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Abstract
In any outbreak of infectious disease, the timely quarantine of infected individuals along with preventive measures strategy

are the crucial methods to control new infections in the population. Therefore, this study aims to provide a novel fractional

Caputo derivative-based susceptible-infected-quarantined-recovered-susceptible epidemic mathematical model along with

a nonmonotonic incidence rate of infection. A new quarantined individual compartment is incorporated into the suscep-

tible-infected-recovered-susceptible compartmental model by dividing the total population into four subpopulations. The

nonmonotonic incidence rate of infection is considered as Monod–Haldane functional type to understand the psychological

effects in the population. Qualitative analysis of the study shows that the model solutions are well-posed i.e., they are

nonnegative and bounded in an attractive region. It is revealed that the model has two equilibria, namely, disease-free

(DFE) and endemic (EE). The stability analysis of equilibria is investigated for local as well as global behaviors.

Mathematical analysis of the model reveals that DFE is locally asymptotically stable when the basic reproduction number

ðR0Þ is lower than one. The basic reproduction number R0 is computed using the next-generation matrix method. The

existence of EE is shown and it is investigated that EE is locally asymptotically stable when R0 [ 1 under some appro-

priate conditions. Moreover, the global stability behaviors of DFE and EE are analyzed under some conditions using R0.

Finally, some numerical simulations are performed to interpret the theoretical findings.

Keywords Epidemic model � Quarantine compartment � Nonmonotonic incidence rate � Local and global stabilities �
Numerical simulation

1 Introduction

Mathematical models are playing a crucial role in under-

standing and controlling the spread of infectious diseases

since a very long time. Epidemiological researchers have

developed numerous models to understand the dynamics of

infectious diseases, such as SIR; SEIR; SIRS;SAIR;

SVEIRS; and many others (where S stands for susceptible,

A for alert, E for Exposed, V for vaccinated, I for Infected,

and R for recovered individuals) (Gumel et al. 2006; Goel

et al. 2020a, 2020b; Kumar and Nilam 2019; Kumar et al.

2019; Haung et al. 2010; Goel and Nilam 2019; Alexander

et al. 2004; Xu and Ma 2009; Wang 2002; Michael et al.

1999; Zhou and Wang 2022). In mathematical epidemio-

logical literature, many studies are based on classical and

integer-order derivatives, which are taken as a vital tool for

model formulation; for example, see Gumel et al. (2006),

Goel et al. (2020a), Kumar and Nilam (2019), Kumar et al.

2019), Alexander et al. (2004) and Wang (2002). In the last

few years, researchers are focusing on developing more

realistic models using Fractional-order derivatives instead

of integer order derivatives which provide more rich

dynamics of epidemic models; for example, see Matignon

(1996), Rostamy and Mottaghi (2016), Ahmed et al.

(2006), Ye and Xu (2019), Khan et al. (2020), Swati

(2022), Cui et al. (2022), Chatterjee et al. (2022) and Zhou

and Wang (2022).
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Fractional calculus is a special branch of mathematics

that deals with derivatives of fractional order, unlike the

ordinary derivative which is a local operator in nature. The

fractional-order derivative has a vital property called the

memory effect. As we all know that every biological

phenomenon has long-range temporal memory, therefore,

the use of the fractional-order derivative in epidemic

models instead of the integer-order derivative provides the

systems with long-term memory, which has been proven

more realistic. There are several definitions of fractional

order derivatives (Camargo and Oliveira 2015; Saad et al.

2018). The majorly used definition of fractional order

derivative is proposed by Caputo in 1967. Caputo frac-

tional-order derivative-based differential equations system

is one of the most used in the field of mathematical mod-

eling. In Caputo derivative-based equation systems, the

initial conditions can be expressed in the same manner as in

the integer-order based differential equations system. Also,

the Caputo fractional derivative has the same property as

an integer-order derivative, i.e., the derivative of a constant

is zero. This makes the Caputo fractional derivative more

popular and useful over other fractional derivatives such as

Riemann-Liouville, Grunwald-Letnikov fractional deriva-

tives, etc. Below is the definition and expression of the

Caputo fractional order derivative (Lu and Zhu 2018; Ye

and Xu 2019):

‘‘The Caputo fractional derivative of order a of a

function f ðxÞ 2 Cn x0;þ1½ �;Rð Þ is defined as

Da
xf xð Þ ¼ 1

Cðn� aÞ

Z x

x0

f nð ÞðXÞ
x� Xð Þaþ1�n

dX; ð1Þ

where x0 � x;C: is the Gamma function and n is the posi-

tive integer such that n� 1\a� n. When n ¼ 1, 0\a� 1,

we have.

Da
xf xð Þ ¼ 1

Cð1 � aÞ

Z x

x0

f 0ðXÞ
x� Xð Þa dX:

The spread of any infectious disease mainly depends on

the incidence rate. In epidemiology, the number of indi-

viduals who become infected per unit of time is known as

the incidence rate (Kermack and Mckendrik 1927; Kumar

and Nilam 2021; Goel and Nilam 2019). Kermack and

McKendrick (1927) introduced the first infectious disease

model using a bilinear incidence rate of the form bSI. This

bilinear incidence rate is based on the law of mass action,

which is inconsiderable for a large population. Therefore,

in lateral years, many researchers have modified this

bilinear incidence rate to the nonlinear incidence rates such

as the Holling type II, Crowley–Martin functional type,

Beddington–DeAngelish functional type, etc., to study the

dynamics of infectious diseases for a large population

(Kumar et al. 2019; Goel and Nilam 2019; Dubey et al.

2016; Shi et al. 2011; Liu et al. 1987). In 1986 Liu et al.

