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Abstract
Background  Cognitive impairment is an important and diverse symptom of Parkinson’s disease (PD). Sex is a purported 
risk variable for cognitive decline in PD, but has not been comprehensively investigated.
Objectives  This cross-sectional and longitudinal study examined sex differences in global and domain-specific cognitive 
performance in a large PD cohort.
Methods  Cognitive function was evaluated using the Addenbrooke’s Cognitive Examination in 392 people with PD (PwP) 
from the Australian Parkinson’s Disease Registry. The influence of sex on domain-specific cognitive performance was inves-
tigated using covariate-corrected generalised linear models. In a repeated measures longitudinal subset of 127 PwP, linear 
mixed models were used to assess the impact of sex on cognition over time, while accounting for covariates.
Results  Cross-sectional-corrected modelling revealed that sex was significantly predictive of cognitive performance, with 
males performing worse than females on global cognition, and memory and fluency domains. Longitudinally, sex was sig-
nificantly predictive of cognitive decline, with males exhibiting a greater reduction in global cognition and language, whereas 
females showed a greater decline in attention/orientation, memory and visuospatial domains, despite starting with higher 
baseline scores. At follow-up, a significantly higher proportion of males than females fulfilled criteria for mild cognitive 
impairment or PD dementia.
Conclusions  Sex was revealed as a significant determinant of overall cognitive performance as well as specific cognitive 
domains, with a differential pattern of decline in male and female participants. Such sex-specific findings appear to explain 
some of the heterogeneity observed in PD, warranting further investigation of mechanisms underlying this sexual dimorphism.
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Introduction

Cognitive impairment is an often devastating and debilitat-
ing non-motor symptom of Parkinson’s disease (PD) [1, 2]. 
Upwards of 40% of people with Parkinson’s disease (PwP) 
develop some form of cognitive impairment, with a subset 
progressing from mild cognitive impairment (MCI) to a 
more severe Parkinson’s disease dementia (PDD) [1]. Peo-
ple often display executive dysfunction and attentional def-
icits in the early stages of the PD [3, 4] and progressively 
experience deficits in memory and visuospatial processing 
in the latter stages of the disease [3, 5]. However, cognitive 
deficits do not present in all PwP and can become apparent 
at any stage of the disease. Furthermore, the heterogeneity 
in both the presentation and rate of cognitive decline pre-
sents a challenge in the management and treatment of PD.

Studies examining demographic and clinical factors 
have identified increasing age, lower education levels, 
increasing disease duration, and motor symptom severity, 
among others, as contributing to susceptibility of cognitive 
impairment in PD [5]. Of these factors, patient sex not only 
influences disease risk [6, 7], but the presentation of sev-
eral non-motor symptoms [8–10]. Sex is known to be an 
important factor when considering cognition [11–13], with 
sexual dimorphism observed across all ages in healthy 
populations [14–16]. Although sex associations within 
PD are well reported, there is a lack of studies investigat-
ing sex-specific effects on individual cognitive domains, 
as well as longitudinal cognitive domain-specific decline 
in PD. Prior studies examining the effect of sex have been 
cross sectional in nature [5, 9, 10, 12, 17–19], or have not 
considered the effect in various cognitive domains [20].

This study utilised a cohort of Australian PwP to assess 
the influence of sex on global and domain-specific cogni-
tive performance. Further, a longitudinal subset of PwP 
was followed up to investigate the influence of sex on 
cognitive decline. It was thought that global and domain-
specific sex differences in the architecture of cognitive 
ability and decline would be seen.

