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,e COVID-19 pandemic has a significant negative effect on people’s health, as well as on the world’s economy. Polymerase chain
reaction (PCR) is one of the main tests used to detect COVID-19 infection. However, it is expensive, time-consuming, and lacks
sufficient accuracy. In recent years, convolutional neural networks have grabbed many researchers’ attention in the machine
learning field, due to its high diagnosis accuracy, especially the medical image recognition. Many architectures such as Inception,
ResNet, DenseNet, and VGG16 have been proposed and gained an excellent performance at a low computational cost. Moreover,
in a way to accelerate the training of these traditional architectures, residual connections are combined with inception archi-
tecture. ,erefore, many hybrid architectures such as Inception-ResNetV2 are further introduced. ,is paper proposes an
enhanced Inception-ResNetV2 deep learning model that can diagnose chest X-ray (CXR) scans with high accuracy. Besides, a
Grad-CAM algorithm is used to enhance the visualization of the infected regions of the lungs in CXR images. Compared with
state-of-the-art methods, our proposed paper proves superiority in terms of accuracy, recall, precision, and F1-measure.

1. Introduction

With the continuation of the COVID-19 pandemic, the
number of infected people increases daily. ,e number of
deaths is rising, especially for elderly and ill people. Con-
sequently, there is an urgent need to discover new ways to
diagnose and identify this virus early to minimize its effects.
,e PCR test is considered as the fundamental screening and
the golden standard technique for COVID-19 diagnosis.
However, one of its limitations, as reported by the clinical
experience, is having a low positive rate in the early stage of
infection [1, 2], and it takes 4–6 hours to get the result, which
is deemed to be a long period with the fast spread rate of
COVID-19 [3]. ,erefore, it was recommended to rely on
tests taken by chest X-ray (CXR) images and computed
tomography (CT) scan as an alternative method for PCR test
and as one of the early diagnostic methods [4–6]. However,

the challenge of such CXR images or CTscans demands both
radiologists and considerable time to visually examine each
CXR image and extract important findings. In addition, it
has become difficult for radiologists, especially the novice, to
figure out these minor variations with the naked eye, due to
similar trends and overlaps of infectious and inflammatory
lung diseases. Dependently, an automated Computer-
Assisted Diagnosis (CAD) system is urgently required to
save time and develop intelligent solutions to help radiol-
ogists get an accurate diagnosis of COVID-19. CAD systems
play a significant role in the medical field offering early
diagnosis of disease progression in cost-effective and im-
partial terms in relation to human interventions. Motivated
by the urgent need to develop solutions to aid in facing the
COVID-19 pandemic, this paper proposes an expert com-
prehensive CAD system for early diagnosis of COVID-19
cases depending on deep learning (DL) techniques for CXR
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image analysis. Recently, DL has become the main tech-
nology of increasing artificial intelligence in automatic di-
agnosis of lung disease detection, through medical imaging
analysis. It is a leading technique in radiology diagnosis,
which has produced the solutions required for disentangling
awareness in lung pathology. ,e proposed model will help
clinicians in a way that discloses confirmed cases, either
pressing or simple to be minimized. ,e model relies on
particular lung regions to predict and diagnose whether the
patient has COVID-19. ,e output can then be represented
in a heatmap-like plot using the class activation map (CAM)
algorithm locating the affected lung areas. ,e output of this
system could then be helpful to be used by medical pro-
fessionals, especially those in the limited test kit areas or
those who are struck by an unexpected increase in suspected
cases. Moreover, the system could rapidly differentiate be-
tween COVID-19-infected patients and those who are in-
fected with common pneumonia or another disease. ,e
proposed work offers great potential by reducing pressure on
front-line radiologists, improving early diagnosis and
treatment, and accordingly controlling the epidemic. ,is
model may be used to support radiologists at this stage and
to resolve this situation. Besides, it reduces the pressure on
laboratories that make diagnoses based on an analysis of
throat and pharyngeal swabs.

,e contributions of this paper are summarized as
follows:

(i) Building a system that can diagnose CXR scans with
high accuracy to improve the early diagnosis of the
disease and thus contribute to controlling the epi-
demic and to reduce the time required to diagnose
the COVID-19 cases

(ii) Building an ensemble of DL models in a new
framework and proposing an enhanced DL model
that utilizes a new transfer learning algorithm with
the ability to overcome the problem of overfitting
that makes it more efficient in real time

(iii) Constructing up a concatenating Inception-
ResNetV2 model that overcomes the performance
of other related studies

(iv) Localizing the disease by using a Grad-CAM al-
gorithm that visualizes the infected areas of the
lungs in CXR images

,e rest of this paper is organized as follows. Section 2
shows a literature review related to the COVID-19 diagnosis
system. In Section 3, there is a detailed description of the
model architecture and materials. ,e implementation and
evaluation are presented and discussed in Section 4, while
Section 5 presents conclusions and future work.