(Liu et al. 1986) suggested a general incidence rate of the

form:

f S; Yð Þ ¼ g Yð ÞS ¼ kYpS

1 þ aYq ð2Þ

In the above expression, g Yð Þ ¼ kYp

1þaYq is denoting the

nonmonotonic force of infection at the rate k, that is, g Yð Þ
is increasing when Y is small but it is decreasing when Y is

large. The incidence rate f ðS; YÞ can be used to interpret

‘‘psychological effects’’ by susceptibles, i.e., the infection

force may get reduced as the number of infected increases

for a large number of infected population because in such a

situation the number of contacts may tend to reduce for the

case p\q. The psychological effects can be observed on

the general public during the epidemic outbreak of SARS;

aggressive measures and policies, such as border screening,

mask-wearing, maintaining hygiene, etc., have been proven

very effective (Xiao and Ruan 2007) in reducing the

infective rate at the later stage of SARS outbreak, even

when the number of infective individuals was getting

increasing. In Eq. (2) when we consider p ¼ 1 and q ¼ 2

then Eq. (2) reduces to the following form:

f S; Yð Þ ¼ g Yð ÞS ¼ kYS

1 þ aY2
; where k; a[ 0: ð3Þ

where kY measures the infection force of the disease and
1

1þaY2 describes the psychological effect from the behavioral

change of susceptibles when the number of infectives is

very high. The parameter a measures the psychological

effect of disease on the population when the infective

individuals become sufficiently larger in society. The

expression of Eq. (3) is a nonmonotonic functional which

is also known as the simplified Monod–Haldane incidence

rate (Kumar and Nilam 2021).

Whenever an epidemic outbreak emerges, the quaran-

tine of infected people is an effective tool to reduce the

spread of the epidemic. Hence, the role of quarantine

people cannot be ignored in the spread control of the dis-

ease. In this study, to understand the impact of quarantine

people, a quarantine class of individuals is introduced into

the standard epidemic model for disease transmission

dynamics. The word quarantine is simply meant to the

situation of forced isolation or some restrictions on the

movement of infected individuals to control the disease

from spreading further. To reduce the new infection cases

among susceptibles, one can quarantine those infectives

who have tested positive. In the case of covid-19, quar-

antined people are those positively tested infected indi-

viduals who are staying in a separate room in the household

or a repurposed hotel, depending on the severity of infec-

tion and risk factors for developing the severity of the

disease as per the WHO report (World Health Organization
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2021). For the present study, in case of an outbreak of

infectious disease, infected individuals who are in hospitals

as per the severity of symptoms are also considered as

quarantined individuals. In 2002, Hethcote et al. studied the

effect of quarantine class with a bilinear incidence rate for

infectious disease in six epidemic models. Later, in 2017

Erdem et al., proposed the disease dynamics with the

imperfect quarantine of individuals for altering the influ-

enza infection in the population. In our study, it is supposed

that quarantined individuals do not mix up with other

individuals so they do not infect them, hence, they will not

cause further infection in the population, and do help in

reducing the incidence rate for new infection cases.

Motivated by the work of Kumar (2020); Michael et al.

1999; Erdem et al. 2017), the proposed work aims to study

the effect of nonmonotonic incidence and quarantine class

in disease transmission dynamics to achieve adequate

understanding in implementing measures to prevent and

control infectious diseases among people. For this purpose,

a susceptible-infected-recovered-susceptible epidemic

compartmental model is extended and proposed by intro-

ducing a quarantine class into it. In the model, it is assumed

that recovered individuals are having temporary immunity,

and with time they will lose the temporal immunity and

will become susceptible again. Some infected individuals

who are asymptomatic or do not seek medical attention or

have not tested positive remain in the infected class for

their entire infectious period. Further, it is assumed that

some infected individuals move to the recovered class due

to the auto-recovery or by adopting alternate therapies

other than medical intervention while other infected indi-

viduals who have tested positive and seeking sufficient

medical attention move into the quarantined class and will

remain there until they are no longer infectious and move

to recovered class. This paper also aims to provide a new

Caputo derivative-based fractional-order susceptible-in-

fected-quarantined-recovered-susceptible epidemic model

along with a nonmonotonic incidence rate and its mathe-

matically rich dynamics.

The rest of the paper is structured as follows: in Sect. 2,

the fractional-order mathematical epidemic model is pro-

posed, and some of its basic properties are presented. In

Sect. 3, the model equilibria and their local stability

behaviors are analyzed with the help of threshold value R0.

The Global stability behaviors of the model equilibria are

investigated using R0 and fractional order Lyapunov

function method (Boukhouima et al. 2020) in Sect. 4. In

Sect. 5, numerical simulations are performed using Matlab

2012b to validate the analytical studies. Finally, Sect. 6 is

dedicated to the discussion, and conclusion of the present

study.

2 Fractional-Order Epidemic Model and Its
Properties

This section is devoted to the formulation of a non-integer

Caputo derivative-based mathematical epidemic model.

For the development of the model, it is assumed that the

total population size is NðtÞ. Further, the total population is

divided into four subpopulations or classes, namely; sus-

ceptible S ðtÞ, infected YðtÞ, quarantine QðtÞ; and recovered

ZðtÞ, respectively. The susceptible class SðtÞ consists of

those individuals who can catch the infection by coming in

close contact with infected people. The infected class YðtÞ
consists of those individuals who have been caught by the

infection and can transfer the infection to susceptibles

under appropriate conditions. Quarantine class QðtÞ con-

sists of those infected people who are tested positive and

staying at their homes or hospitalized according to the level

of severity of infection. More explanation about quarantine

class has mentioned in Sect. 1. Recovered class ZðtÞ con-

sists of those individuals who have moved from Y tð Þ and

QðtÞ compartments due to auto-recovery and proper med-

ical treatment, respectively. It is assumed that recovered

individuals cannot have immunity for a long period,

therefore, they can recatch the infection, and hence, they

will become susceptible after a certain period. Let A denote

the constant recruitment rate of susceptible. Let b be the

transmission rate of disease among the susceptible popu-

lation, r be the psychological effect, c be the rate at which

recovered individuals move in S compartment. Let l be the

natural death rate, and parameters d1; d2 denote the dis-

ease-induced mortality rates in Y and Q classes, respec-

tively. The parameters x, h; and d denote the quarantine

rate, the auto-recovery rate of infectives, and the recovery

rate of quarantined people after medical attention, respec-

tively. Under the above assumptions, the following frac-

tional-order epidemic model is proposed:

da S tð Þ
dta

¼ A� lS� bSY
1 þ rY2

þ cZ;

da Y tð Þ
dta

¼ bSY
1 þ rY2

� lþ d1 þ xþ hð Þ;

da Q tð Þ
dta

¼ xY � lþ d2 þ dð ÞQ;

da Z tð Þ
dta

¼ hY þ dQ� lþ cð ÞZ:

:

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ

Subject to the conditions:

S 0ð Þ ¼ S0 [ 0; Y 0ð Þ ¼ Y0 � 0;Q 0ð Þ ¼ Q0 � 0; Z 0ð Þ
¼ Z0 � 0 ð5Þ

Here, da

dta ¼ Da
t is taken in the form of the Caputo

derivative of order a such that 0\a� 1.
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In the proposed model (4), the term bSY
1þrY2 denotes the

non-monotonic force of infection at the rate b.

