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Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this
activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of
neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs’ Syndrome, intellectual disability). Hypotheses related to E/I
dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that
exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity
—an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of
neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack
validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably
or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available,
in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission
Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic
Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG)
features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective
review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a
specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within
and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we
argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to
understand the link between underlying E/I mechanisms and measurement techniques.
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INTRODUCTION
The coordination of excitatory (E) and inhibitory (I) activity is a
fundamental property of brain function [1]—a specific ratio of E
and I is thought to govern local and global network dynamics in
the typically developing brain [2]. Throughout this article, we use
the term ‘balance’—to refer to this optimal quantity of E and I that
creates a state of low firing rates where excitatory activity does not
either run away or die out after the arrival of an external stimulus/

signal, as opposed to their equity. Converging evidence from
genetic, postmortem, and preclinical studies suggests that
disruptions to different components of excitatory and inhibitory
processes are involved in a variety of clinical conditions, such as
autism, schizophrenia, epilepsy, and generalized learning disabil-
ities [3–10].
The theory that E/I imbalance underlies neurodevelopmental

disorders has been difficult to test for two reasons. First, the E/I
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system is complex, yet most authors are unspecific in defining
what they mean by E/I imbalance. For instance, E/I can be defined
at multiple interacting levels, of the primary excitatory versus
inhibitory neurotransmitters: glutamate and GABA, the E/I
potentials within a neuron, or the E/I conductance between
locally connected neurons versus entire networks of neurons at
the system level. Hence, the failure to more precisely define E/ I
balance clouds the synthesis of findings across different studies.
Second, direct and indirect measurement of E/I at any given level
in the living human brain is challenging. Methods such as Positron
Emission Tomography (PET), Magnetic Resonance Spectroscopy
(MRS), and Transcranial Magnetic Stimulation (TMS) provide useful
indicators of E/I in terms of (respectively) receptor occupancy,
neurotransmitter concentration, and neurotransmitter metabo-
lism. However, they have a poor temporal resolution, are
expensive and/or invasive; and (in the case of MRS and TMS) are
generally limited to examining a relatively small number of brain
regions at one time. As such, these methods alone offer an
incomplete explanation of E/I.
In order to comprehensively assess brain E/I function in

humans, we need proxy markers that can also tap into global E/
I dynamics and methods that are scalable across research
environments (i.e., translate from cellular, animal models to
human research) and clinical settings. Much of the E/I research
to date has come from animal models (please see refs. [11, 12]).
Electrophysiological recordings are predominantly made up of
aggregate postsynaptic and transmembrane currents [13], where
excitatory and inhibitory currents dominate [14]. Traditionally,
electrical potentials are termed the local field potential (LFP) when
recorded using single electrodes from extracellular space; while
electrocorticogram (ECoG) refers to intracranial recordings from
the cortical surface; and electroencephalography (EEG) refers to
recordings at the scalp [13]. When choosing a proxy marker of E/I,
EEG has a number of advantages. EEG has an excellent temporal
resolution to tap into real-time dynamics that are likely affected by
subtle E/I fluctuations [13, 15]. Although often criticized for lacking
spatial resolution, increasingly accurate source localization (i.e.,
using inverse models to estimate the likely brain dipoles that
generated the signal recorded at the scalp) techniques do exist for
high-density systems [16]. Furthermore, scalp EEG is a noninvasive,
cheap methodology, and recordings can now take place in
research settings, in the clinic, or at home. Combining EEG with
techniques such as MRS and PET will allow us to gain a more
complete picture of E/I functioning by leveraging the strengths of
each method. However, for prospective EEG markers to be
clinically translatable, we need to develop a comprehensive
understanding of the neurobiological mechanisms that generate
the signals measured. A more thorough understanding may help
us bridge the gap between preclinical work (predominantly LFP,
ECoG) and human EEG and will allow us to find EEG-compatible
markers to facilitate clinical use.
To facilitate this, here we outline the concepts of E/I balance

across cellular, local and global network scales. We then go on to
propose a set of EEG features that may serve as ‘proxy markers’ for
E/I at different neurobiological levels and consider the current
evidence base for each one. Finally, we emphasize the need for
biomarker validation in human EEG and consider whether, when
validated, their application could help better stratify neurodeve-
lopmental conditions and/or provide treatment targets to alleviate
the burden of some neuropsychiatric conditions. Definitions and
resources regarding how to extract and analyze these biomarkers
have been provided in Table 1.

EXCITATION AND INHIBITION IN THE BRAIN
E and I are multiscale—each can be mediated and perturbed at
multiple levels, from intracellular and single-cell to the local circuit
and global network levels, and across various time scales [17–19].

At the cellular level, whether a neuron is excited or inhibited is
determined by its state of polarization, which can be influenced by
a variety of neurotransmitters. For the purposes of this review, we
limit our discussion to the main excitatory (glutamate) and
inhibitory (g-aminobutyric acid (GABA) neurotransmitters—since
they have a leading role in regulating brain activity—although we
acknowledge that in actuality, a complex combination of
neurotransmitters is at play. Excitatory neurons are typically
pyramidal cells, which project to other excitatory neurons and can
form long-range synaptic connections across distant brain regions
[20–22]. In neurons, excitatory neurotransmitters depolarize the
postsynaptic neuron, making it more likely to fire. Inhibitory
neurons e.g., parvalbumin (PV) and somatostatin (SS) neurons,
form local, dense connections [23] and release GABA, which
hyperpolarizes the postsynaptic cell, making it less likely to fire. At
early stages of development, research in rodents suggests that
activation of GABAA receptors generates postsynaptic membrane
depolarization (i.e., an excitatory effect instead of hyperpolariza-
tion); but shortly after birth a ‘GABAA switch’ occurs—and GABAA
leads to postsynaptic membrane hyperpolarization (e.g., [24]).
However, exactly how and when this occurs in humans is
unknown, but researchers have hypothesized that disruption/
delay in this process may underlie neurodevelopmental conditions
[25]. Inhibition is also playing a role in the regulation of plasticity
through shunting inhibition [26]. This involves removing depolar-
ized currents generated by dendritic cells [27]. Shunting inhibition
is thought to modulate spike time-dependent plasticity (STDP), for
e.g., by adjusting synaptic strength based on the timing of
neuronal firing [28], therefore dictating learning and information
processing [29].
At the micro-level (single-cell), E/I can reflect the relative

