomes (Karanasios et al., 2016). At the elongation
and completion stage, the vesicle is further extended, curved, and closed to form the autophagosome,
which is a double-layer membrane structure with approximately 500 to 1,500 nm diameter (Hale
et al., 2013). This process requires two pivotal ubiquitin-like conjugation systems such as the
ATG5–ATG12 complex, which conjugates with ATG16L1, and the microtubule-associated protein 1
light chain 3 (MAP1LC3, commonly called LC3), which conjugates with the lipid
phosphatidylethanolamine (PE), commonly referred to as membrane-bound LC3-II (Klionsky
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and Schulman, 2014). During autophagy, LC3-I (LC3 precursor)
undergoes cleavage and lipidation to form LC3-II, which is a
crucial component of autophagosomes (Ogata et al., 2006). Next,
LC3-II is recruited to the two sides of the autophagosome and acts
as a receptor, which interacts with adaptor proteins like p62/
SQSTM1 (Hirano et al., 2016). At the maturation stage, the
autophagosome fuses with the lysosome to form an
autolysosome (Noda and Inagaki, 2015). Lastly, at the fusion
or degradation stage, the intracellular components are degraded
and released into the cytosol (Tanida et al., 2005).

It is worth noting that research on the relationship between
autophagy and RCC has become a subject of interest. Previous
studies have established that autophagy-related proteins could act
as promising prognostic biomarkers for the treatment of RCC (Q.
Deng et al., 2018; Guo et al., 2019; Nishikawa et al., 2015). Bray
et al. found that human RCCs have high basal autophagy which is
required for survival to mTOR inhibition (Bray et al., 2012). It is
attractive for autophagy inducers or inhibitors for the treatment
of RCC. Therefore, this study aims to explore the molecular
mechanisms of autophagy, focusing on the systematic analysis of
autophagy in RCC.

Autophagy-Related Proteins in RCC
Previously it was observed that Beclin1 is involved in assembling
Beclin 1-Vps34-Vps15 core complexes and inducing autophagy,
particularly under unfavorable conditions (R. Kang et al., 2011).
Additionally, Bcl-2 inhibited autophagy through binding to
Beclin1 (Grimaldi et al., 2015). Moreover, univariate and
multivariate analysis showed that the expression level of
Beclin1 appeared to be negatively correlated to the recurrence-
free survival (RFS) in 100 patients with non-metastatic renal clear
cell carcinoma (ccRCC) (Nishikawa et al., 2015). The high
expression of Beclin 1 was also identified in tissues and cells
of RCC (A498 and ACHN cell lines) (Guo et al., 2019).

The increased conversion of LC3-I to LC3-II is considered a
marker for the initiation of autophagy because of its aggregation
and localization on autophagosomes (Ogata et al., 2006). This
research has revealed that cell mobility in ccRCC, A498, and
ACHN cell lines is promoted by the up-regulated expression of
LC3 (Guo et al., 2019). Two reports showed that promoting
autophagy-related apoptosis resulted in down-regulation of LC3-
II levels in RCC tissues and cells (Grimaldi et al., 2015; M. L.; Li
et al., 2018). By contrast, Wang et al. found that LC3-II expression
levels in RCC cell lines (786-O, 769-P, OS-RC-2, ACHN cells)
were lower than those in a control cell line (HK-2 cell) (Wang
et al., 2018).

Importantly, low expression of ATGs that is related to the
process of autophagy nucleation, predicts poor prognosis in RCC
(X. D. Liu et al., 2015a; Yu et al., 2018). Liu et al. found that most
ccRCCs harbor allelic loss and/or mutation of ATG7. The
efficient ATG7 down-regulation suppressing autophagy in
RCC cell lines was evidenced by the down-regulation of LC3-
II (Q. Deng et al., 2018; Wang et al., 2018). Studies have
confirmed that the expression levels of ATG5-ATG12
conjugates is positively correlated with LC3-II aggregation and
Beclin1 expression in RCC (M. L. Li et al., 2018; Turcotte et al.,
2008).

P62/SQSTM1, a classical macroautophagy substrate, binds
directly to LC3 to degrade ubiquitinated protein (Pankiv et al.,
2007). Autophagy decreased P62 levels in RCC (Wu et al., 2015).
Furthermore, p62 amplification on chromosome 5q was linked to
renal cancer tumorigenesis (Mathew et al., 2009).