For biological reasons, all model parameters are sup-

posed to be positive. The list of all variables and parame-

ters of the model (4) is given below in Table 1.

Now, the following lemmas are being provided of the

fractional calculus to derive the basic properties of the

model (4).

Lemma 1 (Odibat and Shawagfeh 2007), Consider that

a 2 ð0; 1� and the functions f ðtÞ 2 C½a; b� and its frac-

tional derivative Da
t f ðtÞ 2 C½a; b�. Then, we get that for all

t 2 ½a; b�,

f tð Þ ¼ f að Þ þ 1
a
da

dta f nð Þ t � að Þa, where n 2 ½a; t�.
It is observed that for a ¼ 1 above Lemma 1 reduces to

the classical mean value theorem.

Lemma 2 (Podlubny 1999), Consider a1 [ 0; a2 [ 0 and

c 2 C. Define y tð Þ ¼ ta2�1Ea1
;a2
ð�cta1Þ, where Ea1

;a2
ðzÞ

denotes the two-parameter Mittag–Leffler function along

with parameters a1 and a2.Then the Laplace transforma-

tion of y is given by

L y tð Þ½ � ¼ sa1�a2

sa1 � c
:

Lemma 3 (Podlubny 1999), Assume that a2 is an arbitrary

real number. If a1\2, then there exists a constant CE such

that, for all z in the complex plane,

jEa1
;a2

zð Þj � CE

1 þ jzj

Now, we state and prove the following theorems for the

basic properties of the model (4) below:

Theorem 1 All the solutions of the proposed mathematical

epidemic model (4) with initial conditions given by Eq. (5)

are non-negative.

Proof Consider that S 0ð Þ[ 0 at t ¼ 0. Firstly, we have to

prove that S tð Þ� 0 8 t� 0. On contrary, assume that

SðtÞ� 0 is not true. Then, there exists a s1 [ 0 such that

S tð Þ ¼
[ 0 if 0� t\s1

¼ 0 if t ¼ s1

\0 if s1\t\s1 þ �1

:

8><
>: ð6Þ

where �1 [ 0 is assumed sufficiently small. From the

first equation of the model (4), we get,
daS tð Þ
dta

���
t¼s1

¼ Aþ cZ[ 0. From Lemma 1, for any

0\�1 	 1, we have.

S s1 þ �1ð Þ ¼ S s1ð Þ þ 1

a
da

dta
S nð Þ�a1 where s1 � n� s1 þ �1

consequently, we get S s1 þ �1ð Þ� 0, which is a contra-

diction of Eq. (6) that S tð Þ\0 for s1\t\s1 þ �1. There-

fore, we get that S tð Þ� 0 8 t� 0.

Next, we have to show that Q tð Þ� 0 8 t� 0. Again, we

shall complete this by the method of contradiction. Sup-

pose that QðtÞ� 0 is not true. Then, there exists a s2 [ 0

such that

Q tð Þ ¼
[ 0 if 0� t\s2

¼ 0 if t ¼ s2

\0 if s2\t\s2 þ �2

:

8><
>: ð7Þ

where �2 [ 0 is assumed sufficiently small. From the third

equation of the proposed model (4), we get,
daQðtÞ
dta

���
t¼s2

¼ xY

[ 0. From Lemma 1, for 0\�2 	 1, we have.

Q s2 þ �2ð Þ ¼ Q s2ð Þ þ 1

a
da

dta
Q nð Þ�a2 where s2 � n� s2 þ �2

As a result, we obtain Q s2 þ �2ð Þ� 0, which is a con-

tradiction of Eq. (7) that is Q tð Þ\0 for s2\t\s2 þ �2.

Therefore, we get that Q tð Þ� 0 8 t� 0.

Similarly, we can show that Y tð Þ� 0 and Z tð Þ� 0 for all

t� 0. Therefore, as a consequence, all the solutions

ðS tð Þ; Y tð Þ;Q tð Þ; Z tð ÞÞ of the model (4) with initial condi-

tions (5) are non-negative.

Theorem 2 The region R ¼ S; Y ;Q;Zð Þ 2 R4
þ : 0\Sþ

�
Y þ Qþ Z�P;P�CE

A
lg is an attractive region of the

model (4), where CE is a constant described in Lemma 3.

Proof Adding all the equations of the model (4), we get

the following fractional order differential equation:

Da
t N ¼ A� lN � d1Y � d2Q ð8Þ

where N ¼ Sþ Y þ Qþ Z. Now, as Y;Q� 0, we get

Da
t N�A� lN ð9Þ

Now, take the initial value problem

Da
t N ¼ A� lN; N 0ð Þ ¼ N0 ð10Þ

From the comparison principle (Lu and Zhu 2018), the

solution of Eqs. (9) and (10) satisfy the following

inequality:

N tð Þ�N tð Þ; for all t� 0 ð11Þ

Take the Laplace Transform of Eq. (10), we get
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saL½N tð Þ� � sa�1N0 ¼ Aa

s
� lL½N tð Þ�

) L N tð Þ
� �

¼ sa�1N0

sa þ l
þ Aas�1

sa þ l

Also, from Lemma 2, we get

L Ea;1 �ltað Þ
� �

¼ sa�1

sa þ l
;L taEa;aþ1 �ltað Þ

� �
¼ s�1

sa þ l
:

Taking the inverse Laplace transform of the above, we

get

N tð Þ ¼ N0Ea;1 �ltað Þ þ AtaEa;aþ1 �ltað Þ

Using Eq. (9), we have

NðtÞ�N0Ea;1 �ltað Þ þ AtaEa;aþ1 �ltað Þ

Using Lemma 3, we obtain

jN tð Þj � N0CE

1 þ lta
þ AtaCE

1 þ lta

where, CE is a constant, described in Lemma 3. So, as t

! 1, we obtain N tð Þ�P; where P�CE
A
l.

Therefore, region R is attracting all the solutions

ðSðtÞ; YðtÞ;QðtÞ; ZðtÞÞ of the model (4).