amount of excitatory glutamate versus inhibitory GABA synaptic
inputs onto a single neuron [30, 31], or the quantity of excitatory
and inhibitory synapses on individual cortical neurons [32] and
their dynamic configuration along the dendrite through the
characteristic length constant of the postsynaptic dendrite [33].
Accordingly, researchers using animal models may characterize E/I
at this level by recording from the membrane using clamp
recordings. Across a local population of cells, excitation and
inhibition operate in unison where the excitatory current may
increase while the inhibitory current decreases or the inhibitory
current may decrease after a short time delay ([12, 34–38]).
Specifically, it has been proposed that the direct coupling
between E and I lead to a winnertake-all theta-gamma code
[39]. The regulation of E/I balance can be seen to achieve
homeostatic optimization supporting specific neuronal functions
[11]. The way E/I balance is conceptualized at the meso-level (local
populations of neurons) may be a composite of the relative
concentration of excitatory versus inhibitory neurotransmitters,
and the amount of excitatory versus inhibitory neurons or
excitatory versus inhibitory receptors within any local brain
region. Inferences at this level can be made by examining cell
types within a region of postmortem tissue, or by assessing the
relative concentration of neurotransmitters using microdialysis. In
living humans, researchers may use proton MRS to obtain a
somewhat coarse quantification of excitatory to inhibitory
neurotransmitter concentration within a relatively large volume
of the brain (typically cm3 and including both gray and white
matter) [40].
At the macro-level E/I can be defined as the population-level

activity, the result of large-scale interaction between neurons.
This interaction can be examined within local regions or
between more distal regions at the global network level. This
latter scale of E/I reflects the recurrent connectivity from both
excitatory and inhibitory neurons, which settle into a state of
population activity that reflects the balance between the two
[41, 42]. The activity of circuits at meso and macro-levels is a
composite of this complex underlying neuronal activity—and
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so meso- and macro-scale processes also reflect neuronal
excitation and inhibition at the microscale; for e.g., how EPSP
and IPSP generate and reflect the properties that we see in the
local field potential. This is likely true when we sum across
multiple independent LFPs but also when we tap into specific
networks i.e., coordinated long-range connectivity analysis.
Having outlined the levels of inference, we suggest that future
E/I research should explicitly specify the neuronal level that is
being examined.
The following sections will consider common EEG markers

(gamma power/frequency and beta power) of E or I or their
interaction (E/I), before proposing 5 novel candidate markers
(neuronal avalanches, long-range temporal correlations, entropy,
microstates and the aperiodic 1/f signal), as well as identifying the
hypothesized level of inference these metrics address. Figure 1
presents the levels of inference and the hypothesized level that
each marker may assess.

CONVENTIONAL EEG MARKERS OF E/I IN THE LIVING HUMAN
BRAIN
All neural oscillations, at any given frequency, rely on excitatory
cellular activity. However, beta and gamma frequencies have been
mechanistically linked within the literature to activity in excitatory
cells and their interplay with interneuron activity [43].

Gamma power and frequency (hypothesized level of
inference: local population level)
Traditionally, high-frequency gamma oscillations recorded in the
LFP, ECoG, and EEG have been used as putative noninvasive
indicators of E/I [44–46]. Gamma oscillations (30–100 Hz) are
rhythmic activity caused by synchronized fluctuations in the
membrane potential of excitatory and inhibitory neurons [47–50].
After fast-acting excitation, there is a period of delayed feedback
inhibition from PV interneurons (often GABAA interneurons are
specifically implicated) that constrain cellular activity via a
negative feedback loop [51–54]. The axon conductance of the
synaptic delay leads to a phase shift between the spikes, which
also determines the frequency of the gamma rhythm [54].
Increased inhibitory GABA (as measured by proton MRS) has
been identified in line with increased gamma power in the
superior temporal sulcus [55], supporting a causal role for
interneurons in the generation of gamma activity. Also, the
GABAergic drug propofol is known to increase gamma band
power [56]. Modeling of oscillatory changes with propofol
exposure indicates this effect is the result of increased inhibition
within local circuits [57]. However, results from computational
modeling suggest that peak gamma frequency has a stronger
relationship with E/I function compared to gamma power [45];
moreover, visually induced peak gamma frequency is related to
resting GABA levels—since the frequency of the gamma

Table 1. Definition and resources for guidance on how to analyze each EEG marker.

EEG feature Definition Resources

Gamma power and
Gamma frequency

Gamma refers to neural oscillations with a
frequency between ~30 and 100+hz. Gamma
power refers to the magnitude of the oscillation
within this range. Gamma frequency refers to the
number of cycles per second i.e., akin to the
speed of the gamma oscillation.