2. Literature Review

Many researchers have employed various techniques of
artificial intelligence to address the COVID-19 pandemic;
for example, Imran et al. [7] presented a system for diagnosis
of COVID-19 patients by recognizing the coughing sound.
,e proposed system consists of two parts: the first is cough

detection, whereas the second is COVID-19-diagnosis-based
predetected cough sound.,ere are many recent studies that
use machine learning techniques for the diagnostic of CT
and CXR scans as an alternative to PCR test. For example,
Farooq and Hafeez [8] presented COVID-ResNet. ,eir
work proposed a ResNet deep learning approach for mul-
ticlass classification of normal, bacterial, viral, and COVID-
19 classes. ,eir system achieved accuracy of 96.23% on all
classes. Hassantabar et al. [9] presented in their research
work three types of DNN and CNN methods, two of which
were to diagnose the lungs of patients with X-ray images
infected with COVID-19 and the last one to detect the
infected regions in the lung. ,e first method that was used
to diagnose COVID-19 is based on the use of the fractal
feature of images as input to the CNN model for binary
classification to COVID-19 and non-COVID-19 cases. ,e
classification accuracy of their model was 93.2%. However,
their model detects infected regions with 83.84% accuracy.

Zhang et al. [10] proposed a deep learning model for
COVID-19 detection based on chest X-ray images. ,eir
model trained on 100 chest X-ray images for COVID-19 and
1431 images for pneumonia cases and got overall 96%
sensitivity and 70.65% specificity.

Qi et al. [11] analyzed 57 positive cases of COVID-19 by
using the chi-square technique. ,ey tried to approve the
importance of demographic data, clinical data, and chest CT
scans in diagnosis of the COVID-19 patients. ,ey con-
cluded that CT features and dynamic observation play an
essential role in detecting and diagnosing COVID-19 cases.
Wang et al. [12] proposed a deep convolutional neural
network (CNN), which is called COVID-Net, to diagnose
the COVID-19 cases based on CXR images. ,eir proposed
COVID-Net can diagnose three different types, which are
normal, pneumonia, and COVID-19. ,eir network can get
accuracy by achieving 93.3% test accuracy. Wang et al. [13]
used the Inception network model for diagnosing COVID-
19. ,eir network contains three essential phases, which are
preprocessing, feature extraction, and classification. By us-
ing CT imaging feature extraction, their network achieved
89.5% accuracy [14]. Torman et al. proposed a deep learning
model called CapsNet for the detection of COVID-19 by
using CXR images. ,e model gives an accuracy of 97.24%
for binary classification and 84.22% accuracy for multiclass
classification.

Song et al. [15] developed a DL network, which is called
DeepPneumonia, to diagnose COVID-19 cases depending
on analyzing CT scans. ,eir proposed system was built on
the ResNet50 using transfer learning technology. It could
localize the essential lesion characteristics, especially
ground-glass opacity (GGO). ,eir system achieved an
average area under the curve (AUC) of 99% and sensitivity
score of 93%. Besides, it reached an average AUC of 95% and
sensitivity of 96% for bacterial pneumonia-infected cases. Xu
et al. [16] proposed a fully automated COVID-19 diagnosis
based on a 3D deep learning network using chest CT scans.
,eir proposed system consists of four basic stages, which
are preprocessing, candidate region segmentation, classifi-
cation for each candidate region, and overall infection
probability. Bukhari et al. [17] employed ResNet50 for

2 Journal of Healthcare Engineering



COVID-19 detection using CXR images. ,ey tried to
differentiate four types of classes, which are healthy normal,
bacterial pneumonia, viral pneumonia, and COVID-19
cases. ,ey achieved an average accuracy of 98.18 % and F1-
score of 98.19%. Khan et al. [18] proposed a model named
CoroNet to identify COVID-19 in X-ray and CT scans
utilizing a pretrained Xception convolution network. Two
tests were conducted to validate their model. For the four
classes (viral pneumonia, COVID-19, bacterial pneumonia,
and normal), the first experiment attained an accuracy of
89.6 %, while the second experiment for three classes
(normal, COVID-19, and pneumonia) obtained a total ac-
curacy of 95%.

A recent COVIDX-Net model to help radiologists in
identifying and diagnosing COVID-19 in CXR images was
developed by Hemdan et al. [19]. ,ey compared seven
performances of seven pretrained DL networks; they are the
InceptionV3, MobileNetV2, VGG19, DenseNet201, Incep-
tion-ResNetV2, ResNetV2, and Xception model. Based on
their experiments, the VGG model achieved the highest
accuracy of 90%. Sethy and Behera [20] introduced a hybrid
approach that utilizes deep learning for feature extraction
and support vector machine (SVM) for detecting patients
contaminated with COVID-19 by using CXR images. ,e
deep features of the CNN layer model are extracted and fed
into SVM for the classification process. ,eir approach is
useful for a physician to identify cases, pneumonia patients,
and healthy persons among COVID-19. By using the pre-
trained 13 distinct CNN models, the SVM provided the best
results on the deep features of the ResNet50 model.
Ouchicha et al. [21] proposed a model named CVDNet to
diagnose the COVID-19 cases. ,is model focuses on a
residual neural network and employed local and global
features of chest X-ray images by utilizing two parallel layers
with various kernel sizes. ,eir proposed CVDNet has
achieved an average accuracy of 97.20% for detecting
COVID-19 cases. ,ese experiments obtained correct re-
sponses to the COVID-19 pandemic. However, they have
certain drawbacks to remember. In the best case, they used
tiny databases of less than 400 COVID-19 X-ray images.