Methods

Participants

Three hundred and ninety-two home-based PwP (64.5% 
males, 35.5% females) were recruited sequentially into 
the Australian Parkinson’s Disease Registry (APDR) as 
previously described [8, 21]. In brief, participants were 
enrolled from Movement Disorders Clinics at the Per-
ron Institute for Neurological and Translational Science 

(Perth, Western Australia), St. Vincent’s Hospital (Mel-
bourne, Victoria), and Royal North Shore Hospital (Syd-
ney, New South Wales), between 2012 and 2019. Indi-
viduals with a prior diagnosis of dementia, diffuse Lewy 
body disease, or other neurological disorders or disabling 
medical conditions were excluded. All PwP were exam-
ined by movement disorder neurologists prior to inclusion 
in the study for verification of the diagnosis in accordance 
with the UK Brain Bank criteria for idiopathic PD [22]. 
For longitudinal studies, a subset of participants (n = 127, 
62% males, 37% females) were followed up for between 1 
and 7 years following initial assessment. This subsection 
of participants did not include those enrolled through the 
Royal North Shore Hospital, though did include those par-
ticipants who were still able to attend Movement Disorder 
Clinics in Perth and Melbourne. This study was approved 
by the Human Research and Ethics Committees (Approval 
number 2006/073 and Approval number RA/4/20/4470). 
Written informed consent was obtained from all partici-
pants, in accordance with the Australian National Health 
and Medical Research Council guidelines.

Clinical assessments of PwP

Clinical evaluations included collection of patient demo-
graphic variables and medication dosage, assessments of 
motor and cognitive function, and other disease-related fea-
tures (Table 1). Parkinsonian medications were converted 
to a total levodopa equivalent daily dose (LEDD), based on 
a previously reported conversion equation [23], 24]. Motor 

Table 1   Clinical characteristics of the cross-sectional PD cohort 
(n = 392)

SD standard deviation, % percentage, LEDD levodopa equivalent 
daily dose, DBS deep brain stimulation, MDS-UPDRS III Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale III, H&Y 
Hoehn & Yahr

Clinical characteristics Mean (SD) or n (%)

Age at assessment (years) 64.8 (9.2)
Age at onset (years) 56.9 (10.2)
Disease duration (years) 7.9 (5.7)
Sex
 Male 253 (64.5%)
 Female 139 (35.5%)

Medication naïve
 Yes 32 (8.2%)
 No 360 (91.8%)

LEDD (mg/day) 889.5 (579.6)
DBS
 Yes 40 (10.2%)
 No 352 (89.8%)

H&Y 1.8 (0.9)
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symptoms were evaluated in the ‘ON’ state using the Move-
ment Disorder Society-Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS) Part III, and Hoehn and Yahr (H&Y) 
Scale [25].

Cognitive testing

Each participant was evaluated by a trained cognition 
researcher and completed a panel of standardised neuropsy-
chological assessments, as previously described [8, 21]. In 
addition, cognitive function was assessed in this study using 
the revised ‘Addenbrooke’s Cognitive Examination’ (ACE-
R). The ACE-R is a brief, 20-min screening battery, which 
provides an evaluation of global cognitive function (total 
possible score of 100), as well as domain-specific assess-
ment of attention, orientation, memory, verbal fluency, 
language, visuospatial and perceptual abilities [26, 27]. In 
similar cohorts to the current cohort, pre-determined cut-
off ACE-R scores of ≤ 88 and ≤ 82 have been validated as 
markers of MCI [28] and PDD [26], respectively. In the cur-
rent cohort, as previously determined in academic literature, 
these scores were used to indicate probable cases of MCI 
and PDD, respectively. Though these were not taken as diag-
nostic of MCI nor PDD.

Statistical methods

Data were analysed using IBM SPSS (version 26, IBM Cor-
poration). Variables were described using mean and standard 
deviation (in brackets, SD), or frequency and percent (in 
brackets, %), as appropriate. Continuous variable distribu-
tions were assessed using the Shapiro–Wilk test of normal-
ity. Sex differences for clinical characteristics were assessed 
using independent t tests (or non-parametric Mann–Whitney 
U test) or Chi square. A significant nominal p value of < 0.05 
was employed for all statistical tests.