Both fieldtrip and EEGlab are common Matlab toolboxes for
analyzing gamma band activity. Please see https://eeglab.org/
tutorials/08_Plot_data/Time-Frequency_decomposition.html for a
tutorial and https://www.fieldtriptoolbox.org/workshop/
madrid2019/tutorial_freq/ for tutorials

Beta power Neural oscillations with a frequency between ~12
and 30 hz. Beta power refers to the magnitude of
beta oscillations in the signal.

For readers interested in conducting beta power analysis, please
follow the same tutorials provided for analyzing gamma band
activity

Neural avalanches
and Kappa coefficient

Neuronal avalanches refer to the organization of
cascades of synchronous neural activity. The
relationship between the size of neuronal events
and the probability of finding an event follows a
1/f-like distribution. The Kappa coefficient
describes the extent to which a neuronal
avalanche follows a 1/f distribution.

For guidance on how to identify and calculate neuronal
avalanches, please see [103, 161, 162], and for guidance on how to
calculate k, please see [89, 101]

DFA Exponent and
Functional E/I
Balance

DFA exponents quantify the existence of long-
range temporal correlations in the fluctuations in
the amplitude of oscillatory signals. Critical
systems show DFA exponents between 0.5 and 1.
Functional E/I balance is an adaptation of DFA to
give information on whether oscillatory signals
come from networks that are either excitation or
inhibition dominated

For guidance on how to perform DFA on oscillatory signals, please
consult [100, 115]

Entropy Entropy quantifies randomness in patterns of EEG
and, in turn, how much information is in that
signal. Brain entropy refers to the number of
neural states in a signal.

For guidance on how to compute neuronal entropy, see: https://
sapienlabs.org/measuring-entropy-in-the-eeg/; https://
sapienlabs.org/the-impact-of-parameters-choices-on-eeg-entropy-
measures/; Also see [163]

Microstates EEG microstates refer to topographies in EEG
which are shown to be stable for brief periods of
time. Evidence from resting-state EEG has largely
considered the same four microstate
topographies, that explain most of the variance,
and have been labeled A, B, C, and D [164].

For guidance on how to perform EEG microstates analysis, see
[133]; Also see https://www.thomaskoenig.ch/index.php/work/
ragu

Aperiodic 1/f signal The aperiodic 1/f signal of EEG is a measure of
non-oscillatory power across frequencies. This
relationship between power and frequency, in
many cases, is thought to follow a 1/ fχ
distribution, and here aperiodic 1/f signal is
quantified as the χ exponent.

The FOOOF model is an increasingly common method for
extracting the aperiodic 1/f signal, see https://fooof-
tools.github.io/fooof/index.html and [143]
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oscillation has been thought to reflect the time delay between fast
excitation and the subsequently delayed inhibition [58–60].
Conversely, multiple studies have reported no association

between GABA levels, gamma band power [58, 61], and gamma
frequency [56, 61]. According to E/I models, pyramidal cell activity
are a substantial generator of gamma oscillations; yet gamma
rhythms are also dominant in neural areas such as the basal
ganglia that lack local E/I connections [62, 63]. Yet, the latter could
be seen as an expression of cortical dynamics. Thus, the
mechanistic underpinnings of gamma oscillations are still
unknown, and this makes interpretation of the mixed findings in
psychiatric research difficult (e.g., refs. [61, 64–66].

Beta power (hypothesized level of inference: local population
level)
Beta oscillations (at ~13–28 Hz) are thought to be paced by
networks of inhibitory interneurons and gated by GABAA action
[43]. In this review, we recognize that there is a continuous
frequency range for cellular firing, and frequency band cutoffs can
be somewhat arbitrary. Nevertheless, we have taken beta
oscillations as those occurring at ~13–28 Hz (as 28–30 Hz is
considered low gamma). A computational model suggests that
beta power increases due to a larger inhibitory drive onto
inhibitory interneurons [67]. Although the theoretical link here is
specific to inhibition, inhibition is a key ingredient in E/I flux. More
specifically, somatostatin cell spiking is critical for generating a
visually induced beta oscillation [68–70]. Beta frequency has
therefore been likened to a state of central nervous system
activation [71].
Further evidence linking beta oscillations to GABAA receptors

comes from pharmacological studies targeting the GABAA system.
Medications that enhance the GABAA system, such as benzodia-
zepines and compounds targeting alpha1 or the alpha2/alpha3
GABA subunits, are known to trigger an increase in EEG beta
power in rodents and humans [67, 71–75]. Furthermore, evidence
has suggested that the genetic marker of beta oscillations is
located on chromosome 4 where a cluster of GABAA receptors are
present [43]. Thus we conclude that beta power may reflect
GABAA inhibitory neurons—and beta oscillations reflect inhibitory
activity in local populations of neurons where GABAA neurons are
prominent. Indeed, beta oscillations have been further differen-
tiated into two types [43]. The first type of beta is thought to be
generated by the phasic firing of excitatory pyramidal cells and
inhibitory interneurons at beta frequencies. The second type of
beta has been linked to synchronized pyramidal cells firing at beta
frequencies with interneuron cells firing at gamma frequencies.
The latter type of beta oscillations has been described as a
subharmonic of gamma oscillations (e.g., refs. [43, 76].