Autophagy-Related Tumor Suppressor
Genes in RCC
Research has shown that genetic dysregulation of autophagy is a
key characteristic of different subtypes of RCC (X. D. Liu et al.,
2015b). The Von Hippel-Lindau (VHL) tumor suppressor is lost
on the short arm of chromosome 3 in the majority of ccRCC
(80%). It is well known that loss of VHL leads to induction of the
hypoxia inducible factor (HIF), which in turn promotes tumor
growth (Gossage and Eisen, 2010). Mikhaylova et al.
demonstrated that VHL regulated autophagy in ccRCC. They
found that inhibition of autophagy by knockdown of ATG5
resulted in the massive death of VHL(-) cells as compared to
VHL(+) cells, indicating that VHL(-) cells could be more
dependent on autophagy and therefore more sensitive to
inhibition (Mikhaylova et al., 2012). VHL(-) cells also
facilitate, in a HIF-independent manner, intracellular nutrients
by activation of LC3B-mediated autophagy, which are necessary
for tumor growth. Recently, it was reported that VHLmutation in
RCC cells induced autophagy by up-regulating the inositol 1,4,5-
trisphosphate receptor, type 1 (ITPR1) (Messai et al., 2014).

Folliculin (FLCN) is a tumor suppressor gene that is deficient
in Birt-Hogg-Dube syndrome (BHD), a disorder that features
renal carcinoma of multiple histological types including hybrid
oncocytic RCC, chromophobe RCC, oncocytoma, multiple and
bilateral clear cell RCC (Verine et al., 2010). FLCN protein
expression is reduced in ccRCC following loss of VHL, and it
predicts poor prognosis of RCC (Schmidt et al., 2005). Previously,
Bastola et al. illustrated that FLCN promoted autophagy
processes by activating the mTORC1 activity in ccRCC cell
lines. This indicates that FLCN contributes to the tumor-
suppressing effect of VHL (Bastola et al., 2013). Subsequently,
Zhang et al. found that paclitaxel-induced autophagy prevented
the apoptosis of FLCN-deficient RCC cells. Thus, paclitaxel
combined with autophagy inhibitors might be an effective
treatment for FLCN-deficient RCC (Zhang et al., 2013).

P53 is up-regulated in tumor tissues, where it may inhibit
tumor progression via autophagy. Recent studies have shown that
p53 has dual effects in autophagy depending on the subcellular
localization. Nuclear p53 facilitates autophagy whereas
cytoplasmic p53 inhibits autophagy (Tang et al., 2015; White,
2016). Autophagy also regulates p53. Previously, Kang and Ku
et al. found that, in RCC cell lines, transglutaminase 2 (TGase 2),
an enzyme regulating covalent crosslinking between protein
glutamine and lysine residues, cross-linked p53 into the
autophagosome, thereby down-regulating p53 (J. H. Kang
et al., 2016; Ku et al., 2013). After the treatment of
chloroquine (CQ) and MG132, the binding of p53 with TGase
2 and p62 was potentiated (Ku et al., 2013).

A DNA senor in the cytoplasm that could bind to double-
stranded DNA (dsDNA) to cause inflammatory cell death, called
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pyroptosis (Rathinam et al., 2010), is absent in the tumor
suppression melanoma 2 (AIM2). AIM2 enhances the
expression of autophagy-related genes in vitro and in vivo.
The low expression levels of AIM2 in RCC reduce autophagy
and promote tumorigenesis (Chai et al., 2018).

Autophagy-Related lncRNAs in RCC
Long non-coding RNAs (lncRNAs) are a class of RNAs that are
more than 200 nucleotides in length and could not be translated
into proteins (Hong et al., 2017). The silencing of a lncRNA,
known as the HOXA transcript at the distal tip (HOTTIP), can
induce autophagy by increasing a multitude of autophagy-related
genes including Beclin1, LC3B, and LAMP2 through the PI3K/
Akt/Atg13 signaling pathway (Su et al., 2019). A recent study by
Shao et al. suggested that the lncRNA, a Secretory Carrier
Membrane Protein 1 (SCAMP1), inhibited RCC tumorigenesis
through activating autophagy in RCC cells (Shao et al., 2019).