3. Materials and Methods

3.1. Dataset Description. In this study, the samples of CXR
images covered three main classes labelled as confirmed
COVID-19, viral pneumonia, and normal (healthy) cases.
All images are of size 299 × 299. COVID-19 class contains
the identified COVID-19-positive cases confirmed by the
CXR image and specialists. Viral pneumonia class con-
tains the patient’s patches of pneumonia infection. Fi-
nally, the normal class includes the radiology images of
various cases, which are neutral and have no lung in-
fection. ,e CXR images are attained from COVID-19
Radiography Dataset [22]. Table 1 describes the distri-
bution of training and testing sets employed in the ex-
periment for 80–20 training-testing set. It contains a total
amount of 2905 CXR images, which are distributed into
219 COVID-19 images, 1345 viral pneumonia images, and
1341 for normal category.

Besides, a team of researchers have created a new release
of the dataset [22]. It contains four classes: COVID-19,
normal, lung opacity (non-COVID-19 lung infection), and
viral pneumonia. ,e lung opacity class is ignored in our
experiments to preserve the symmetry with old dataset in
terms of number of classes. COVID-19 class has increased to
3616 CXR images along with 10,192 images in the normal
class, 6012 lung opacity, and 1345 viral images. Table 2
presents the distribution of training, validation, and testing
sets used in the experiment.

3.2. Model Architecture and Model Training. Nowadays,
CNNs are proving their real success in the classification task.
,e detailed proposed model, which will be discussed in the
next section, aims for an automated system capable of
processing CXR images to detect COVID-19 disease. ,e
system overview is described as shown in Figure 1. (1)
Images were collected from COVID-19 Radiography Da-
tabase. (2) ,e images are preprocessed via artifact removal,
resizing, contrast handling, and normalization, which will be
explained later. (3) Furthermore, the images are classified
with an ensemble of DL models and we focused on our core
model named the Inception-ResNetV2 model. (4) Disease
diagnosis and feedback are provided using Grad-CAM
algorithm.

Initially, the process of image collection is accomplished,
followed by image preparation and DL model, and finally
ends with diagnosis and feedback. Occasionally, data
preparation is one of the most important steps, since pre-
paring the collected data in an efficient manner leads to
accurate results. It contains operations like equalizing the
number of images in each class, simple filtering, denoising,
etc. Subsequently, the utilized dataset can be divided into
two sets: training and testing sets. ,rough the training
process, many tuning experiments are done to get the op-
timized network parameters. More model learning yields
more accurate results in classification output. Dependently,
the model is then tested on the remaining invisible images
(testing set) and the DL network, after a number of ex-
periments become converged and deployed. More details
about the proposed system architecture/network are given in
Figure 2.

Initially, the dataset image’s pixel representations are
presented to the CNN, in which layers are interconnected
together in a multilayer architecture. ,en, the network is
responsible for turning the input visual stimulus into
nonlocal signals, which becomes more complex as it passes
through many succeeding layers. Initial layers are capable of
capturing simple features like edges, corners, intensity
values, and texture, while complex features are gradually
formed by the abstraction higher layers. Inception-
ResNetV2 is our main/core DL model due to its superiority
in the experimental results. However, there are also many
other DL models, which are performed and documented.
,e performance of DL models is highly based on the
number of images used to train the model. ,erefore, it
requires a large training dataset to extract temporal and
spatial features. However, even if the dataset is not large
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enough, the DL model can be employed through using what
is known as transfer learning approach.

Transfer learning has become one of the popular con-
siderable methods utilized for detecting/classifying COVID-
19 cases. It is mainly based on how to reuse the expertise or
knowledge gained from one mission into another. It is an
efficient method, especially if the intended model has a
limited dataset.

In transfer learning, the feature extracted (learning) from
a DL network is transferred to solve related problems with
small dataset and which cannot be implemented from
scratch [23]. ImageNet [24] is one of the popular large
datasets used in the medical domain. ,e choice of the

suitable DL model is highly dependent on its ability to
extract the features related to the domain. During the feature
extraction, the pretrained model can capture the new fea-
tures from the dataset. ,ereafter, a parameter tuning
process, by updating and reconstructing the model archi-
tecture, is necessary to optimize the model performance in
the new applied domain. In this way, the pretrained model
overcomes the small dataset issues; consequently, the
computational cost is significantly decreased. Hence, the
transfer learning approach is applied to take advantage of the
generalizability of DL models, especially Inception-
ResNetV2 model. In this study, the models are pretrained on
ImageNet to capture the initial parameters, speed up the

(1) Image
collection

(2) Image
preparation (3) DL model (4) Diagnosis

and
feedback

Figure 1: System overview.
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Figure 2: ,e overall model architecture.

Table 1: ,e distribution of training and testing sets used in the original dataset.

Category No. of images Training Testing
COVID-19 219 171 48
Viral pneumonia 1345 1066 279
Normal 1341 1087 254

Table 2: ,e distribution of training, validation, and testing sets used in the new release of the dataset.

Category No. of images Training Validation Testing
COVID-19 3616 2464 768 384
Viral pneumonia 10192 949 264 132
Normal 1345 7192 2000 1000
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training convergence, and improve the classification
accuracy.

3.2.1. Data Preprocessing. In this study, the data pre-
processing is an inevitable step due to the presence of un-
wanted artifacts, such as varying image resolution or size,
pixel level noise, bright text, and symbols. To address such
artifacts, the images are applied to an image mask generated
using binary thresholding [25] as given in equation (1).
Besides, CXR images may have alterations in the image
contrast. To avoid this issue, during the training process, the
contrasts of the training images are normalized. ,en we
denoise the images using filtering. Precisely, the average of
the three primary colors red, green, and blue (RGB) image
channels is subtracted from each pixel image.