3 Equilibria and Their Stability Analysis

This section is devoted to the existence of the model

equilibria and their stability analysis. The model equilibria

are obtained by setting all the equations of the model (4) to

zero, which are as given below:

i. Disease-free equilibrium (DFE),E1ðS0; Y0;Q0; Z0Þ
¼ A

l ; 0; 0; 0
� �

.

ii. Endemic equilibrium (EE), E2 ¼ ðS
; Y
;Q
; Z
Þ.

A detailed discussion on the existence of endemic

equilibrium is given in section 3.3.

To investigate the stability behavior of both equilibria,

we need to compute the basic reproduction number R0

(Driessche and Watmough 2002). The basic reproduction

number is obtained in Sect. 3.1 using the next-generation

matrix method (Driessche and Watmough 2002; Ye and Xu

2019).

3.1 Computation of the Basic Reproduction
Number R0:

For the computation of the basic reproduction number R0,

first, we consider that

Da
t x ¼ U xð Þ � V xð Þ;

where x ¼ Z;Q; Y; Sð ÞT , UðxÞ is the matrix of new infec-

tion term and VðxÞ is the matrix of transfer term into the

compartments and out of the compartments. Jacobian

matrices of UðxÞ and VðxÞ at E1 are given by:

U ¼

0 0 0 0

0 0 0 0

0 0
Ab
l

0

0 0 0 0

0
BBBB@

1
CCCCA;

V ¼

cþ l �d �h 0

0 d2 þ dþ l �x 0

0 0 d1 þ hþ lþ x 0

�c 0
Ab
l

l

0
BBBBB@

1
CCCCCA
:

For the next-generation matrix, we need to calculate the

inverse of matrix V . The inverse of the matrix ðV�1Þ is

given in ‘‘Appendix A’’.

Now, the next-generation matrix is:

UV�1

¼

0 0 0 0

0 0 0 0

0 0
Abð�d2cl� cdl� d2l2 � cl2 � dl2 � l3Þ

l2ðd2cþ cdþ d2lþ clþ dlþ l2Þð�d1 � h� l� xÞ 0

0 0 0 0

0
BBBBB@

1
CCCCCA

On simplification, we get

UV�1 ¼

0 0 0 0

0 0 0 0

0 0
Ab

lðd1 þ hþ lþ xÞ 0

0 0 0 0

0
BBB@

1
CCCA

From Ye and Xu (2019), the basic reproduction number

is the spectral radius of the next generation matrix ðUV�1Þ
that is denoted by qðUV�1Þ. Hence, the basic reproduction

number of the model (4) is:

R0 ¼ q UV�1
� 	

¼ Ab
lðd1 þ hþ lþ xÞ ¼

bS0

ðd1 þ hþ lþ xÞ
ð12Þ

In the above Eq. (12), the term 1
d1þhþlþx denotes the

average life expectancy of infectious individuals. The

right-hand side term of R0 provides the number of sec-

ondary infections of susceptible individuals that one

infected individual can produce in a disease-free

population.

Further, the local stability behaviors of the equilibrium

point E1 of the model (4) are discussed with the help of the

basic reproduction number R0.
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3.2 Local Stability Analysis of Disease-Free
Equilibrium (E1)

The local stability behavior of the disease-free equilibrium

of the model (4) can be analyzed by the linearization of the

model (4) at the disease-free equilibrium (E1Þ. Therefore, a

linearized matrix of the model (4) is obtained as given

below:

From the above, the linearized matrix of the system (4)

at DFE (E1)is given as:

JE1
¼

�l �Ab
l

0 c

0 �d1 � hþ Ab
l

� l� x 0 0

0 x �d2 � d� l 0

0 h d �c� l

0
BBBBB@

1
CCCCCA

The characteristic equation of the matrix JE1
is as

follows:

ðkþ lÞðcþ kþ lÞðd2 þ dþ kþ lÞð�Abþ lðd1 þ hþ k
þ lþ xÞÞ
¼ 0:

ð13Þ

All characteristic roots of Eq. (13) are given by

k1 ¼ �l,k2 ¼ �ðlþ cÞ, k3 ¼ �ðd2 þ dþ lÞ, k4 ¼ ðR0 �
1Þðd1þ hþ lþ xÞ.

We see that the eigenvalues k1; k2 and k3 of the matrix

JE1
are of with negative sign and the eigenvalue k4 will be

negative when R0\1. Hence, jargkjj ¼ p[ ap
2

for all

j ¼ 1; 2; 3; 4.

Now, whenR0 [ 1, the eigenvaluek4 [ 0, and in this

situation jargk4j ¼ 0\ ap
2
: Therefore, the disease-free

equilibrium (E1Þ is unstable whenR0 [ 1. Hence, by

Kumar (2020) and Matignon 1996) and the above discus-

sion, we present the following theorem for the local sta-

bility behavior of the disease-free equilibriumðE1Þ:

Theorem 3 The disease-free equilibrium E1 ¼ A
l ; 0; 0; 0

� �
of the proposed model (4) is:

i. locally asymptotically stable when the basic repro-

duction number R0\1.

ii. unstable when R0 [ 1.

Figure 2 is the graphical representation of Theorem 3

using data as given in Table 2. It confirms that disease will

die out when R0\1 and disease will continue its propa-

gation among the population when R0 [ 1.

Fig. 1 Transfer diagram of the model (4)

J ¼

�l� Yb

1 þ Y2r

2SY2br

ð1 þ Y2rÞ2
� Sb

1 þ Y2r
0 c

Yb

1 þ Y2r
�d1 � h� l� 2SY2br

ð1 þ Y2rÞ2
þ Sb

1 þ Y2r
� x 0 0

0 x �d2 � d� l 0

0 h d �c� l

0
BBBBBBB@

1
CCCCCCCA
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3.3 Existence of the Endemic Equilibrium (E2Þ
and Its Local Stability Analysis

In this section, we present the existence of a unique

endemic equilibrium and discuss its local stability behav-

ior. The endemic equilibrium E2ðS
; Y
;Q
; Z
Þ of the

model is obtained by taking all equations of the model (4)

to zero as given below:

A� lS
 � bS
Y


1 þ rY
2
þ cZ
 ¼ 0;

bS
Y


1 þ rY
2
� lþ d1 þ xþ hð ÞY
 ¼ 0; ð14Þ

xY
 � lþ d2 þ dð ÞQ
 ¼ 0;

hY
 þ dQ
 � lþ cð ÞZ
 ¼ 0:

On solving Eq. (14), we get

S
 ¼ ð1 þ Y
2rÞðd1 þ hþ lþ xÞ
b

;Q
 ¼ Y
x
d2 þ dþ l

;