Autophagy-Related Signaling Pathways
in RCC
PI3K/Akt/mTOR Pathway
Even though there are two forms of mTOR in mammals, most
studies only pay attention to mTOR1 because of its sensitivity to
rapamycin. The activation of the PI3K/Akt pathway enhances cell
survival by inhibiting apoptosis and promoting cell cycle
progression by activating mTORC1, thereby inhibiting
autophagy (Ren et al., 2016; Deng et al., 2018). For example,
Hongyan et al. found that NVP-BEZ235, a novel dual PI3K/
mTOR inhibitor, induced cell apoptosis and autophagy in RCC
(H. Li et al., 2013). Furthermore, Antonaci et al. indicated that
dimethyl sulfide (DMS) induced autophagy in Caki-1 cells
through PI3K/AKT/mTOR/p70S6K pathways (Antonaci et al.,
2019). Sunitinib blocking the Akt/mTOR/p70S6K pathway has
resulted in autophagy activation in vivo and in vitro (M. L. Li
et al., 2018). Deng et al. also reported that sinomenine induced
cell apoptosis and autophagy in ACHN cells by making the PI3K/
Akt/mTOR signaling pathway inactive (F. Deng et al., 2018).
These results suggest that the PI3K/Akt/mTOR signaling
pathway and autophagy are important avenues for the
prevention and treatment of RCC.

AMPK/mTOR Pathway
During metabolic stress, high AMP/ATP ratio adenosine
activates monophosphate-activated protein kinase (AMPK).
AMPK then inhibits mTOR by activating the TSC1/TSC2
protein heterodimer, which results in autophagy activation
(Kim et al., 2011). In addition, the AMPK pathway modulates
autophagy via an alternative mechanism, in which AMPK
stimulates ULK1 and facilitates autophagy due to the
phosphorylation of Ser317 and Ser777 (Kim et al., 2011). A
recent study found that silibinin repressed the phosphorylation
levels of mTOR, increasing the level of AMPK, and markedly
promoting the expression of the autophagy marker LC3-Ⅱ.
Moreover, the effects of silibinin on mTOR and autophagy
were reversed by compound C, a pharmacological inhibitor of
AMPK (F. Li et al., 2015). It has also been reported that curcumin

has activated autophagy in 786- O and ACHN (5 and 20 μM) via
the AMPK signaling pathway (Q. Deng et al., 2018). Resveratrol
also induced autophagy of Ketr-3 cells by activating p53/AMPK/
mTOR leading to apoptosis of RCC cells (Q. Liu et al., 2018).
Among these, the AMPK/mTOR pathway is the primary
regulator of autophagy in RCC.

The Dual Roles of Autophagy in RCC
Although evidence that autophagy regulates both cell survival and
death is available, it is not clear why autophagy has dual effects.

Activation of autophagy suppresses tumors by eliminating
dysfunctional proteins and damaged cellular organelles and
maintaining host defenses (Liang and Jung, 2010). Reduced
and aberrant expression of autophagy genes and proteins may
affect various aspects of RCC pathology. It has been reported that
the cytoprotective enzyme heme oxygenase-1(HO-1) down-
regulated autophagy-related proteins Beclin-1 and LC3B-Ⅱ in
renal cancer cells (Banerjee et al., 2012). Wang et al. found that
activation of autophagy by Atg7 and LC3-Ⅱ overexpression
suppressed cell proliferation in 786-O, 769-P, OS-RC-2,
ACHN human RCC cell lines in vivo and in vitro (Wang
et al., 2018).