For cross-sectional analysis, naïve generalised linear 
models (GLM) were used as univariate models to assess 
whether patient clinical characteristics were associated with 
total and sub-scale cognitive scores, and were, therefore, 
covariates of cognition. Variables included age at time of 
first assessment, age at disease onset, disease duration, 
LEDD and deep brain stimulation (DBS) history. Thus, vari-
ables identified as being statistically significant in univari-
ate models were considered covariates and were included in 
the multivariable-corrected GLMs. Such corrected models 
assessed the impact of sex on cognitive performance while 
accounting for covariates.

For longitudinal studies, trends of mean clinical assess-
ments and patient clinical characteristics were assessed over 
time using generalised linear mixed models (GLMMs). 
Naïve GLMMs were used as univariate models to assess 
whether the patient clinical characteristics were significantly 

associated with cognitive total and sub-scale scores over-
time, and were, therefore, covariates of cognitive decline. 
Variables assessed included years between assessments, age 
at assessment, age at disease onset, disease duration, LEDD 
and DBS history. Finally, variables identified as being sta-
tistically significant in univariate models were considered 
covariates and were included in the multivariable-corrected 
GLMMs. Such corrected models were constructed to study 
the effect of sex on cognition over time, whilst controlling 
for covariates previously identified as being risk factors for 
the progression of cognitive impairment in PD.

Akaike information criterion (AIC) was used to compare 
model fit, where a lower value indicated better model fit. 
Residual plots were examined for all models and no viola-
tions were noted. To evaluate the association between sex 
and progression to probable MCI or PDD, two methods 
were used. First, taking the “onset” of MCI or PDD as the 
endpoint, survival curves for males and females were esti-
mated by the Kaplan–Meier method. To compare the sur-
vival curves, the log rank test was applied, placing weight 
on longer survival periods [29, 30]. Second, grouped partici-
pants with a follow-up period of more than 3 years (n = 70) 
were analysed using Chi square and binary logistic regres-
sion for naïve and corrected models, respectively (covariates 
included in corrected models identified in Supplementary 
Tables 1, 3).

Results

Demographics and clinical details of cross‑sectional 
cohort

Clinical and demographic information for the PD cohort at 
baseline is presented in Table 1. The cohort was predomi-
nated by males (64.5%), with participants having a mean 
age of 64.8 (9.2) years and a mean disease duration of 7.9 
(5.7) years. In this instance, 32 individuals were naïve of 
traditional parkinsonian medication, while in those on treat-
ment, the average LEDD was 889.5 (579.6) mg/day. Fur-
thermore, 10.2% of participants had undergone DBS, and 
participants had an average H&Y score of 1.8 (0.9). Overall, 
the cohort exhibited an average total ACE-R score of 88.89 
(10.83) (Table 2). Statistically significant sex differences 
were not observable between age at assessment, nor age of 
onset, nor disease duration. However, females were found to 
have significantly lower LEDD doses (784.49 mg/day) than 
males (949.52 mg/day; p = 0.008), and a higher proportion 
of males had undergone DBS (12.6%) than females (5.8%; 
p = 0.017). Therefore, these variables were included in fur-
ther statistical analyses. The relationship between cognitive 
scores and clinical characteristics is shown in Supplemen-
tary Table 1, which shows that total ACE-R scores, as well 
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as all subdomain scores, were significantly associated with 
age at assessment and disease duration.