Z
 ¼ d2Y

hþ Y
dhþ Y
hlþ Y
dx
ðcþ lÞðd2 þ dþ lÞ

and Y
 is the solution of the following quadratic

equation:

A2Y

2 þ A1Y


 þ A0 ¼ 0 ð15Þ

where the coefficients A0;A1 and A2 of Eq. (15) are as

given below:

A0 ¼ � cþ lð Þ d2 þ dþ lð Þ �Abþ l d1 þ hþ lþ xð Þð Þ
¼ ðcþ lÞðd2 þ dþ lÞlðd1 þ hþ lþ xÞðR0 � 1Þ;

A1 ¼ �b d1 cþ lð Þ d2 þ dþ lð Þ þ d2 c lþ xð Þðð
þl hþ lþ xð ÞÞ þ l c dþ lþ xð Þ þ dþ lð Þ hþ lþ xð Þð ÞÞ;

A2 ¼ �l cþ lð Þ d2 þ dþ lð Þr d1 þ hþ lþ xð Þ:

Now, we state the result in form of the theorem for the

existence of a unique positive equilibrium.

Theorem 4 There is at most one positive equilibrium of

the model (4) if R0 [ 1.

Proof Suppose that

f Y
ð Þ ¼ A2Y

2 þ A1Y


 þ A0 ¼ 0: ð16Þ

The coefficients A2 and A1 of f ðY
Þ are negative, and

coefficient A0 is positive when R0 [ 1 as all parameters are

assumed to be positive. From Eq. (16), it can be seen that

f Y
ð Þ is a continuous function in Y
. Therefore, by

Descartes’ Rule of the signs (Wang 2004), there exists at

most one real positive root of Eq. (16). Thus, after

obtaining the unique positive value of Y
, we can calculate

the value of S
;Q
 and Z
, respectively. Hence, there exists

a unique positive endemic equilibrium E2 ¼
ðS
; Y
;Q
; Z
Þ of the model (4).

Now, the local stability behavior of the endemic

equilibrium E2 ¼ ðS
; Y
;Q
;Z
Þ is investigated.

To investigate the locally asymptotical stability of the

endemic equilibrium E2, we need the following lemma:

Lemma 4 (Ahmed et al. 2006; Naik et al. 2020) Define the

following characteristic equation:

P fð Þ ¼ fn þ a1f
n�1 þ a2f

n�2 þ � � � þ an ¼ 0 ð17Þ

The following conditions make all the roots of the

characteristics Eq. (17) satisfy the equation given below:

jargðEigðJ
ÞÞj ¼ jargkjj[
ap
2

for all j ¼ 1; 2; 3; 4: ð18Þ

i. For n ¼ 1, the condition for Eq. (17) is a1 [ 0.

ii. For n ¼ 2, the conditions for Eq. (17) are either

Routh-Hurwitz conditions or a1\0; 4a2 [ a2
1,

tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a1ð Þ2

q����
�
=a1j[ ap=2

iii. For n ¼ 3, if the discriminant of P fð Þ, namely DðPÞ
is positive, the following conditions are the neces-

sary and sufficient conditions to satisfy Eq. (18):

a1 [ 0; a3 [ 0; a1a2 [ a3; if D Pð Þ[ 0

iv. If D Pð Þ\0; a1 [ 0; a2 [ 0; a1a2 ¼ a3 then condition

Eq. (18) is satisfied for all a 2 ½0; 1Þ.
v. For general n; an [ 0 is necessary for Eq. (18).

Now, to analyze the local stability behavior of E2, we

linearize the model (4) at E2, and obtained the following

Jacobian matrixðJ
Þ:

Fig. 2 Basic reproduction number R0 versus Infected population YðtÞ:
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J
 ¼

�l� Y
b

1 þ Y
2r

2SY
2br

ð1 þ Y
2rÞ2
� Sb

1 þ Y
2r
0 c

Y
b

1 þ Y
2r
�d1 � h� l� 2SY
2br

ð1 þ Y
2rÞ2
þ Sb

1 þ Y
2r
� x 0 0

0 x �d2 � d� l 0

0 h d �c� l

0
BBBBBBB@

1
CCCCCCCA

The characteristic equation of the matrix J
 is:

P kð Þ ¼ k4 þ C3k
3 þ C2k

2 þ C1kþ C0 ¼ 0; ð19Þ

where the coefficients C0;C1;C3 and C4 are given by:

C0 ¼ 1

1 þ Y
2r
Y
ðd1 cþ lð Þ d2 þ dþ lð Þ bþ 2Y
lrð Þð

þd2 2Y
l cþ lð Þr hþ lþ xð Þ þ b c lþ xð Þðð
þl hþ lþ xð ÞÞÞ þ lð2Y
ðcþ lÞðdþ lÞrðhþ lþ xÞ
þbðcðdþ lþ xÞ þ ðdþ lÞðhþ lþ xÞÞÞÞÞ;

C1 ¼ 1

1 þ Y
2r
ðY
bcdþ Y
bdhþ 2Y
bclþ 2Y
bdl

þ cdlþ 2Y
bhlþ 3Y
bl2 þ cl2 þ dl2 þ l3

þ 2Y
2cdhrþ 3Y
2cdlrþ 4Y
2chlrþ 4Y
2dhlr
þ 5Y
2cl2rþ 5Y
2dl2rþ 6Y
2hl2rþ 7Y
2l3r
þ d1Y


ðbðcþ dþ 2lÞ þ 2Y
ðcdþ 2clþ 2dl
þ 3l2Þrþ d2ðbþ 2Y
ðcþ 2lÞrÞÞ þ Y
bcx
þ Y
bdxþ 2Y
blxþ 2Y
2cdrxþ 4Y
2clrx

þ 4Y
2dlrxþ 6Y
2l2rxþ d2ðlðcþ lÞ þ Y
bðc
þ hþ 2lþ xÞ þ Y
2rðcð2hþ 3lþ 2xÞ þ lð4h
þ 5lþ 4xÞÞÞÞ;

C2 ¼ 1

1 þ Y
2r
Y
bcþ Y
bdþ cdþ Y
bhþ 3Y
blþ 2clð

þ2dlþ 3l2 þ Y
2cdrþ 2Y
2chrþ 2Y
2dhrþ 4Y
2clr

þ4Y
2dlrþ 6Y
2hlrþ 9Y
2l2r

þd1Y

 bþ 2Y
 d2 þ cþ dþ 3lð Þrð Þ þ Y
bxþ 2Y
2crx

þ2Y
2drxþ 6Y
2lrxþ d2 Y
bþ cþ 2lð
þY
2r cþ 2 hþ 2lþ xð Þð Þ

	
Þ;