Mask(x, y) �
maxi, i(x, y)≥mini,

0, otherwise.
􏼨 (1)

Data normalization, which generalizes the effect of
different pixel intensities, could be defined in many different
forms. Given the pixel intensity noted as PI, the normalized
data PI∗ is obtained by applying the normalization ap-
proach. Here, each pixel ranges from 0 to 255 for each one of
the three primary colors. ,erefore, the normalization is
done through dividing every pixel value by 255. ,e nor-
malization used in the experiment is done by the maximum
and minimum values, which are illustrated in equation (2).
,ereafter, it is followed by resizing the images to a fixed size
resolution of 224× 224.

P
∗
I � PIj − Minold􏼐 􏼑

Maxnew − Minnew
Maxold − Minold

+ Minnew, j ∈ [0, n].

(2)

3.2.2. Inception-ResNetV2 Model Description.
Inception-ResNetV2 model is based on multilayer tech-
niques where every two succeeding layers are linked together
by a number of neurons that transform the features in a
nonlinearly manner. Network’s parameters like weights,
biases, activation function, loss model, and optimizer should
be carefully allocated. In general, most of DL networks are
bidirectional neural networks. ,e enhanced Inception-
ResNetV2 model architecture is presented in Table 3.

Basic parts of Inception-ResNetV2 architecture repre-
sented in all layers are established before the fc layer. ,e
Inception-ResNetV2 model contains three basic types of
inception modules, namely, Inception-ResNet-A, Inception-
ResNet-B, and Inception-ResNet-C as shown in Figure 3.
,esemodules are responsible for both reducing the number
of parameters small Conv layers (e.g., 1× 7, 7×1) and
generating the discriminatory features. Each module is self-
possessed of several Conv and pool layers. Inception-
ResNetV2 also contains two types of reduction modules,
which are responsible for reducing the image size (see
Figure 4). Inception-ResNetV2 model has a default input
size 299× 299; thus, we resized it to 224× 224 during
training.

Figure 3 shows the schematic description for Inception-
ResNetV2 network. Inception-ResNetV2 uses the blocks as
described in Figure 3. ,e original Inception-ResNetV2
network output includes 1,000 classes, but only 3 classes are
required for our case: COVID-19, viral pneumonia, and
normal. ,erefore, the output channel number of the last
layer (fc) is changed into 3 rather than 1000.

As illustrated in Figure 3, our enhanced version In-
ception-ResNetV2 comprises a number of convolution
layers, followed by 10x Inception-ResNet-A, 20x Inception-
ResNet-B, and 10x Inception-ResNet-C, respectively.
,ereafter, a 3× 3 average pooling layer is countered and a
Softmax layer comes at the end. To reduce the overfitting, a
dropout ratio of 0.5 is utilized following the average pooling.
ReLU proceeds for 7 layers of the proposed model from
Conv1 through FC7. Meanwhile, the final fc layer has 3
outputs matched to the three classes in the dataset.

For the training phase, the training images are batched in
32 pictures as input to the model. Batch training approach is
a beneficial for sinking the storage required for training to be
able to fit the whole model in memory and also speed up the
training process. Furthermore, the learning rate is set to
0.001, while the dropout rate was set to 0.5. ,e learning rate
is too small to permit the network to find the best global
convergence state. ,e dropout layer role is to inhibit
overfitting and help make the trained model more general.
In order to alleviate the overfitting, the model has a dropout
ratio of 0.5. It requires successive trials to make DL model
capable of overcoming both underfitting and overfitting.
When the model learns massive details about the training
data, it might fall in the issue of overfitting. To prohibit this
issue, we utilize early stopping approach, which captures the
point where performance on the test dataset starts to go
down while performance on the training dataset remains
improving.,e filters in Inception-ResNetV2 architecture in
the various layers could be updated without affecting the
accuracy of the trained network. Confidently, we carefully
tune the layer sizes to optimize the training speed and
balance the computation between the model’s subnetworks.
Practically, this balance is done through prefetching scheme,
which overlaps the preprocessing and model execution of a
training step. While the model is executing current training
step, the input pipeline is reading the data for the next step.
Doing so reduces the step time to the maximum of the
training and the time it takes to extract the data.

3.2.3. Discriminative Localization Using Grad-CAM. In
many DL applications associated with medical imaging, it is
essential to make the results more sensible and explainable.
Selvaraju et al. [26] presented a Grad-CAM technique, which
provides the explainable visualization of deep learning
models and could construct the visual clarification for any
DL to learn more about the model during the classification
work.

As shown in Figure 2, Grad-CAM algorithm is applied
to our proposed model through superimposing heat map
of CXR dataset images. It produces the class activation
mapping by concentrating on the particular portion of
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COVID-19, viral pneumonia, and normal class. A sample
of three class images is examined using Grad-CAM al-
gorithm. In normal X-rays, there is not any kind of opacity
that distinguishes normal patients from other patients. As
illustrated in Figure 5, there is not any significant region
that is localized in normal X-rays. In the case of viral
pneumonia, our model has the capability to detect the
localized regions with bilateral multifocal ground-glass
opacities (GGO) through examining the heatmaps gen-
erated. In accordance with [27, 28], there are plenty of
similarities between COVID-19 and traditional viral
pneumonia, as both of them demonstrate bilateral GGOs
along with some patchy consolidations. However, through
a deep examination of the heatmap of COVID-19-infected
images, it is distinct that the peripheral, diffuse

distribution and vascular thickening of such opacities
were successfully localized. ,erefore, by such localiza-
tion, the proposed model could assist the clinicians to
provide extensive views about the main reasons for the
COVID-19 infection. As presented in Figure 5, the dataset
images are given as input to the Grad-CAM procedure.