Discriminatory effect of sex on cross‑sectional 
cognitive scores

Naïve GLMs revealed that sex was significantly associated 
with ACE-R subdomain scores, namely memory (p = 0.017), 
fluency (p = 0.002) and language (p = 0.018) (Table 2). Uni-
variate analysis (naïve GLMs) was completed to determine 
demographic and clinical variables associated with ACE-R 
total and sub-domain scores (Supplementary Table 1). Sig-
nificantly associated variables were treated as covariates 
and incorporated into corrected multivariable models inves-
tigating the role of sex in predicting cross-sectional cog-
nitive scores. Multivariable GLMs indicated that sex was 
significantly predictive of global cognitive performance, as 
measured by total ACE-R (p = 0.044), as well as subdomain 
scores for memory (p = 0.030) and fluency (p = 0.006), when 
controlling for covariates (Table 2). AIC for each model can 
be found in Supplementary Table 2, demonstrating corrected 
models as being a better fit than naïve models. Males exhib-
ited a mean total ACE-R score of 1.83 points lower than 
females, 0.92 points lower in the memory subdomain than 
their female counterparts, and 1.06 points lower in the flu-
ency subdomain (Table 2).

Longitudinal cohort information and clinical data

Clinical and demographic information for the longitudinal 
sub-cohort at baseline and follow-up is presented in Table 3. 
This sub-cohort remained predominated by males (63.0%), 

Table 2   Significance of sex differences in naïve and corrected linear regression models for ACE-R total and sub-domain scores

a Data are presented as mean raw scores (SD)
b p value taken from GLM without correction for covariates
c Corrected for age at assessment, age at onset, disease duration and LEDD, identified in Supplementary Table 1
d Corrected for age at assessment, disease duration, LEDD and DBS status, identified in Supplementary Table 1
e Corrected for age at assessment, age at onset, disease duration and DBS status, identified in Supplementary Table 1
f Corrected for age at assessment, disease duration and DBS status, identified in Supplementary Table 1
g Corrected for age at assessment, age at onset, disease duration and LEDD, identified in Supplementary Table 1
h Corrected for age at assessment, disease duration and DBS status, identified in Supplementary Table 1
ACE-R, Addenbrooke’s Cognitive Examination—Revised; SD, standard deviation

ACE-R variable Total mean (n = 392)a Male mean (n = 253)a Female mean (n = 139)a Naïve (p value)b Covariate cor-
rected (p value)

Total ACE-R 88.89 (10.83) 88.24 (10.53) 90.07 (11.29) 0.098 0.044c

Attention and orientation 17.37 (1.59) 17.28 (1.61) 17.53 (1.54) 0.143 0.289d

Memory 22.26 (3.77) 21.93 (3.96) 22.85 (3.33) 0.017 0.030e

Fluency 9.98 (3.33) 9.60 (3.55) 10.66 (2.77) 0.002 0.006f

Language 24.82 (1.94) 24.65 (2.11) 25.12 (1.56) 0.018 0.067g

Visuospatial-perceptual 14.66 (2.49) 14.55 (2.72) 14.85 (1.98) 0.253 0.685h

Table 3   Baseline and follow-up clinical characteristics of the longitu-
dinal PD sub-cohort (n = 127)

SD standard deviation, % percentage, LEDD levodopa equivalent 
daily dose, DBS deep brain stimulation, MDS-UPDRS III Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale III, H&Y 
Hoehn & Yahr, ACE-R Addenbrooke’s Cognitive Examination—
Revised

Clinical characteristics Mean (SD) or n (%)

Baseline Follow-up

Follow-up interval (years) – 3.0 (1.9)
Age at assessment (years) 63.1 (9.5) 66.1 (9.2)
Age at onset (years) 56.5 (10.6) 56.5 (10.6)
Disease duration (years) 6.7 (5.1) 9.6 (5.7)
Sex
 Male 80 (63.0%) 80 (63.0%)
 Female 47 (37.0%) 47 (37.0%)

Medication naïve
 Yes 11 (8.7%) 6 (4.7%)
 No 116 (91.3%) 121 (95.3%)

LEDD (mg/day) 829.3 (565.3) 886.6 (629.7)
DBS
 Yes 10 (7.9%) 16 (12.6%)
 No 117 (92.1%) 111 (87.4%)
 H&Y 1.6 (0.9) 2.3 (0.9)
 MDS-UPDRS III 17.8 (13.8) 26.3 (23.3)