C3 ¼ 1

1 þ Y
2r
d2 þ Y
bþ cþ dþ 3lþ d2Y


2r
�

þY
2rð2d1 þ cþ dþ 2hþ 5lþ 2xÞ
	
:

All the coefficients C0, C1, C2, C3 of the characteristic

Eq. (19) are of positive sign. Thus, from condition (v) of

Lemma 4, the unique positive endemic equilibrium E2 is

locally asymptotically stable (Ahmed et al. 2006; Naik

et al. 2020). Hence, this result is stated in form of the

theorem below:

Theorem 5 The endemic equilibrium E2 ¼ ðS
; Y
;Q
; Z
Þ
of the fractional-order epidemic model (4) is locally

asymptotically stable when R0 [ 1 and

unstable otherwise.

4 Global Stability Analysis

In this section, we discuss the global stability behavior of

the disease-free E1ð Þ and endemic equilibria ðE2Þ.
For global stability analysis, we assume that

G Yð Þ ¼ Y

1 þ rY2
: ð20Þ

Now, we establish the following theorems correspond-

ing to the global stability behavior of E1 and E2.

Theorem 6 The disease-free equilibrium E1 ¼ A
l ; 0; 0; 0

� �
of the model (4) is globally asymptotically stable when the

basic reproduction number is less than or equal to unity,

that is, R0 � 1.

Proof From the system of Eq. (4), we derive the following

conditions at E1 ¼ A
l ; 0; 0; 0

� �

A ¼ lS0

Now, consider the Lyapunov function as:

L tð Þ ¼ S� S0 � S0ln
S

S0

� �
þ Y þ Qþ Z;whereS0 ¼ A

l

ð21Þ

The differentiation of Eq. (21) along the solution of the

model (4) is
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Now from above, it can be observed that if

ðx?hÞY � cS0

S þ l
� 	

Z þ lþ d2ð ÞQ and R0 � 1 then

Da
t LðtÞ� 0. In addition, the maximum invariant set in

f S; Y ;Q; Zð Þ : Da
t L tð Þ ¼ 0g is the singleton set fE1g.

Therefore, according to Lassalle’s invariance principle

(Kumar 2020; Salle 1976), the disease-free equilibria E1 of

the model (4) is globally asymptotically stable when

R0 � 1.

Theorem 7 When the basic reproduction number is

strictly greater than one, that is, R0 [ 1 then the endemic

equilibrium E2 ¼ S
; Y
;Q
; Z
ð Þ of the model (4) is

globally asymptotically stable.

Proof It is derived the following conditions from the

system of Eqs. (4) at E2 S
; Y
;Q
; Z
ð Þ
A ¼ lS
 þ bS
G Y
ð Þ � cZ
; lþ d1 þ xþ hð Þ

¼ bS
G Y
ð Þ
Y
 ;x ¼ lþ d2 þ dð ÞQ


Y
 ;

h ¼ lþ cð ÞZ


Y
 � dQ


Y


Now, to prove the global stability of E2, we define the

following Lyapunov function:

L
 tð Þ ¼ ðS� S
 � S
ln
S

S

Þ þ Y � Y
 � Y
ln

Y

Y


� �

þ Q� Q
 � Q
ln
Q

Q


� �
þ Z � Z
 � Z
ln

Z

Z


� �
:

ð22Þ

The differentiation of L
 tð Þ along the solution of system

(4) is:

Da
t L tð Þ ¼ 1 � S0

S

� �
Da

t Sþ Da
t Y þ Da

t Qþ Da
t Z

¼ 1 � S0

S

� �
A� lS� bSGðYÞ þ cZð Þ þ bSGðYÞ � lþ d1 þ xþ hð ÞY þ xY � lþ d2 þ dð ÞQþ hY þ dQ� lþ cð ÞZ

¼ 1 � S0

S

� �
ðlS0 � lS� bSG Yð Þ þ cZ þ bSGðYÞ � lþ d1 þ xþ hð ÞY þ xY � lþ d2 þ dð ÞQþ hY þ dQ� lþ cð ÞZ

¼ �lS 1 � S0

S

� �2

þ bS0G Yð Þ � cS0

S
þ l

� �
Z � lþ d2ð ÞQ� lþ d1 þ xþ hð ÞY þ xY þ hY

� � lS 1 � S0

S

� �2

þ bS0 � lþ d1 þ xþ hð Þð ÞY � cS0

S
þ l

� �
Z � lþ d2ð ÞQþ ðxþ hÞY ðSinceGðYÞ�YÞ

� �
l S� A

l

� �2

S
� lþ d1 þ xþ hð ÞY 1 � R0ð Þ � cS0

S
þ l

� �
Z þ lþ d2ð ÞQ� ðxþ hÞY

� �
:

Table 1 Notations and descriptions of the model’s variables and

parameters

Notations Description

S tð Þ Susceptible population

Y tð Þ Infected population

QðtÞ Quarantine population

ZðtÞ Recovered population

A Recruitment rate

l Natural death rate

b Transmission rate of infection

r Rate of psychological effects

c Rate at which recovered move to S class

d1 Death due to disease in Y class

x Quarantine rate

h Auto recovery rate

d2 Death due to disease in Q class

d Recovery rate due to treatment

Table 2 Parameters and their

numerical value
Parameters A l b r c d1 x h d2 d

Value 9 0.03 0.003 0.002 0.0002 0.04 0.08 0.005 0.04 0.007
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Using the property of arithmetic mean, we get:

2 � S

S

� S


S

� �
� 0; ð23Þ

and if

2 � S


S
� Y

Y
 þ
G Yð Þ
G Y
ð Þ 1 � Y
S

YS


� �� �
� 0; ð24Þ

�1 þ S


S
þ Z

Z
 �
S


S

Z

Z


� �
� 0; ð25Þ

Y

Y
 �
Q
Y

QY
 �
Q

Q
 þ 1

� �
� 0; ð26Þ

Y

Y
 �
Z
Y

ZY
 �
Z

Z
 þ 1

� �
� 0; ð27Þ

� Y

Y
 þ
Z
Y

ZY
 þ
Q

Q
 �
Z
Q

ZQ


� �
� 0: ð28Þ

Hence, when the inequalities (23)-(28) are satisfied

simultaneously then Da
t L
ðtÞ� 0. Besides, the maximum

invariant set in f S; Y ;Q; Zð Þ : Da
t L
ðtÞ ¼ 0g is the singleton

set fE2g. Therefore, according to Lassalle’s invariance

principle (Kumar 2020; Salle 1976), the endemic equilibria

E2 of the model (4) is globally asymptotically stable when

R0 [ 1.