4. Implementation and Evaluation

4.1. PerformanceMetrics. To evaluate the proposed model,
equations (3)–(6) were employed, namely, accuracy, re-
call, precision, and F1-score. All the following metrics
are expressed as percentages. We also used the
receiver operating characteristics and the area under
the curve.

Table 3: Inception-ResNetV2 model architecture.

Layer Patch size Input size
Conv 3× 3 224× 224× 3
Conv 3× 3 111× 111× 32
Filter contact 3× 3 pool + 3× 3 conv 109×109× 64
Filter contact 1× 1 conv, 3× 3 conv+ 1× 1 conv, 7×1 conv, 1× 7 conv, 3× 3 conv 54× 54×160
Filter contact 3× 3 conv +max pool 52× 52×128
Inception-ResNet-A× 10 — 26× 26× 256
Reduction-A — 26× 26× 256
Inception-ResNet-B× 20 — 13×13× 768
Reduction-B — 13×13× 768
Inception-ResNet-C× 10 — 6× 6×1534
Average pooling 6× 6 6× 6×1534
Dropout Keep� 0.5 1× 1× 1534
Fc 1534×1000 1534
Fc 1000× 3 1000
Softmax Classifier (3 classes) 500

1×1 Conv
(n = 32)

1×1 Conv
(n = 32)

1×1 Conv
(n = 32)

3×3 Conv
(n = 32)

3×3 Conv
(n = 32)

3×3 Conv
(n = 32)

1×1 Conv
(256 linear)

ReLU activation

ReLU activation

+

(a)

1×7 Conv
(n = 128)

1×1 Conv
(n = 128)

1×1 Conv
(n = 128)

7×1 Conv
(n = 128)

1×1 Conv
(896 linear)

ReLU activation

ReLU activation

+

(b)

3×1 Conv
(n = 192)

1×3 Conv
(n = 192)

1×1 Conv
(n = 192)

1×1 Conv
(n = 192)

1×1 Conv
(1792 linear)

ReLU activation

ReLU activation

+

(c)

Figure 3: ,ree types of Inception-ResNetV2 modules from left to right.
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accuracy �
true positive + true negative

true positive + true negative + false positive + false negative
, (3)

recall �
true positive

true positive + false negative
, (4)

precision �
true positive

true positive + false positive
, (5)

F1 � 2
precision∗ recall
precision + recall

. (6)

4.2.DLModel Performance. In our experiments, the original
dataset is randomly divided into 80% for the training phase
and 20% for the testing phase while the new one released is
divided into 70% for the training phase, 20% for the vali-
dation phase, and 10% for the testing phase.,e experiments
are implemented in python (last release) according to details
described in Table 4.

Table 5 shows the average classification results obtained
from the 8 DL models for the classification task in the
original dataset. It also reports both the training and testing
run time in seconds. ,e maximum measured values are
given in italics. As illustrated in the table, Inception-
ResNetV2, Xception, VGG16, ResNet50V2, InceptionV3,
MobileNetV2, DenseNet121, and ResNet101V2 provide the
average accuracy >97%. ,e highest average accuracy
(98.80%) is achieved by Inception-ResNetV2 model. On the
contrary, VGG16 and ResNet50 attain the lowest average
accuracy (97.60%). Inception-ResNetV2 model gives both
the highest F1-score (98.86%) and the highest recall
(99.11%). MobileNetV2 results in the highest average pre-
cision value with 98.67%. However, one of the limitations of
our proposed Inception-ResNetV2 model is that it takes a
roughly higher training and testing run time compared to
other models due to the complex structure of the inside
modules.

On the other hand, Table 6 shows the classification
results for 3 categories (COVID-19 vs. normal vs. viral
pneumonia) obtained from the same 8 DL models for
measuring accuracy, F1-score, precision, and recall. ,e
highest values are given in italics. As shown in the table, all
models achieved an accuracy >97% for COVID-19, normal,
and pneumonia classes. Inception-ResNetV2 and Dense-
Net121 achieved the highest accuracy (98.83%) for COVID-
19 category. Inception-ResNetV2 gives both the highest F1-
score (99.05%) and the highest recall (100%). Besides,
Xception and DenseNet121 also attained the highest recall
(100%) for COVID-19 category. However, the highest
precision (100%) goes for VGG16 and MobileNetV2. It can
be noticed that Inception-ResNetV2 has achieved the
highest accuracy of 99.83%, the highest F1-score of 98.05%,
and the highest recall of 100% for COVID-19 category.

In addition, Table 7 shows the average classification
results obtained from the 8 DL models for the classification
task in the new release of the dataset (large). As mentioned

above, the maximummeasured values are given in italics. As
shown in the table, our proposed model achieves an average
of 97.23%, 96.35%, 96.75%, and 96.00% for accuracy, F1-
score, precision, and recall, respectively. ,e highest average
accuracy (98.88%) is achieved by DenseNet121 model. Also,
it gives the highest F1-score (98.18%), highest precision
(97.61%), and highest recall (98.78%). On the contrary,
Xception attains the lowest average accuracy (50.66%). ,en
again, Table 8 shows the classification results for 3 categories
(COVID-19 vs. normal vs. viral pneumonia) obtained from
the same 8 DL models for measuring accuracy, F1-score,
precision, and recall but according to the large dataset. As
shown in the table, our model achieved an accuracy of
98.02% for detecting COVID-19 class. VGG16 achieved the
highest accuracy (99.54%) for viral category. It also gives the
highest F1-score (99%) for normal category while Dense-
Net121 gives both the highest precision (99.40%) and the
highest recall (99.15%) for the same category. In summary,
most results obtained from Inception-ResNetV2 in either
original dataset or the large dataset are better than those
obtained by the other 7 models in terms of accuracy, F1-
score, precision, and recall.