ACE-R score
 Total 90.1 (8.1) 87.7 (11.3)
 Attention and orientation 17.4 (1.4) 17.2 (1.6)
 Memory 22.1 (3.7) 21.1 (4.5)
 Fluency 10.3 (3.1) 10.9 (2.9)
 Language 25.2 (1.3) 24.1 (2.8)
 Visuospatial-perceptual 14.9 (1.9) 14.4 (2.4)
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with participants having an average age of 63.1 (9.5) years 
and a disease duration of 6.7 (5.1) years at baseline. Mean 
time between assessments was 3.0 (1.9) years, which was 
consistent with mean age and disease duration for follow-up 
assessments (Table 4). At the time of initial assessment 11 
individuals were drug-naive, with five (5) of those individu-
als having begun anti-parkinsonian medications by the time 
of the follow-up assessment. In those who were on medica-
tion, the average LEDD was 829.3 (565.3) mg/day at initial 
assessment and 886.6 (629.7) mg/day at follow-up. Ten (10) 
participants were having DBS at baseline, and a further six 
(6) underwent the procedure during the follow-up period. 
Overall, the cohort exhibited an average total ACE-R score 
of 90.1 (8.1) at baseline which was reduced by 2.4 points 
over the assessment period. Mean ACE-R subdomain scores 
at both assessment points can be seen in Table 4.

Sex is predictive of performance in all cognitive 
domains over time

Naïve GLMMs revealed that sex was significantly associ-
ated with ACE-R total score (p = 0.005) as well as selec-
tive subdomain ACE-R assessment scores, namely memory 
(p = 0.006), fluency (p = 0.011) and visuospatial-perceptual 
(p = 0.028) (Table 4). Univariate analysis (naïve GLMs) 
was carried out to determine which demographic and clini-
cal characteristics were associated with ACE-R total and 
subdomain scores (Supplementary Table 3). Significantly 
associated variables were treated as covariates and incor-
porated into corrected multivariable models to investigate 
the predictive role of sex in longitudinal cognitive decline. 

Multivariable GLMMs indicated that sex was significantly 
predictive of global cognition, as measured by total ACE-R 
(p = 0.001), as well as all subdomain scores assessed 
(Table 4). AIC for each model can be found in Supplemen-
tary Table 4, exhibiting corrected models as being a better 
fit than naïve models in each instance.

Females exhibited higher mean baseline and follow-up 
scores across all facets of cognition examined, though to a 
varying degree dependent on which subdomain of cognition 
is considered (Table 4). However, the degree of change from 
baseline to follow-up was varied amongst cognitive domains 
and based on sex. Males experienced a reduction in mean 
global cognition of 3.02 points, compared to 1.37 points in 
females. Similarly, in the language domain, males experi-
enced a mean reduction of 1.3 points, 0.5 points more than 
that experienced by females. On the other hand, as shown 
in Table 4, the decline in attention and orientation, memory, 
and visuospatial-perceptual domains was greater in females 
than in males (Table 4).

Higher proportion of males progress to potential 
MCI or PDD over time

Following this, participants were grouped based on the 
pre-determined ACE-R cut-off scores, which were taken 
as indicative of a probable case of MCI or PDD, though 
not a definitive diagnostic marker. In exploring grouped 
comparisons, it was seen that the percentage of males and 
females classified as having scores reflective of potential 
MCI or PDD did not differ significantly between the sexes 
at baseline. However, the percentage of males potentially 