However, although generated by local circuits, given extensive
local and widespread connections throughout the brain, beta (and
gamma) oscillations presumably both inherit and influence global
E/I activity in the brain. Having outlined two conventional EEG
markers that have been used to investigate E/I activity in EEG, the
following sections will outline four novel EEG markers.
Whilst we have presented an overview of the literature linking

gamma and beta power/frequency to E/ I activity and associated
pharmacological studies, indeed, all oscillatory activity, regardless
of the frequency band measured using EEG, is due to reciprocal
interactions of excitatory and inhibitory neurons within reciprocal
feedback loops. However, gamma and beta power have been
more specifically investigated within the context of preclinical
work and pharmacological studies examining how they are
modulated. The specific cell networks have hence been described
more thoroughly. Moreover, the modulation of gamma and beta
power/frequency, as the result of a pharmacological challenge,
may be the result of a frequency shift and an accompanying up or
downregulation of oscillations in a separate frequency band. We
encourage future research to focus more specifically on the
network of up/downregulation across the frequency spectrum in
response to pharmacological manipulation.

NOVEL EEG MARKERS OF E/I IN THE LIVING HUMAN BRAIN
SELF-ORGANIZED CRITICALITY
One way to index E/I at the global brain level is to characterize
specific brain-wide states that are associated with the relative or
summed levels of excitation or inhibition. Excitatory and inhibitory
dynamics have been implicated in maintaining the brain in a state
of “self-organized criticality” [77]: this is a neural state dynamic
centered at the boundary between two distinct regimes—(1)
subcritical dynamics which are asynchronous, more dominated by
short connections, quiescence, and noise, and (2) supercritical
dynamics which are highly synchronized events characterized by
run away excitation [78]. Self-organized criticality is associated
with several important computational properties, such as long-
range communication, and rich spontaneous dynamic brain states
[79].
E and I are responsible for maintaining rich dynamical neural

states that support the network’s intrinsic capacity (e.g., refs.
[80, 81]. The evidence so far suggests that recurrent networks that
are shaped by E/I plasticity mechanisms (i.e., the E and I firing
patterns that govern the extent to which specific combinations of
neurons fire together) tend to develop self-organized criticality
[82, 83]. Further computational studies suggest that self-regulatory
mechanisms modulating the activity of parvalbumin and soma-
tostatin inhibitory interneurons should operate to keep the

Fig. 1 This figure describes the hierarchical levels of neural inference in the brain. Methodologies for probing each level, as well as the EEG
markers we describe in this paper, are presented aligned with the biological level that they are hypothesized to capture. We also include
bidirectional arrows; for example, local networks may both influence and inherit the activity at global network levels.
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recurrent excitatory networks near the critical point of edge-of-
chaos phase transition to dampen the effects of stimulus
variability and ‘noise’ in the network dynamics [84, 85]. Moreover,
critical states related to alpha oscillatory activity have also been
suggested to optimize information transmission across cortical
areas [86]. These considerations emphasize the importance of
inferring E/I during experiments engaging the neocortex to be
able to relate them to cognitive processes that might be transient
and unfold quickly in time.
Pharmacological studies suggest that flux in E/I may dictate

variations from criticality, i.e., chaotic flipping between three
regimes—weak synchrony, criticality, and intense synchrony.
Studies have used GABAA-receptor antagonist picrotoxin to
reduce inhibitory synaptic transmission in leech ganglia [87] and
rat cortices [88, 89] to show that inducing excitability leads to
supercritical regimes in the form of strongly synchronized bursts
[89] and exponential burst size distributions [87–89]. In addition,
NMDA receptor antagonists APV [87] and AP5 [89] have been used
to reduce excitatory synaptic transmission [88]; applied simulta-
neously with AMPA antagonist DNQX in [90] and lead to
subcritical regimes in the form of weakly synchronized bursts
[89] and bimodal burst size distributions [87, 89]. These results
have also been replicated using computational modeling [89].
In addition, to stress the relevance of E/I balance to cortical

dynamics, it is important to consider the fact that this state is
actively maintained by cortical networks through homeostatic
mechanisms [11]. Indeed, it has been demonstrated that
pyramidal neurons scale the strength of their incoming glutama-
tergic synapses after perturbations in excitatory drive, to maintain
stable firing rates [91–94]. Not only that, but later studies have
shown that the homeostatic maintenance of E/I balance further
involves the regulation of intrinsic excitability [95] and incoming
inhibitory synapses [31, 96–98], likely originating from PV
interneurons [94]. In addition, recent results show that sensory
deprivation, which effectively decreases the levels of excitatory
drive to the visual cortex and disrupt its E/I balance, also causes a
significant departure of dynamics from the critical regime [99].
Moreover, criticality was returned in a timescale of days, likely
through the same homeostatic mechanisms that ensure stable
firing rates. Therefore, the aforementioned studies are important
not only because they show that cortical networks actively
regulate their E/I balance to compensate for perturbations in an
external drive, but, more importantly, because they pose criticality
as a homeostatic setpoint of cortical dynamics. Therefore, current
knowledge of E/I homeostasis lends support to the hypothesis
that criticality is a relevant biomarker of E/I balance.
In the following sections, we describe four markers that

categorize critically, or phase states, within EEG, and how these
metrics might index the E/I system. We also provide references for
calculating these metrics and inferring criticality from the EEG
spectrum. We then go on to describe one final marker, which has
been examined outside of the context of criticality, and its
potential relationship to E/I.

Neuronal avalanches and the Kappa coefficient (hypothesized
level of inference: global network level)
Criticality exists at the border between asynchronous and
intensely synchronous systems. In the brain, self-organized
criticality might be inferred by measuring the spatial scaling and
temporal fluctuations that evolve due to long‐range temporal
correlations. An important hallmark of self-organized critical
systems is summary measures of dynamics displaying power laws
[77, 90]. Indeed, neuronal avalanches are defined by having
fractal-like scale-free properties characterized by a power-law
structure. Computational models have supported the relationship
between E/I flux and scale-free network dynamics [100]. With EEG
therefore, neuronal avalanches have been used as an indirect
index of criticality (or fluctuations from) [88, 89, 101].