Figure 6 shows ROC curves in the initial experiment for
sensitivity (TPR) vs. specificity (FPR) for normal, viral
pneumonia, and COVID-19 disease using the test and
validation dataset. Figure 7 shows both the accuracy and loss
for each epoch of training and validation data. It can be
noticed that the model accuracy is ranged between 90 and
95% for both training and validation data. Besides, the model
loss is dramatically decreased during the epochs 20–30.
Moreover, it should be noticed that the training is not
stopped early as it is required to complete the whole 5 epochs
without any change in the model performance, which has
not been achieved here.

4.3. Analysis of Inception-ResNetV2 Model. ,e analysis of
our proposed model is carried out with different activation
functions, optimizers, and loss model scenarios. Figure 8
shows the performance of the proposed model with various
activation functions: Softmax, Sigmoid, ReLU, and ELU
activation functions while fixing the optimizer to Adam and
the loss to sparse categorical cross entropy. Figure 9 shows
the performance of the proposed model with Adam,
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Adagrad, SGD, and RMSprop optimizers while fixing both
the activation function and loss of Softmax and sparse
categorical cross entropy, respectively. It is noticeable that
both Adam and Adagrad optimizers give the best perfor-
mance compared to other optimizers. SGD records the worst
accuracy results due to the demand of a number of
hyperparameters and a big number of iterations and it is also
sensitive to feature scaling. Besides, ReLU method in the
final fc layer forces negative inputs to be zero which ignores
many neurons during the training process, thus damaging
the capability of the neural net.

Figure 10 shows performance of the proposed model
with sparse categorical cross entropy, categorical cross en-
tropy, mean squared error, and LogCosh loss models while
fixing the activation function and optimizer with Softmax
and Adam, respectively. Sparse categorical cross-entropy
model gives the best accuracy results compared to other loss
models. ,e other three models are dramatically reducing
the obtained results.

Figure 11 shows the original dataset 80%–20% confusion
matrix of the 8 models for a support of 48, 279, and 254 for
COVID-19, normal, and viral pneumonia classes,
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(n = 256)
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1×1 Conv
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(n = 288)
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(320 stride 2 V)
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(384 stride 2 V)
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(stride 2 V)

Filter contact
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(k)
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(1)
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(m stride 2 V)
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(n stride 2 V)

3×3 MaxPool
(stride 2 V)
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Figure 4: Two schematics of filter contact reduction modules.
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respectively. It is obvious from Figure 11 that all COVID-19
images (45 images) are accurately classified in Inception-
ResNetV2, InceptionV3, and DenseNet121. Specifically, for
our proposed model, only 1 normal image out of 279 images
is misclassified to viral pneumonia images. Finally, only 7
viral pneumonia images out of 254 images are misclassified
to normal class images. Accordingly, it is great that none of
COVID-19 images are misclassified to the other disease
categories. Similarly, only seven viral pneumonia images
were misclassified to normal class. However, it is also less
severe than misclassifying COVID-19 images. Compared to
both InceptionV3 model and DenseNet121 model, it is
noticeable that our model is not confusing in COVID-19

images; rather, it is roughly confused between normal im-
ages and viral pneumonia images.

Further, Figure 12 shows the large dataset 70%-20%-10%
confusion matrix of the 8 models for a support of 384, 1000,
and 132 for COVID-19, normal, and viral classes, respec-
tively. Specifically, for our proposed model, 24 COVID-19
images out of 384 are misclassified to normal class.
Meanwhile, 9 normal images out of 1000 are misclassified
where 3 images are classified as COVID-19 and 6 images as
viral. Finally, only 6 viral pneumonia images out of 132
images are misclassified where an image is classified as
COVID-19 and 5 images as normal. Generally, according to
the large dataset, DenseNet121 achieves the best results

COVID-19 

Viral
pneumonia

Normal

Figure 5: Grad-CAM results for portions of the test CXR images in normal, viral pneumonia, and COVID-19 classes.

Table 4: Machine description.

CPU model name Intel (R) Xeon (R) CPU @ 2.30GHz
CPU cores 16
RAM 13 gigabytes
GPU card NVIDIA Quadro K6000 16GB
Operating system (OS) Linux 0e22a0d3b32a 4.9.0-5-amd 64 #1

Table 5: Average classification results for the classification task of the original dataset.

Model Accuracy (%) F1-score (%) Precision (%) Recall (%) Training time (s) Testing time (s)
Inception-ResNetV2 98.80 98.86 98.61 99.11 1138 4.10
Xception 98.30 98.45 98.15 98.78 1051 2.13
VGG16 97.60 97.30 98.29 96.40 912 1.85
ResNet50V2 97.60 97.65 97.08 98.28 890 2.28
InceptionV3 97.90 98.20 97.90 98.51 894 2.16
MobileNetV2 98.10 97.67 98.67 96.77 881 1.74
DenseNet121 98.30 98.45 98.15 98.78 940 1.91
ResNet101V2 97.40 97.19 97.50 96.90 1006 2.55
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Table 8: Model classification results for 3 categories (COVID-19 vs. normal vs. viral pneumonia) classification task for the new release of the
dataset.