Table 4   Significance of sex differences in naïve and corrected generalised linear mixed models for total ACE-R total and sub-domain scores 
over time

a Data are presented as mean raw scores (SD)
b p value taken from GLMM without correction for covariates
c Corrected for age at assessment and age at onset, as identified in Supplementary Table 3
d Corrected for age at assessment and age at onset, as identified in Supplementary Table 3
e Corrected for age at assessment and age at onset, as identified in Supplementary Table 3
f Corrected for age at assessment and age at onset, as identified in Supplementary Table 3
g Corrected for years between assessments, age at assessment and age at onset, as identified in Supplementary Table 3
h Corrected for years between assessments, age at assessment and age at onset, as identified in Supplementary Table 3
ACE-R Addenbrooke’s cognitive examination—revised, SD standard deviation

ACE-R Males at baseline
(n = 80)a

Females at base-
line (n = 47)a

Males at follow-
up (n = 80)a

Females at follow-
up (n = 47)a

Naïve (p value)b Corrected 
(p value)

Total ACE-R 89.00 (8.56) 91.85 (6.99) 85.98 (12.53) 90.48 (6.99) 0.005 0.001c

Attention and orientation 17.26 (1.28) 17.64 (1.44) 17.04 (1.89) 17.34 (1.03) 0.069 0.049d

Memory 21.49 (3.77) 23.00 (3.51) 20.59 (4.85) 21.91 (3.73) 0.006 0.002e

Fluency 10.06 (3.44) 10.77 (2.53) 10.49 (2.99) 11.70 (2.44) 0.011 0.004f

Language 25.05 (1.31) 25.32 (1.14) 23.72 (3.23) 24.49 (1.71) 0.064 0.040g

Visuospatial-perceptual 14.71 (2.31) 15.40 (1.12) 14.21 (2.75) 14.72 (1.79) 0.028 0.011h
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classifiable as having MCI at follow-up was significantly 
higher than females (Fig. 1a, Naïve p = 0.009, Corrected 
p = 0.011). At baseline, 31.71% of males were considered 
to have a probable case of MCI, whereas at follow-up 
nearly 50% of males exhibited cognitive scores to warrant 
a probable MCI diagnosis (Fig. 1a). In addition, the per-
centage of males classified as having scores likely indica-
tive of PDD at follow-up was also significantly higher than 
females following naïve assessment (Fig. 1b, p = 0.040), 
but not following covariate correction (Fig. 1b, p = 0.078). 
Survival analysis, taking “MCI” or “PDD” onset as the 
endpoints, exhibited differences between males and 
females (Fig. 1c and d). There was a higher proportion 
of males progressing to what may be classifiable as MCI, 
though this was not statistically significant (Fig. 1c, Log 
rank p = 0.057). There was, however, a significant pro-
portion of males progressing to what may be classifiable 
as PDD when compared to females (Fig.  1d, log rank 
p = 0.015).

Discussion

The occurrence of cognitive impairment is known to be an 
important determinant of morbidity and impaired quality 
of life in PwP, as well as having a major impact on car-
egiver burden. Furthermore, the heterogeneity of cognitive 
impairment risk and varied trajectory of cognitive decline 
with disease progression represents a difficult barrier in 
understanding and managing this facet of PD. Importantly, 
studies have noted sex as a risk variable in the onset of 
cognitive impairment, both in PD and in other popula-
tions. However, there have been few previous comprehen-
sive investigations of sex-based differences in individual 
cognitive domains over time [31], as in the present study. 
Some prior studies have been purely cross sectional in 
nature [5, 9, 10, 12, 17–19], while longitudinal studies 
have not examined the sex-specific differences in various 
cognitive domains [20], or have not focussed primarily 

Fig. 1   Participants classified as MCI (a) and PDD (b) over time, cor-
rected for age at assessment and age at onset. Kaplan–Meier curves 
depicting the effect of sex on the proportion of participants classified 

as MCI (c) and PDD (d). % percentage, MCI mild cognitive impair-
ment, PDD Parkinson’s disease dementia
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on elucidating the impact of sex on cognition [32]. Here, 
our findings suggest that sex is a significant determinant 
of domain-specific cognitive performance, in agreement 
with prior literature. Furthermore, we show that sex is a 
significant predictor of cognitive decline over time, and 
of the likelihood of progressing to what may be consid-
ered a likely case of MCI. Interestingly, the proportion of 
females with cognitive scores that may potentially war-
rant a clinical diagnosis of MCI did not change longitu-
dinally, highlighting the role of investigating cognition 
at the domain-specific level. Such sex-specific findings 
appear to explain some of the heterogeneity observed in 
the cognitive symptomatology of the disease, warranting 
further investigation into the underlying mechanisms of 
this sexual dimorphism.