Neuronal avalanches observed in vitro [88], in vivo [102], or
from scalp EEG and MEG [103], are cascade-like events that
increase and advance over a system—akin to a successive wave of
action potential firing from neuron to neuron. Neuronal
avalanches demonstrate a characteristic distribution of burst sizes
that follows a power law with an exponent close to −1.5
[88, 89, 101, 103, 104]. They can be measured in EEG by identifying
very high amplitude periods of activity that are clustered within a
particular brain region and time window [88, 103, 105]. This
involves some measure of the size of the neural signal on the x-
axis, such as the physical extent of patterns of activity in, for
example; LFP, voltage-imaging, BOLD fMRI, or EEG/MEG activity.
Computational models [106, 107] indicate that optimal inhibition
promotes critical dynamics and that a lack of inhibition modulates
the time length and size of avalanches [108]. This same
modulation has been demonstrated with pharmacological
increases in inhibition using propofol [109].
Another way of inferring whether the brain sits at criticality at a

specified timescale is to analyze the extent to which avalanche
dynamics follow a 1/f power law within a set recording period. The
kappa coefficient [80] is a non-parametric measure of the
goodness of fit of the data of interest to a given power law.
Kappa (k) is calculated by comparing the cumulative density
function of the measured data with a theoretical reference
cumulative density function (−1.5) to assess the strength of fit
with a power law. In the context of LFPs, pharmacological studies
with glutamatergic or GABAergic agonists in vitro have shown that
k ≈ 1 at criticality, and is >1 or <1 in super- or subcritical dynamics,
respectively [87, 89, 101]. Hence, neuronal avalanches could
provide a useful characterization of self-organized criticality, and,
therefore, E/ I balance. Using the kappa coefficient could further
help to elucidate evidence of E/I imbalance in certain populations
or under certain conditions.

Long-Range Temporal Correlations (LRTC) and functional EI
balance (hypothesized level of inference: global network
level)
In addition to power-law distributions of avalanche sizes on a
global scale, signatures of criticality emerge at the level of local
network oscillations. More specifically, due to their scale-free
nature [110–112], critical systems show self-affinity in their activity
patterns. This means that the statistical properties (e.g., standard
deviation) of the same signal observed within two windows of
different sizes can be related through a scaling parameter LH,
where L represents the ratio between the lengths of the windows
and H is commonly known as the Hurst-coefficient [113–115].
While cumulative signals emerging from purely stochastic
processes have Hurst-Coefficients close to 0.5, systems with LRTC,
are characterized by 0.5 < H < 1 [115]. Thus, in such systems, where
activity at a certain time point has a level of dependence on the
previous activity (i.e., systems with memory), we observe larger
fluctuations on longer-time scales than would be expected from a
signal generated by a purely random process. This is relevant,
because not only has it been shown that critical systems, being
scale-free, exhibit LRTC [111, 112], but also that this is a property
of neural network oscillations measured, for example, through EEG
signals [100, 111]. In addition, modeling work has demonstrated
that optimal E/I balance simultaneously leads to the emergence of
avalanches with a −1.5 power-law distribution in spiking activity
and also the emergence of LRTC in the amplitude of oscillations in
the alpha/low-beta frequency range [116].
Given the evidence towards long-range temporal correlations

as a biomarker of criticality, and thus E/I balance, it is relevant to
consider methods to quantity them in oscillatory signals. In that
regard, detrended fluctuation analysis (DFA), developed by Peng
and colleagues in 1994 [117], has been used extensively to
measure the scale-free nature of physiological signals. DFA uses a
cumulative time series of fluctuations in the amplitude of
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oscillations in frequency ranges of interest to estimate Hurst-
coefficients [115]. Therefore, a signal with a DFA exponent
between 0.5 and 1 is considered to show LRTC. While this type
of analysis has extensively shown the existence of LRTC in alpha-
and beta-range oscillations in human electrophysiological data
[100, 111, 118–120], the same behavior has not been observed in
gamma oscillations, likely due to the reduced data quality of such
oscillations in E/MEG signals [115]. In addition, this marker has
been linked to neurological conditions related to altered E/I
balance. In patients with major depressive disorder, it was
observed that DFA exponents inversely correlated with symptom
severity [121]. In addition, a breakdown of LRTC at alpha and beta
frequency bands has been further observed in patients with
Alzheimer’s disease [122] and schizophrenia [123], which have
been previously associated with E/I dysregulation [4, 5, 124].
Conversely, in epileptic patients, elevated levels of LRTC are
observed in areas close to the epileptic focus [125]. However, one
of the caveats of DFA is that the information it provides is limited
to how far a system is from criticality, regardless of whether it is
sub- or supercritical. To solve that, a recent method was
developed to infer the state of dynamics relative to the critical
point through an adaptation of DFA [100]. Besides validating their
metric of functional E/I balance using a computational model of a
population of E and I neurons, the authors further applied it to
infer differences in local E/I balance between autistic and non-
autistic individuals.
In conclusion, the observation of LRTC in human electrophysiol-

ogy further supports the hypothesis that criticality is a robust
property of cortical activity and a relevant biomarker of E/I
balance. While the use of DFA to infer critical dynamics has been
validated, both in the typical [111, 118–120] and atypical brain
[122, 123, 125, 126], only recently was it extended to inform on the
exact nature of network E/I balance (i.e., excitation or inhibition
dominated) [100]. Therefore, further studies should be conducted
to evaluate the validity of such metrics to be used as biomarkers
of local E/I balance and how they reflect changes in local network
dynamics in pathologies that have been associated with E/I
imbalances.