Model Category Accuracy (%) F1-score (%) Precision (%) Recall (%)

Inception-ResNetV2
COVID-19 98.02 96.00 98.36 93.75
Normal 97.36 97.97 97.15 98.80

Viral pneumonia 98.94 95.09 94.74 95.46

Xception
COVID-19 44.85 36.20 15.57 21.77
Normal 50.73 64.16 63.53 64.80

Viral pneumonia 89.38 24.24 5.14 8.48

VGG16
COVID-19 99.27 97.66 98.43 98.04
Normal 98.81 99.00 98.61 98.80

Viral pneumonia 99.54 94.70 95.42 95.06

ResNet50V2
COVID-19 57.92 52.87 39.42 45.16
Normal 52.24 55.70 74.27 63.66

Viral pneumonia 91.16 61.36 32.27 42.30

InceptionV3
COVID-19 98.88 98.70 97.93 98.31
Normal 98.35 98.70 98.90 98.80

Viral pneumonia 99.21 95.46 96.18 95.82

Table 6: Model classification results for 3-category (COVID-19 vs. normal vs. viral pneumonia) classification task for the original dataset.

Model Category Accuracy (%) F1-score (%) Precision (%) Recall (%)

Inception-ResNetV2
COVID-19 99.83 99.05 98.11 100.00
Normal 98.80 98.62 98.81 98.43

Viral pneumonia 98.97 98.91 98.91 98.91

Xception
COVID-19 99.83 98.90 97.83 100.00
Normal 98.28 98.16 99.63 96.74

Viral pneumonia 98.45 98.29 97.00 99.62

VGG16
COVID-19 99.48 96.55 100.00 93.33
Normal 97.59 97.48 96.79 98.19

Viral pneumonia 98.11 97.88 98.07 97.69

ResNet50V2
COVID-19 99.66 97.83 95.75 100.00
Normal 97.76 97.62 98.89 96.38

Viral pneumonia 97.76 97.52 96.60 98.46

InceptionV3
COVID-19 99.83 98.90 97.83 100.00
Normal 98.11 98.00 98.54 97.46

Viral pneumonia 97.93 97.70 97.33 98.08

MobileNetV2
COVID-19 99.48 96.55 100.00 93.33
Normal 98.28 98.21 97.16 99.28

Viral pneumonia 98.45 98.26 98.83 97.69

DenseNet121
COVID-19 99.83 98.90 97.83 100.00
Normal 98.28 98.16 99.63 96.74

Viral pneumonia 98.45 98.29 97.00 99.62

ResNet101V2
COVID-19 99.48 96.63 97.73 95.56
Normal 97.93 97.83 97.83 97.83

Viral pneumonia 97.42 97.12 96.94 97.31

Table 7: Average classification results for the classification task of the new release of the dataset.

Model Accuracy (%) F1-score (%) Precision (%) Recall (%) Training time (s) Testing time (s)
Inception-ResNetV2 97.23 96.35 96.75 96.00 3449 10.78
Xception 50.66 32.02 29.27 30.50 2942 5.74
VGG16 98.29 97.30 97.48 97.12 1833 4.85
ResNet50V2 55.48 50.37 48.65 56.64 1496 5.85
InceptionV3 98.42 97.64 97.67 97.62 1587 5.70
MobileNetV2 98.15 97.11 96.91 97.32 1406 4.64
DenseNet121 98.88 98.18 97.61 98.78 1938 4.89
ResNet101V2 98.62 97.93 97.60 98.27 2441 6.59
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compared to others. However, our proposed model achieves
an average 97.23%, 96.35%, 96.75%, and 96.00% for accu-
racy, F1-score, precision, and recall, respectively.

4.4. Comparison with State-of-the-Art Methods.
Compared to state-of-the-art methods reported in Table 9,
the obtained results revealed the superiority of our proposed
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Figure 7: Inception-ResNetV2 model accuracy and model loss for each epoch. (a) Accuracy vs. epoch. (b) Loss vs. epoch.

Table 8: Continued.

Model Category Accuracy (%) F1-score (%) Precision (%) Recall (%)

MobileNetV2
COVID-19 98.68 98.96 96.94 97.94
Normal 98.15 98.30 99.09 98.70

Viral pneumonia 98.15 94.70 94.70 94.70

DenseNet121
COVID-19 99.34 98.96 99.22 99.09
Normal 98.48 98.90 99.40 99.15

Viral pneumonia 99.14 98.49 94.20 96.30

ResNet101V2
COVID-19 99.21 98.18 98.95 98.56
Normal 98.68 98.90 99.00 98.95

Viral pneumonia 99.47 97.73 94.85 96.27

ROC curve (area = 0.94) (test dataset)
ROC curve (area = 0.85) (validation dataset)
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Figure 6: ROC curves for sensitivity (TPR) vs. specificity (FPR) for COVID-19, viral pneumonia, and normal cases.