Cross-sectional analysis in the present cohort revealed 
an association between sex and cognition, with males per-
forming significantly worse than females in global cogni-
tion and in memory and fluency subdomains. Literature has 
reported sex differences in patterns of cognition in healthy 
young adults (ages 18–31) [15], as well as in adulthood and 
the ageing population [16]. In recent studies, young females 
were found to exhibit superior nonverbal reasoning skills 
and faster language decision-making than their male coun-
terparts [14, 15], a finding that has also been reflected in 
older cohorts [16]. To explain these differences, neuroimag-
ing studies have reported divergent patterns of brain connec-
tivity, with males exhibiting a greater connectivity between 
the left superior parietal lobule (SPL) and posterior superior 
temporal gyrus (STG), whereas females had a greater con-
nectivity between the left inferior frontal gyrus (IFG) and 
posterior STG [15, 33]. Furthermore, it was apparent that 
sex differences existed in inhibitory connections in these 
same regions. Apart from the SPL, such regions are typically 
associated with semantic fluency and language ability. The 
left posterior STG specifically contributes to the ability to 
produce sounds that form words (lexical phonology), as well 
as language comprehension and working memory [34, 35], 
and the functional connection between the IFG and posterior 
STG is involved in speech and language processing [36]. 
Whereas, the SPL is thought to be involved in spatial and 
visual perception [34]. These sex differences in structural 
and functional connectedness and networks may provide an 
explanation for the current findings of sex-specific changes 
in cognitive performance [13], whereby females had supe-
rior performance in fluency and memory. For instance, in the 
context of Parkinson’s disease, a number of the aforemen-
tioned structures have been implicated in patients with MCI 
and PDD [37, 38]. Notably, it has been reported that PwP 
who have MCI are more likely to have cortical thinning, 
particularly in the STG [39, 40]. Moreover, findings from the 
CamPaIGN study indicate that fluency tasks, which recruit 
structures of the temporal lobe, are associated with clinical 

presentation of cognitive impairment over time [5], results 
that are also reflected in the current cohort.

When examining cognition changes longitudinally in 
PwP, sex appeared to be a significant predictor of cognitive 
ability over time regardless of which domain was assessed. 
Overall, in global cognitive measures, males were noted to 
decline significantly more than females. Furthermore, it was 
observable that a higher proportion of males progressed to 
what could be considered as MCI, a clinically recognisable 
form of cognitive impairment. Such findings are reflective 
of current literature [9, 10, 17, 20]. Researchers have cited 
the neuroprotective effects of oestrogen as potentially play-
ing a role in this effect [11, 13]. Not only have oestrogens 
been found to play a role in dopaminergic neurodegenera-
tion in PD, but the hormone has been found to have favour-
able effects on neuroinflammation, oxidative stress and iron 
metabolism within the context of PD [41]. Furthermore, sex 
differences in microglial and astrocytic cells, such as their 
heightened sensitivity to inflammatory stimuli [42–44] and 
their anatomical distribution [45, 46], have been postulated 
to mediate sex differences in cognition and memory [47, 
48]. It is worthwhile considering that such results may be 
reflective of the superior baseline performance of females 
in cognitive measures than males or may be exacerbated by 
disease process, though prior research has found that sex-
specific progression to cognitive impairment cannot be fully 
explained by this baseline performance, nor disease duration 
[31].