On the other hand, autophagy protects some tumor cells
against low-oxygen conditions and nutrient deprivation, which
are the main characteristics of tumor microenvironments
(Katheder et al., 2017). In VHL-deficient RCC cells, EPAS1, a
type of hypoxia-inducible factor, is not degraded but accumulated
targeting ITPR1. Meanwhile, ITPR1 regulates sensing a yet
undefined signal derived from NK cells to activate autophagy.
Activation of autophagy in RCC cells results in the degradation of
NK-derived granzyme B (GZMB) which compromises the NK-
mediated killing of tumor cells (Messai et al., 2014; Messai et al.,
2015). It has also been proven that ITPR1 regulates the NK-
mediated killing of RCC cells through the activation of autophagy
(Messai et al., 2015). Researchers have reported that various
chemotherapeutic drugs for RCC may increase the autophagic
flux of RCC cells, and chemotherapeutic drugs combined with
autophagy inhibitors may be more effective in controlling RCC
progression. For example, temsirolimus (TEM), an mTOR
inhibitor, showed good performance on advanced RCC (Voss
et al., 2011). However, the effect of TEM is transient in most
patients. A study showed that autophagy had protective
mechanisms in the regulation of resistance to TEM in RCC
(Singla and Bhattacharyya, 2017; Chow et al., 2020).
Moreover, the inhibition of autophagy with CQ increased the
risk of TEM-induced cell death (Singla and Bhattacharyya, 2017).
The Kringle 1 domain of human hepatocyte growth factor
(HGFK1) was found to enhance the anti-tumor activities of
sorafenib and reverse resistance to this drug in RCC via the
inhibition of autophagy (Gao et al., 2019). Recently, a phase I/II
trial in patients with RCC showed that the autophagy inhibition
achieved by hydroxychloroquine enhanced the anti-tumor effects
of mTOR inhibitors (Haas et al., 2019). The PI3K/mTOR dual
inhibitor NVP-BEZ235 (50, 100 or 500 and 1,000 nM) induced
786-0 cells apoptosis and autophagy by increasing LC3-Ⅱ and
decreasing p62. Autophagy inhibitors significantly potentiated
the anticancer effect of NVP-BEZ235 (H. Li et al., 2013).
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Autophagy and Therapy in RCC
Autophagy Inducers as Treatments for RCC
Studies have reported that the activation of autophagy may exert
therapeutic effects against RCC, some of which are shown in
Table 1. Mutations and/or inactivation of the VHL tumor
suppressor gene exist in most RCC and are relevant to poor
prognosis. Turcotte et al. (Turcotte et al., 2008) designed a
compound, STF-62247, which selectively targeted VHL-
deficient cells in vitro and in vivo. The compound enhanced
autophagy by influencing Golgi trafficking and PI3K passage in
VHL-deficient cells. VHL is a significant negative regulator of
HIF-a. They found that STF-62247 induced autophagy in a HIF-
independent manner. The VHL-deficient RCC was more
sensitive to STF-62247 compared to cells with wild-type VHL,
establishing a synthetic lethal situation due to the combining drug
treatment and VHL deficiency. In addition, STF-62247 increased
the radiosensitivity of VHL-deficient RCC cells and 786-O cells
by inducing autophagy (Anbalagan et al., 2012). Ubenimex
induced RCC cell death by upregulating autophagy, as
evidenced by increased LC3B (S. Liu et al., 2015c). (R)-
goniothalamin and (S)-goniothalamin, a pair of styryllactone
enantiomer extracted from plants of the genus Goniothalamus,
induced the death of human kidney cancer cells (786-0) primarily
by enhancing the expression of LC3B (de Fatima et al., 2008).
Silibinin is a flavonoid derived from the seeds of milk thistle. The
study showed that autophagy induction by silibinin positively
contributing to its anti-metastatic capacity in human RCC cells
(ACHN and 786-O) by increasing the expression of LC3-II and
enrichment of autophagolysosome vacuoles via the AMPK/
mTOR pathway (F. Li et al., 2015). Resveratrol induced Ketr-3
cells apoptosis by triggering ATG5 and ATG7 expression through
p53-mediated AMPK/mTOR signaling (Q. Liu et al., 2018). In
ACHN cell lines, sinomenine, an isoquinoline extracted from
Sinomenium acutum, inhibited RCC progression by inducing
autophagy via Beclin1 and LC3-Ⅱ/LC3-Ⅰ up-regulation and
p62 down-regulation (F. Deng et al., 2018). Rasfonin (A304), a
product of Talaromyces sp, activates the death of RCC cells by
inducing autophagy, and this effect could be suppressed by the
Akt inhibitor (Lu et al., 2015; Sun et al., 2016).