Neural entropy (hypothesized level of inference: global
network level)
In information theory, entropy (typically measured in computa-
tional units such as bits) quantifies the amount of information
within a signal [127] as well as the consistency of the neural
population activity. Entropy is large when there is a more variable
pattern repertoire) and small when there is less variable pattern
repertoire. It has been posited that information capacity is a
functional property maximized in a balanced and critical cortex
[79]. Likewise, others have hypothesized that the variability of
burst area would also be maximal under the same E/I conditions
that produce neuronal avalanches [89].
The same experiments cited above, which manipulated E/I

balance in vivo using pharmacological manipulations [80, 89],
observed peak entropy of spontaneous [80], evoked [80], and
burst activity [89] in the no drug conditions when E/I are assumed
to be balanced, neural avalanches are observed and k ≈ 1: that is,
peak entropy is observed when the brain is at criticality. These
in vitro findings are further corroborated by in vivo evidence from
a study of two awake monkeys and six urethane-anaesthetized
rats [80], and computational models [80, 89]. In addition, it has
previously been reported that information capacity dynamically
tracks the recovery of mice from anesthesia, peaking when an
awake state is reached [128]. The same entropy-tracking effects of
anesthesia have also been observed in human EEG where
anesthesia was induced with sevoflurane and propofol [129]. It
has been noted that whilst higher entropy is exhibited by
networks with balanced E and I vs. imbalanced E and I, there are
many ways in which networks could achieve balance depending

on E and I synaptic strength and quantity. One study concluded
from their computational model that, within balanced networks,
stronger synapses lead to an intermediate entropy that is resilient
to subtle alterations of the system that may be more favorable for
mammalian cortices [130].
Taken together, this evidence suggests that peak entropy of

spontaneous, evoked, or burst EEG activity is a consequence of
balanced, critical systems and thus can be used to indicate
fluctuations in criticality and E/I balance. However, it may be
argued that this is somewhat expected—i.e., that entropy tracking
can be used to observe the arousal peak following recovery from
anesthesia, given that anesthesia often produces high amplitude,
but low-frequency waves. By default, we would expect lower
extropy values since these waves contain less information than a
conscious brain. However, appreciating this explicitly within the
scientific community may still be somewhat informative, and
entropy may be a useful measure if it correlates more specifically
with independent network activation. However, we appreciate
that entropy may not be independent of power analysis and
neural frequency shifts.
Despite their promise, the definition of neuronal avalanches and

entropy measures in multichannel EEG/MEG is still evolving—the
high dimensionality of the data and the dependencies of scale-
free dynamic computations of these dimensions make it challen-
ging to comprehensively understand the mechanisms underlying
both criticality and entropy. Further research is needed to
understand these measures and their relationship to excitatory
and inhibitory networks.

Microstates (hypothesized level of inference: global network
level)
Relatedly, changes in phase state might also index E/I flux. Such
changes might be captured by EEG microstate activity: short
durations (~100 ms) of relative stability in EEG scalp topography
[131]. In microstate analysis, ‘brain states’ refer to the topographic
stability of electric potentials over an electrode array. Neuronal
oscillations demonstrate intervals of phase-locking, before transi-
tioning to new phase-locked states [132]. Microstates may thus
reflect neuronal coordination and the dynamic range of neural
activity [133]. Indeed, EEG microstate class has been found to
covary with the spatial distribution of thalamic activity in an EEG-
fMRI study [134].
Evidence to support the relationship between EEG microstates

and E/I balance comes from a study whereby EEG was recorded
from eight healthy adults who received either 30 ug of Lorazepam
(a GABA agonist) or a placebo. Results found that the amount and
intensity of structurally synchronized microstates increased with
Lorazepam [135]. Further to this, recent research decreased
cortical excitability using low-frequency (fewer bursts per second
i.e., ≤1 Hz) repetitive transcranial magnetic stimulation (rTMS). The
results showed an increased mean duration, immediately after
rTMS (for microstates A, B, and C) and 1 h after rTMS (for
microstates C and D; [136]: that is, the average time of consecutive
time frames differed for these microstates. The authors interpreted
these findings as evidence for increased stability of microstates
post-rTMS (i.e., fewer transitions). Finally, researchers have utilized
simultaneous, multi-modal recordings of PET, MRS, and EEG in 29
healthy subjects. Data were collected at the resting state, and
results demonstrated a small significant positive correlation
between source-localized microstate measures and GABAA-
receptor availability [137].