While previous studies have focussed on progression 
to a clinically diagnosable form of cognitive impairment, 
namely MCI or PDD, our findings point to noteworthy 
domain-specific effects of sex over time. Though males 
appeared to perform worse overall, what did vary between 
facets of cognition was which sex was protected, the direc-
tionality of cognitive ability, and the rate of decline. For 
instance, despite females exhibiting consistently superior 
overall cognitive performance at baseline, females had a 
greater decline in attention and orientation, memory, and 
visuospatial-perceptual ability over time, compared to 
males. Whereas, males had a greater decline in the language 
domain than females. These findings suggest that there is a 
differential sex-effect on domain-specific cognitive decline, 
but it remains to be determined what the implications of 
these differential patterns of decline are for progression to 
dementia. Though studying clinically distinguishable MCI 
and PDD is of importance, we see here that females do not 
progress to a state that may be indicative of MCI or PDD 
to the same extent as males; however, they do experience a 
greater decline in certain domains of their cognition than 
males. Such sex-specific effects on the architecture of cogni-
tive decline may be of importance, and have not always been 
considered in the past. It is of particular interest because 
the decline seen in females here is in spite of their higher 
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baseline scores and the putative neuroprotective effect of 
oestrogen. The role that this hormone plays in the sexual 
dimorphism reported in this study, predominantly in regard 
to the domain-specific rate and directionality of cognitive 
ability over time, remains elusive and represents an area 
which requires further investigation.

Limitations

A number of limitations of the current study must be 
noted. First, at baseline, home-based PwP were recruited 
sequentially from three different movement disorder cen-
tres across Australia, which could have had the potential 
of introducing scoring variability. However, as the clinical 
assessments were performed by trained clinician-researchers 
this is unlikely to have had a significant impact on the data. 
Second, initial recruitment excluded individuals with more 
advanced PD and dementia, which is likely to have con-
tributed to a lower mean age of symptom onset and higher 
cognitive scores at baseline, and the cohort is, therefore, not 
truly representative of a community-based sample. Further 
to this, follow-up recruitment were not able to include all 
baseline participants, in part this was due to the advanced 
nature of disease severity, which may introduce a degree of 
bias. In addition, the cohort was not recruited based upon 
sex, which has resulted in an uneven balance of male and 
female participants and may have altered findings. However, 
the proportion of males to females in the study is reflective 
of PD incidence in prior literature. In turn, despite being a 
contributor to cognitive functioning, education levels were 
not able to be obtained. Thus, were not included in statistical 
analyses. Finally, as the ACE-R includes a paucity of tests 
of executive function [27]. Therefore, the present findings 
should be confirmed using other more comprehensive cog-
nitive testing protocols in larger longitudinal studies, while 
taking into consideration confounding variables that were 
not able to be included in this manuscript.

Conclusion

Here we report that sex is a significant determinant of cogni-
tive decline in PD, both cross sectionally and in a repeated 
measures longitudinal study. Males were seen to perform 
significantly worse when considering disease course over 
time, and showed a greater likelihood than females of pro-
gressing to a probable case of MCI and PDD. However, it 
was apparent that in spite of maintaining a higher overall 
level of cognitive performance, females did experience a 
selective decline in certain cognitive domains with disease 
progression, highlighting the importance of examining for 
subclinical cognitive impairment. While the extent to which 

the differential effects of disease progression are responsi-
ble for the observed sex differences in cognition remains 
unclear, it is likely that PD-related cortical and subcortical 
pathology, coupled with age-related changes, may exacer-
bate sex differences in the severity and trajectory of cogni-
tive decline. Overall, the results from this study support the 
consideration of sex in explaining some of the clinical het-
erogeneity observed in PD-related cognitive decline. Better 
understanding of the role of sex in the landscape of cognitive 
decline may help in stratifying different patterns of cognitive 
impairment and aid in the development of individualised 
treatment strategies for PwP.
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