5 Numerical Results

In this section, we present the numerical simulation of the

model (4) in support of our analytical findings. The

numerical simulations are performed using the predictor-

corrector method (Diethelm et al. 2002; MathsWorks

2012). For the simulation, we use the experimental data as

given in Table 2.

From the data as given in Table 2, the value of the

coefficients of Eq. (16) is A2 ¼ �2:1626219999999994

�10�8; A1 ¼ �1:080744 � 10�6;A0 ¼ 0:00005197269:

These coefficients value satisfy Theorem 4 for the exis-

tence of a unique positive equilibrium. So, the unique

positive endemic equilibrium is calculated as E2 S
; Y
;ð
Q
; Z
Þ ¼ ð144:893; 30:0364725; 31:2067; 12:2063Þ for

which the basic reproduction number is calculated as R0 ¼
5:8065: The numerical values of the coefficients of

Eq. (19) are evaluated using the data given in Table 2 and

are given as C3 ¼ 0:36879;C2 ¼ 0:041332;C1 ¼
0:00178363; C0 ¼ 0:00002549. The numerical value of

Da
t L
 tð Þ ¼ 1 � S


S

� �
Da

t S tð Þ þ 1 � Y


Y

� �
Da

t Y tð Þ þ 1 � Q


Q

� �
Da

t Q tð Þ þ 1 � Z


Z

� �
Da

t Z tð Þ

¼ 1 � S


S

� �
A� lS� bSG Yð Þ þ cZð Þ þ 1 � Y


Y

� �
ðbSGðYÞ � lþ d1 þ xþ hð Þ1YÞ

þ 1 � Q


Q

� �
ðxY � lþ d2 þ dð ÞQÞ þ 1 � Z


Z

� �
ðhY þ dQ� lþ cð ÞZÞ

¼ 1 � S


S

� �
lS
 þ bS
G Y
ð Þ � cZ
 � lS� bSG Yð Þ þ cZð Þ þ 1 � Y


Y

� �
ðbSGðYÞ � bS
G Y
ð Þ

Y
 Y

þ 1 � Q


Q

� �
lþ d2 þ dð ÞQ


Y
 Y � lþ d2 þ dð ÞQ
� �

þ 1 � Z


Z

� �
lþ cð ÞZ


Y
 Y � dQ


Y
 Y þ dQ� lþ cð ÞZ
� �

¼ lS
 2 � S

S

� S


S

� �
þ bS
G Y
ð Þ 1 � SG Yð Þ

S
G Y
ð Þ �
S


S
þ G Yð Þ
G Y
ð Þ

� �
þ cZ
 �1 þ S


S
þ Z

Z
 �
S


S

Z

Z


� �

þ bS
G Y
ð Þð 1 þ SG Yð Þ
S
G Y
ð Þ �

Y

Y
 þ
Y
SG Yð Þ
YS
G Y
ð Þ

� �
þ lþ d2 þ dð ÞQ
 Y

Y
 �
Q
Y

QY
 �
Q

Q
 þ 1

� �

þ lþ cð ÞZ
 Y

Y
 �
Z
Y

ZY
 �
Z

Z
 þ 1

� �
þ dQ
 � Y

Y
 þ
Z
Y

ZY
 þ
Q

Q
 �
Z
Q

ZQ


� �

¼ lS
 2 � S

S

� S


S

� �
þ bS
G Y
ð Þ 2 � S


S
� Y

Y
 þ
G Yð Þ
G Y
ð Þ 1 � Y
S

YS


� �� �
þ cZ
 �1 þ S


S
þ Z

Z
 �
S


S

Z

Z


� �

þ lþ d2 þ dð ÞQ
 Y

Y
 �
Q
Y

QY
 �
Q

Q
 þ 1

� �
þ lþ cð ÞZ
 Y

Y
 �
Z
Y

ZY
 �
Z

Z
 þ 1

� �

þ dQ
 � Y

Y
 þ
Z
Y

ZY
 þ
Q

Q
 �
Z
Q

ZQ


� �
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C0,C1, C2 and C3 satisfy the condition (v) of Lemma 4.

Thus, the unique positive endemic equilibrium is asymp-

totically stable whenever the basic reproduction number

R0 [ 1. This confirms Theorem 5 numerically.

The initial values of the subpopulations for numerical

simulations are considered as given below:

S 0ð Þ ¼ 270; Y 0ð Þ ¼ 10;Q 0ð Þ ¼ 15; Z 0ð Þ ¼ 5

Figures 3, 4, 5, and 6 depict the impact of the fractional

derivative of order aða ¼ 0:7; 0:8; 0:9; 1Þ on the suscepti-

ble, infected, quarantined, and recovered subpopulations,

respectively. On the ground of Theorem 5, the endemic

equilibrium E2 is stable for every value of fractional order

a which is shown by these figures. Figures 3, 4, 5 and 6

also confirm that the disease is endemic as all the solution

curves tend to the endemic equilibrium E2. Further, from

Figures 3, 4, 5 and 6, we observed that for a ¼ 1, the

system approaches the stationary state in a short duration.

The stationary time is increased when we decrease the

value of a.

Figure 3 depicts that for different values of ða ða ¼
0:7; 0:8; 0:9; 1ÞÞ as time passes, the number of susceptible

individuals decreases, and finally the population reaches

endemic equilibrium E2 with time. It is noticed that as a
approaches one, the system reaches the steady-state in a

very short period.

Figure 4 shows the effect of fractional order derivative a
on the infected individuals and it is observed that for the

lower value of a steady time is increasing. As a approaches

one the steady-state is achieved in a very short duration for

infected populations which means infected populations will

need more time to vanish when a decreases due to the

presence of the memory effect.