Aperiodic 1/f signal (hypothesized level of inference: global
network level)
A final promising candidate marker of the relative balance of E/I is
the aperiodic signal of the power spectral density slope (PSD)—
often referred to in the literature as the ‘1/f component’. Note,
here, 1/f denotes the behavior of EEG data in the frequency
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domain such that as frequency increases, power decreases. Gao
et al. leveraged a simple computational model of the EEG signal
composed of non-oscillatory excitatory (AMPA) and inhibitory
(GABA) currents. These currents are significant contributors to the
EEG [13], and when they are integrated, they naturally give rise to
the aperiodic 1/f slope. To test this they varied E/I ratio from 1:6 to
1:2 [138] and measured the effect on the simulated aperiodic 1/f
slopes. The E/I function was defined as mean excitatory and
inhibitory conductance over simulation time. The authors
observed that reduced inhibition flattened the slopes.
In the same paper, shank recordings (voltage membrane

recordings of postsynaptic excitatory cells) from rodents were
analyzed, obtained from Collaborative Research in Computational
Neuroscience (CRCNS) data portal [139], sampling the LFP at
evenly spaced electrodes of the pyramidal cell layer in CA1.
Aperiodic 1/f slopes were then estimated by fitting a linear
regression slope between 30 and 50 Hz across CA1 depth; the E/I
function of the cell layers in CA1 was estimated based on
previously published synapse density values [140]. The authors
demonstrated that the aperiodic 1/f slope varied with estimated
AMPA to GABA synapse ratios in CA1 layers. The authors also
reanalyzed open-source electrocorticogram data from macaques
undergoing propofol sedation (a period of increased inhibition)
and demonstrated that the aperiodic 1/f slope became more
negative during sedation [90].
This aperiodic 1/f signal can be computed by assuming that the

power spectrum has the form within a certain frequency range,
usually above a characteristic “knee” frequency, below which the
power-law relationship is different (if present at all) [141]. When
this relationship is plotted in log-log space, the exponent (-n) of
the slope refers to the steepness of that line. Whilst the
relationship between power and frequency is often referred to
as a 1/f power law, n can have various values, typically ranging
between 0 < n < 2. However, in the study of E/I this method
requires the 1/f fit to be performed in the aperiodic component of
the signal—after removing oscillatory parts corresponding, for
example, to alpha and theta peaks [142, 143]. We suggest that
going forward, researchers should perform this step to ensure it is
the aperiodic component specifically that is linked to E/I, instead
of the relationship being driven by up or down regulations in EEG
power within specific frequency bands.
Overall, self-critically has been theorized to underlie the

emergence of power laws across many physical systems [144].
Indeed, 1/f power spectra and long-range temporal correlations
are known properties of critical systems [110, 115], and have been
simultaneously observed in electrophysiological data [111],
suggesting that they could both reflect the criticality of human
neural dynamics. However, crucially, the presence of a power law
alone does not imply criticality. Tests of criticality in the cortex
require a means of experimentally manipulating neuronal inter-
actions and the ability to evaluate when the cortex is at criticality
[79]. Furthermore, multiple alternative explanations could underlie
power-law generation in EEG power spectrums. One group
demonstrated that by modeling electrophysiological data as a
collection of damped oscillations that are randomly perturbed and
fade away with different relaxation rates, they were able to explain
its 1/f nature [145]. Alternatively, others have argued that the
filtering properties of extracellular media can explain 1/f power-
law generation [146].
Nevertheless, the evidence here suggests that the aperiodic

signal in human EEG may be a useful marker of E/I balance within
the brain. It assumes that background activity makes up the
“backbone” of the LFP (or ECoG/EEG) and that this activity is
asynchronous, derived from summed Poisson population firing—
it thus would reflect more global dynamics [147]. For guidance on
how to compute the aperiodic 1/f component see ref. [143]. The
model of the EEG power spectrum independently estimates the
(1) periodic signals, of phase-locked oscillatory activity in specific

frequency ranges i.e., beta, gamma etc., and (2) aperiodic
component, that is; a signal which does not repeat itself after a
specific time period [143].

DISCUSSION
Limitations, future work, and marker development
In this article, we have highlighted a variety of EEG metrics that
may tap into the E/I system. For guidance on how to extract/
analyze, each of these EEG markers, see Table 1. These markers
may offer translational potential since they can be applied in tasks
that do not require verbal ability, or extensive cognitive
processing - allowing us to examine brain function between
species and all individuals within a species. However, measures of
beta power are particularly promising given the wealth of studies
across species (rodents, non-human primates, humans) with
benzodiazepines and newer compounds that are selective for
the GABAA receptors containing α1–3 subunits. Nonetheless,
newer metrics also offer promise (e.g., 1/f; entropy; microstates).
Yet, each of the markers presented here is likely intercorrelated
with one another, and potentially measures overlapping aspects
of the same underlying signal—this is a challenge inherent in all
EEG analysis—and perhaps in human sciences more generally.
When aiming to map a specific marker or variable to a specific
mechanism or cognitive process in isolation, one potentially
ignores the variable’s relationship to a range of other related
variables and factors. Furthermore, a second challenge is mapping
each marker to a specific level of inference (i.e., the micro or meso-
level). All brain activity across micro-, meso-, and macro-levels of
the organization is the result of excitatory or inhibitory firing on a
continuous scale. Local networks will indeed influence global
brain dynamics, and local networks may inherit properties of
global brain dynamics. However, specific markers and areas of
interest can be used to zoom in and out to capture the resulting
activity at the local or global level. This, of course, does not mean
that the activity is modular—just that this activity can be captured
and investigated at various levels. This approach will also lead to a
better understanding of how local activity and global activity
interact.
We note that whilst there have been correlations reported