Journal of Healthcare Engineering 11



Accuracy Precision Recall F1-measure

98.80% 98.61% 99.11% 98.86%
47.33% 27.95% 32.86% 30.20%
48.02% 16.01% 33.33% 21.63%

Sparse categorical cross entropy
Categorical cross entropy
Mean squared error
LogCosh

Sparse categorical
cross entropy
Categorical cross entropy

Mean squared error
LogCosh

39.42% 40.04% 38.45% 34.31%

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

Pe
rc

en
ta

ge
 (%

)

Figure 10: Performance of Inception-ResNetV2 model with different loss functions.
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Figure 8: Performance of Inception-ResNetV2 model with different activation functions.
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Figure 9: Performance of Inception-ResNetV2 model with different optimizers.

12 Journal of Healthcare Engineering



48 0 0

0

250

200

150

100

50

0

0

0 7

1

247

278

COVID-19

CO
V

ID
-1

9
N

or
m

al

Normal Viral
pneumonia

Vi
ra

l
pn

eu
m

on
ia

(a)

250

200

150

100

50

0

0 0

248

279

1

4

45 2

2

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(b)

250

200

150

100

50

0

0

0

0

0

0

0

279

254

48

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(c)

200

175

150

125

100

75

50

25

5

3

5 129 120

221 55

1231

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(d)

250

200

150

100

50

0

48

3

1 2

6

00

270

251

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(e)

250

200

150

100

50

0

227

279

47

0

0

0

0 27

1

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(f )

250

200

150

100

50

0

251

271

0 048

2

21

6

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(g)

250

200

150

100

50

0

249

260

50

3 16

1047

COVID-19 Normal Viral
pneumonia

CO
V

ID
-1

9
N

or
m

al
Vi

ra
l

pn
eu

m
on

ia

(h)

Figure 11: Original dataset 80%–20% confusion matrix of the 8 models for a support of 48, 279, and 254 for COVID-19, normal, and viral
pneumonia classes, respectively. (a) Inception-ResNetV2. (b) Xception. (c) VGG16. (d) ResNet50V2. (e) InceptionV3. (f ) MobileNetV2.
(g) DenseNet121. (h) ResNet101V2.
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Figure 12: Continued.
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model in thematter of accuracy for 3-class classification task.
It gets remarkable average accuracy results (98.80) due to
concentration on the residual connection rather than filter
connection via split and merge as previously shown in
Figures 3 and 4. Moreover, it supports dimension reduction
in a way that promotes faster learning. For CXR images,
these results of detecting COVID-19 are considered
promising and encouraging. It could significantly assist
radiologists to avoid heaviness of hospitals and medical
systems. Our proposed model is effective enough to support
radiologists in the diagnosis of COVID-19 as it is capable of

classifying COVID-19 successfully with an accuracy
reaching 99.11%.

5. Conclusions and Future Work

In this paper, an ensemble of deep learning models is used in
the study to classify patients affected by COVID-19 using
CXR images. Using the transfer learning approach, the
models have been trained for dataset of images of COVID-19
dataset. ,e study is more oriented to Inception-ResNetV2
model due to its high metrics. Compared to state-of-the-art
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Figure 12: Large dataset (new release) 70%-20%-10% confusion matrix of the 8 models for a support of 384, 1000, and 132 for COVID-19,
normal, and viral classes, respectively. (a) Inception-ResNetV2. (b) Xception. (c) VGG16. (d) ResNet50V2. (e) InceptionV3. (f ) Mobi-
leNetV2. (g) DenseNet121. (h) ResNet101V2.

Table 9: ,e results obtained compared to state-of-the-art methods.

Reference Utilized models Highest achievement

Wang et al. [12] COVID-Net Accuracy: 92.4% for 2 classes
83.5% for 4 classes

Hemdan et al. [19] COVIDX-Net F1-score: 0.89 for normal
0.91 for COVID-19

Sethy and Behera [20] ResNet50 and SVM classifier Accuracy: 95.38%
Ozturk et al. [29] Dark COVID-Net Accuracy: 87.02% for 3 classes
Apostolopoulos and
Mpesiana [30] VGG-19 Accuracy: 93.48% for 3 classes

Khan et al. [18] CoroNet Accuracy: 89.6% for 4 classes
95% for 3 classes

Xu et al. [16] ResNet Accuracy: 86.7%

Li et al. [31] COVNet
Specificity: 96%
Sensitivity: 90%

AUC: 96%
Song et al. [15] DeepPneumonia Accuracy: 92.4% for 2 classes
Ghoshal and Tucker [32] Bayesian CNN Accuracy: 92.90%

Zhang et al. [2] Deep CNN based on backbone
network

Specificity: 70.7%
Sensitivity: 96.0%

AUC: 95.2%

Ouchicha et al. [21] CVDNet Accuracy: 97.20% for 2 classes
96.69 for 3 classes (COVID-19 vs. normal vs. viral pneumonia)

Our proposed Enhanced Inception-ResNetV2

Accuracy: 98.80% (average accuracy) and 99.20 for 3 classes (COVID-19
vs. normal vs. viral pneumonia)

F1-score: 98.86%
Precision: 98.61%

Recall: 99.11
AUC: 97.2%
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methods, our base model named Inception-ResNetV2
achieved an average accuracy of 99.83% for detecting
COVID-19 and an average accuracy of 98.80% for three-
class classification, which confirms superiority in classifying
COVID-19 cases. Additionally, our proposed model could
be assisting radiologists in the diagnosis of COVID-19 in-
fection quickly. In the future, we will work to develop our
proposed work to detect the severity of COVID-19 infection
cases via a patient image bank. Moreover, the computational
complexity of our proposed model will be considered and
criticized, and the model will be also validated using CT
images coming from different sources.
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