Fig. 3 Impact of fraction order a on susceptible population

Fig. 4 Impact of fraction order a on infected population

Fig. 5 Impact of fraction order a on quarantine population

Fig. 6 Impact of fraction order a on recovered population
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Figure 5 depicts the effect of fractional order derivative

a on the quarantined individuals and it is noticed that as the

quarantine takes into account, for the lower value of a
steady time is increased. As a approaches to the value one

the steady-state is achieved in a very short time for the

quarantined populations. It can be concluded from this

figure that timely and effective quarantine can be proved a

vital factor in the recovery of infectives and hence control

the spread of infections.

Fig. 7 Impact of different initial values Yð0Þ on the infected

populations at a ¼ 0:8

Fig. 8 Quarantine population versus infected population at a ¼ 0:8

Fig. 9 Quarantine population versus recovered population a ¼ 0:8

Fig. 10 Infected population versus recovered population a ¼ 0:8

Fig. 11 Impact of psychological effects ðrÞ on the susceptible

population at a ¼ 0:8

Fig. 12 Impact of psychological effects ðrÞ on infected individuals at

a ¼ 0:8
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Figure 6 shows that, if we decrease the fractional-order,

the total number of recovered cases is decreased and it

takes more time to approach to a steady-state. It is observed

that as a increases then the number of recovered individ-

uals also increases and as a reaches one steady state is

achieved in a very short time.

Figure 7 depicts the infected individuals at various ini-

tial values of infected individuals (Y 0ð Þ ¼ 5; 10; 15Þ. It

shows that when the number of infectives is low initially,

infection occurs at a low level in comparison to high initial

values of infected populations. Moreover, with any values

of Yð0Þ, the infected population approaches the same

steady-state as time passes.

Figure 8 shows the impact of timely quarantine of

individuals on the infected population. It is depicted that

as the quarantine of individuals takes into account in the

system then the infected population increases initially but

later due to the timely quarantine of individuals, the

infection reaches its peaks and then significantly

decreases. Hence, timely quarantine of individuals is

crucial to control the peak of infection during the epi-

demic outbreak.

Figure 9 shows the impact of timely quarantine of

individuals on the recovered population. It is obvious that

as the quarantine takes place timely the recovery increases

and reaches its steady state. In Fig. 10, it is observed that,

initially, as the number of infected individuals increases

recovered population is at a low level, and as time passes

recovery increases with the increase of infected individuals

and reaches its steady state.

Figures 11 and 12 are portrayed to observe the impact of

psychological effects on both susceptible and infected

populations. As the value of the rate of psychological

effects r increases, the number of susceptibles increases,

and the peak of infected individuals start decreasing as

shown in Fig. 11 and Fig. 12, respectively. Hence, the

psychological effects can be used as an effective method

for reducing the peak of infection in society during an

outbreak.

6 Discussion and Conclusion

This article aimed to propose and mathematically ana-

lyze a fractional-order epidemic model to understand the

role of quarantine individuals along with a deep under-

standing of psychological effects on susceptible individ-

uals in disease transmission dynamics during an

outbreak. Therefore, a class of quarantined individuals is

incorporated into the standard susceptible-infected-

recovered-susceptible compartmental epidemic model

with Monod-Haldane type incidence rate of infection.

Monod-Haldane type incidence rate is a nonmonotonic

incidence rate that considers the psychological effects on

susceptibles during an epidemic. The Caputo derivative

is considered for the population rate of each subpopu-

lation. The Caputo derivative is a fractional-order

derivative that considers the memory effects which can

be seen for any emerging disease. Whenever a disease

emerges in society, at the beginning of the disease, we

always use the knowledge which we have collected from

previously emerged diseases. This collected information

is always helpful for controlling the transmission of

newly emerging diseases and this is the memory effect

in the fractional-order epidemic model that we cannot

measure by the integer-order derivative-based epidemic

model. The model analysis has shown that the proposed

model is well-posed i.e. the solutions of the model are

non-negative and bounded in a compact region; and the

model has two equilibria, namely disease-free and

endemic. Further, we computed the basic reproduction

number R0 by the Next-generation matrix method and

investigated that the disease-free equilibrium is locally

asymptotically stable when the basic reproduction num-

ber is less than the unity and unstable when it is greater

than unity as stated in Theorem 3. The existence of a

unique positive equilibrium is established and the local

stability behavior of endemic equilibrium is analyzed.

We investigated that EE is locally asymptotically

stable when R0 is greater than unity and follows any one

condition of Lemma 4 as stated in Theorem 5. Fur-

thermore, the global stability behaviors of both equilibria

DFE and EE have been analyzed by the Lyapunov

function method and it is shown that EE is globally

asymptotically stable when R0 [ 1 and DFE is globally

asymptotically stable when R0 � 1 as stated in Theorems

6 and 7, respectively.

Numerical results are proposed in support of analyti-

cal results. Figure 2 is plotted in support of Theorem 3

which has shown that when R0\1 then the disease-free

equilibrium is locally asymptotically stable and when R0

slightly increases from one then endemic equilibrium

arrises. Figures 3, 4, 5, and 6 are plotted to show the

impact of fractional order a on susceptible, infected,

quarantine, and recovers subpopulations, respectively.

These figures depict that as the value of fractional order

a increases to one, each subpopulation takes less time to

reach its steady state. We noticed that various values of
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a have no effect on the stability nature of the equilib-

rium points but affect only the time to reach the equi-

librium state. These graphs support Theorem 5 which

states that the EE is locally asymptotically stable when

R0 greater than one. It is also observed from the simu-

lation that any initial population of infectives does not

affect the steady-state of the infected population as

shown in Fig. 7. Further, numerical simulations show

that the timely quarantine of infected individuals helps

us in reducing the new infection cases significantly, and

also helps us in increment of recovered population. From

graphs, it is observed that if we timely monitor the

psychological effects and take the appropriate action to

increase the value of the rate of psychological effects

that helps to reduce the new infection significantly in

society.

In conclusion, this study suggests that if health poli-

cymakers and professionals consider the memory effect,

do the timely quarantine of infected individuals, and

focus on the appropriate actions to increase the psy-

chological effects on susceptibles then we can predict the

disease more correctly, may reduce the impact of the

epidemic, and this can also be helpful to reduce the

period of the outbreak as well.

Appendix A

The matrix V is

cþ l �d �h 0

0 d2 þ dþ l �x 0

0 0 d1 þ hþ lþ x 0

�c 0
Ab
l

l

0
BBB@

1
CCCA:

Hence, the inverse of the matrix V is given as:
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