between state (critical or phase) change and some aspects of E/ I
flux, the exact mechanism for this relationship has not been well
documented. Analysis of entropy, kappa, and microstates as proxy
markers of E/I comes with caveats. The research is in its infancy,
and although correlations have been reported, thorough valida-
tion has not taken place. We hypothesize that multiple mechan-
isms could underlie this correlation. Changes in brain state—for
example, from synchronous to asynchronous, or substantial
changes between oscillatory phases, may result from GABA-
mediated thalamocortical circuit inhibitory bursts [148, 149].
Feedforward thalamic inhibition disrupts synchronous pyramidal
cell firing and may trigger a change in the frequency of oscillations
—thus also altering E and I activity in the cortex. Imaging studies
in humans have shown that propofol, a GABAA-receptor agonist,
disrupts thalamocortical connectivity [150]. This activity may then
alter local E and I interactions in the cortex. One example of this is
the generation of the alpha rhythm in the cortex during
anesthesia, which is accompanied by changes in the interaction
between the thalamus and cortex. This may be indexed globally
by looking at whole-brain metrics of state change e.g., criticality
analysis, microstate analysis, and by documenting entropy change
– but these markers need more comprehensive interrogation in
combination with drug challenge studies that alter thalamocor-
tical communication.
Indeed, many of these markers have already been investigated

within clinical populations in an attempt to investigate E/I (see
e.g., refs. [64, 151, 152]. However, a lack of understanding of the
precise mechanism underlying these markers has led to
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contradictory findings (see ref. [10]), and as yet, there is no EEG
marker of E/I that has been formally validated nor accepted
according to FDA and/or EMA biomarker specification. Further
work in this area is needed, as well as clearer descriptions of the
mechanisms thought to underlie each marker.
Therefore, before further inference is made using these markers

across psychiatric and neurodevelopmental disorders, further
work would be needed to develop and examine them as
biomarkers of E/I—this would involve further interrogation of
the mechanistic link between each marker and E/I. It would also
be essential to assess the markers' accuracy, reproducibility,
reliability, and utility. Confidence in the accuracy of a marker
involves producing a high level of converging evidence, ideally
from independent laboratories (i.e., a replication sample), all
demonstrating that a proxy marker indexes E/I balance. For
example, an association between these markers and the E/I
system can be made by combining a marker with pharmacological
studies that modulate the level of inhibition and excitation
[153, 154]. Computational work in this area is largely lacking but
would be particularly important for identifying mechanisms and
potentially bridging together preclinical and clinical work. There is
also a potential for human induced pluripotent stem cells (iPSC)
cell work to bridge this gap—iPSC models provide reductionist 3D
models of brain anatomy. Initial evidence has highlighted the role
of E/I in initiating and maintaining iPSC oscillations [155].
Examining the EEG metric readouts on iPSC oscillatory activity,
where the GABAergic and glutamatergic networks are more
specifically defined, may allow us to interrogate more causative
associations between E/I and a particular metric.
The identified markers should also be sensitive and specific—

i.e., sensitive to changes in E/I above and beyond any other
general brain metrics—this is a hard condition to meet given
some of these markers may correlate i.e., gamma and beta power.
However, machine learning (e.g., using feature selection or
decision trees) can help us identify which EEG markers may help
us predict another E/I measure, for example, GABA from MRS. Test-
retest metrics are necessary to ensure the validity and reliability of
each marker. Finally, future work should also aim to distinguish
between ‘loosely’ (i.e., on average) balanced systems, and systems
that demonstrate a rigorously controlled balance between E and I
[156, 157]. Markers that then fulfill these criteria could be used for
patient selection in interventional trials, and also for tracking
pharmacodynamic effects in pharmacologic treatment trials.
An alternative possibility is that an observed E/I balance is a

consequence of atypical structure within any level of the neuronal
system. Any variation in neural structure or synaptic function will
likely have implications for neural function (i.e., E/I) since neural
cells are largely either inhibitory or excitatory. This latter possibility
is consistent with recent evidence that alterations in E/I function
can be compensatory [158]. Indeed, it has been suggested that
highly disruptive events such as stroke lesions, which cause an
acute loss of excitation to cortical neurons across the brain, may
trigger E/I homeostatic mechanisms to compensate for this
disruption and recover cortical function. Interestingly, this
physiological response might be related to late-onset symptoms
of stroke, such as epilepsy and chronic pain, thought to be
influenced by alterations in E/I balance [159]. Regardless of
whether E/I is a cause or consequence of a neuropsychiatric
condition, capturing variance in the E/I disruption may provide key
information about the extent to which a neuronal system is
affected, and in which individuals. For example, a subset of
individuals may indeed show alterations in E/I activity which is
known to be altered by a specific drug, - this may indeed be a
promising treatment target for that individual should the
individual need or require treatment for a particular symptom
i.e., subclinical epileptic features. The markers may also have utility
for determining which individuals have subclinical epilepsy or may

go on to receive a diagnosis of epilepsy. All these hypothetical
scenarios will need rigorous testing.

CONCLUSION
There is a need for noninvasive and simplified metrics that can
measure perturbations in neural activity, and that can signal
brain health in a variety of neurodevelopmental and psychiatric
conditions. Importantly, we currently do not have any validated
noninvasive methods for examining E/I imbalance in humans;
however, a variety of potential candidate proxy markers derived
from EEG offer promise. Many of these markers are inter-
connected. For example, beta/gamma power will be influenced
by the slope of the PSD spectrum (i.e., the extent to which it
varies from 1/f) [143]. Because many of the markers are
correlated or conflated, it is important to also consider each
E/I marker in terms of its biophysical plausibility, to ensure that
the intended feature is being properly measured [160].
However, examining each marker in parallel will provide a
richer description of brain dynamics and excitatory versus
inhibitory properties of the network. Validation of each marker
will open the gate toward capturing E/I mechanisms in a variety
of neurodevelopmental and psychiatric conditions. The next
steps would be to explore how individual differences in the E/I
function might explain trait/ phenotypic variation within and
between conditions, or how E/I brain dynamics vary across
development.
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