Autophagy Inhibitors for the Treatment
of RCC
As discussed in previous sections, autophagy may be a survival
mechanism in most cellular contexts as it prevents or delays
cancer cell death (Altman and Rathmell, 2012). In cancer cells
exposed to stress stimuli such as hypoxia, nutrient deficiency,
and chemotherapy, autophagy is activated as a protective
mechanism to maintain the survival of cancer cells (Mathew
andWhite, 2011). It has been found that autophagy induced by
heteronemin partially antagonized cytotoxicity and apoptotic
signaling in human renal carcinoma A498 cells (Wu et al.,
2015). Chauhan et al. demonstrated that autophagy inhibitors
enhanced apoptosis in A498 cells (Chauhan et al., 2017).
Therefore, autophagy is considered a novel therapeutic
target (Table 1).

Grimaldi et al. identified that chloroquine (CQ) improved the
efficacy of everolimus and sunitinib by down-regulating
autophagy in RCC cells (Grimaldi et al., 2015; M. L.; Li et al.,
2018). Similar to CQ, hydroxychloroquine (HCQ) inhibits
autophagy via deacidifying the lysosome to block its fusion
with autophagosome (Levy et al., 1997). Four clinical trials of
autophagy are currently ongoing to test the performance single
HCQ or its combination with other drugs on RCC (Levy et al.,
1997). Elsewhere, it was found that paclitaxel-activated apoptosis
induced by the inhibition of autophagy with 3-Methyladenine (3-
MA) and bafilomycin significantly enhanced in FLCN-deficient
RCC cells (Zhang et al., 2013). Interestingly, bafilomycin A1 was
found to block autophagy by inhibiting the fusion of
autophagosome and lysosome. Hence, a combination of
autophagy inhibitors and other therapies may effectively
control RCC.

CONCLUSION

Autophagy is modulated by multiple intracellular processes in
varied stressful conditions, such as during organelle dysfunction,
nutrient deprivation, and anticancer therapy. The data reviewed

TABLE 1 | Modulate autophagy compounds.

Compound In vitro/in vivo Target Regulate
autophagy

Biological role Refernces

STF-62247 in vitro and in vivo LC3-Ⅱ Induce Cell death (+) Anbalagan et al. (2012)
Ubenimex in vitro LC3B Induce Cell death (+) Liu et al. (2015)
(R)-goniothalamin and (S)-
goniothalamin

in vitro LC3B Induce Cell death (+) de Fatima et al. (2008)

Silibinin in vitro and in vivo LC3-Ⅱ Induce Metastasis (−) F. Li et al. (2015)
Resveratrol in vitro ATG5, ATG7 Induce Apoptosis (+) Q. Liu et al. (2018)
Sinomenine in vitro Beclin1, LC3-Ⅱ/LC3-

Ⅰ, p62
Induce Apoptosis (+) F. Deng et al. (2018)

Rasfonin in vitro LC3-Ⅱ, p62 Induce Apoptosis (+),
necroptosis (+)

Sun et al. (2016)

Chloroquine in vitro Deacidifying the lysosome Inhibit Apoptosis (+) Grimaldi et al. (2015)
3-Methyladenine in vitro LC3-Ⅱ Inhibit Apoptosis (+) Zhang et al. (2013)
Bafilomycin A1 in vitro Deacidifying the lysosome Inhibit Apoptosis (+) Zhang et al. (2013)

(+) � increased, (-) � decreased.
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here show that autophagy has a dual role in the initiation,
progression, treatment, and drug resistance of RCC. In general,
autophagy suppresses tumor development by eliminating oxidative
stress, maintaining genomic stability, and reducing dysfunctional
proteins in RCC. However, chemotherapies targeting RCC activate
autophagy inducing drug tolerance and hence promote tumor
progression. This indicates that drugs that restrain autophagy
could be effective treatments for RCC. In other words,
chemotherapies combined with autophagy inhibitors may be
more effective, especially for chemotherapy-resistant RCC.
Studies have documented that autophagy regulators may
regulate the AMPK/mTOR and PI3K/Akt/mTOR signaling

pathways to confer therapeutic effects in RCC. Further research
is needed to reveal the clinical significance of autophagy inhibitors
and activators in RCC.

How to control and exploit autophagy for diagnostics and
treatment in RCC needs further discussion. We believe that
further research on autophagy will lead to the design of
important therapeutic strategies for the treatment of RCC.
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