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ABSTRACT

Target-based high-throughput compound screening dominates conventional one-drug-one-gene drug discovery process.
However, the readout from the chemical modulation of a single protein is poorly correlated with phenotypic response of
organism, leading to high failure rate in drug development. Chemical-induced gene expression profile provides an attractive
solution to phenotype-based screening. However, the use of such data is currently limited by their sparseness, unreliability,
and relatively low throughput. Several methods have been proposed to impute missing values for gene expression datasets.
However, few existing methods can perform de novo chemical compound screening. In this study, we propose a mechanism-
driven neural network-based method named DeepCE (Deep Chemical Expression) which utilizes graph convolutional neural
network to learn chemical representation and multi-head attention mechanism to model chemical substructure-gene and
gene-gene feature associations. In addition, we propose a novel data augmentation method which extracts useful information
from unreliable experiments in L1000 dataset. The experimental results show that DeepCE achieves the superior performances
not only in de novo chemical setting but also in traditional imputation setting compared to state-of-the-art baselines for the
prediction of chemical-induced gene expression. We further verify the effectiveness of gene expression profiles generated
from DeepCE by comparing them with gene expression profiles in L1000 dataset for downstream classification tasks including
drug-target and disease predictions. To demonstrate the value of DeepCE, we apply it to patient-specific drug repurposing of
COVID-19 for the first time, and generate novel lead compounds consistent with clinical evidences. Thus, DeepCE provides a
potentially powerful framework for robust predictive modeling by utilizing noisy omics data as well as screening novel chemicals
for the modulation of systemic response to disease.

Target-based high-throughput screening dominates con-
ventional drug discovery process which follows a one-

drug-one-gene paradigm. It has been the focus of computer-
aided drug discovery for decades including recent application
of deep learning. However, the readout from the modulation
of a single protein by a chemical is poorly correlated with
organism-level therapeutic effect or side effect. As a result, the
failure rate from a lead compound generated from the target-
based screening to approved drug is high. Phenotype-based
screening has created renewed interests for identifying cell-
active compounds but suffered from low-throughput and diffi-
culty in target deconvolution. Therefore, a high-throughput,
mechanism-driven phenotype compound screening method
will no doubt facilitate drug discovery and development.

Gene expression profiling has been widely used to charac-
terize cellular and organismal phenotypes. Systematic anal-
ysis of genome-wide gene expression of chemical perturba-
tions on human cell lines has led to significant improvements
in drug discovery and systems pharmacology. In particu-

lar, it can be applied to drug repurposing1, 1–4, discovering
drug mechanisms5, lead identification6, and predicting side
effects for pre-clinical compounds7. The use of genome-wide
chemical-induced gene expression was initially made possi-
ble by the appearance of Connectivity Map (CMap)8, which
consists of gene expression profiles of five human cancer cell
lines perturbed by ∼ 1300 compounds after 6h. However,
the limited data availability across cell types restricts the per-
formances of these analyses which heavily depend on the
coverage of chemicals and human cell lines. To overcome this
limitation, a novel gene expression profiling method, L1000,
which is the extension of CMap project, was developed by
NIH library of integrated network-based cellular signatures
(LINCS) program9. After Phase I of LINCS program, L1000
dataset consists of ∼ 1,400,000 gene expression profiles on
the responses of ∼ 50 human cell lines to one of ∼ 20,000
compounds across a range of concentrations. Recently, L1000
dataset and its normalization versions10 are widely used in
drug repurposing and discovery11, 12. Despite these successes,
there are several major problems when utilizing L1000 dataset.
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Figure 1. General framework of training computational models for L1000 gene expression profile prediction and using them
for downstream application (i.e. drug repurposing). The objective for the learning process is minimizing the loss between
predicted profiles and grouth-truth profiles in L1000 dataset. After training, models is used for generating profiles for new
chemicals in external molecular database (e.g. DrugBank, ChEMBL). These profiles are then used for in silico screening to find
potential drugs for disease treatment

First, although the number of gene expression profiles is much
larger than that in CMap, many missing expression values re-
main in the vast combinatorial space of chemicals and cell
lines. Second, there are hundreds of millions of drug-like
purchasable chemicals which are potential drug candidates13.
It is infeasible to experimentally test all of these chemicals for
their chemical-induced gene expression profiles across multi-
ple cell lines. Finally, due to various experimental problems
(e.g. batch effect), many experiment measurements are not
reliable (as shown in Supplementary Figure 1). These serious
obstacles will limit the effectiveness and scope of utilizing
L1000 dataset in drug discovery. Therefore, predicting gene
expression values for unmeasured and unreliable experiments
are necessary.

Missing entries in the combinatorial space is the problem of
not only L1000 dataset but also other gene expression profil-
ing datasets. Before the appearance of L1000 dataset, several
methods of imputing missing values have been proposed for
gene expression datasets. We categorize these methods into
two main approaches depending on the dependence of other
information besides gene expression data. The first approach
does not use any additional information. Works following this
approach include k nearest neighbor (kNN)14, singular value
decomposition14, least mean square15–17, Bayesian principal
component analysis18, Gaussian mixture clustering19, and

support vector regression20. The second approach uses addi-
tional information to predict expression profiles. For example,
chemical structures are used to predict chemical-induced gene
expressions but that work does not consider cell-specific in-
formation21.

The approaches described above are designed for matrix-
structured data (i.e. gene × experiment) while L1000 dataset
is formulated as tensor-structured data (i.e. gene × chemical
× cell × doses × time) so they cannot be applied to capture
high-dimensional associations that help to impute missing
values for L1000 dataset. Recently, several methods are pro-
posed to predict gene expression profiles in L1000 dataset.
In particular, to deal with high-dimensional structured data,
an extension of linear regression model named polyadic re-
gression is developed to capture interactions emerging across
features22. Matrix completion methods are also adapted to
handle tensor-structured gene expression data23, 24.

Above methods for L1000 dataset just focus on imputing
the missing values of some gene expression profiles or the
whole gene expression profiles of some missing experiments.
They are not very useful in the real setting of drug discovery
where the chemical-induced gene expression profile of new
chemicals needs to be identified. This motivates us to solve
a more practical but more challenging problem: predicting

2/12

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 20, 2020. . https://doi.org/10.1101/2020.07.19.211235doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.211235
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2. Overall architecture of DeepCE (The details of 2nd layer which has similar architecture to the 1st layer in the
interaction network are omitted to save space)

gene expression profiles for de novo chemicals (i.e. chemicals
that do not appear in training data). Solving this problem is
necessary because it helps to infer gene expression profiles of
new chemicals without conducting experiments that require
time and human resources. More importantly, this problem
can be expanded to predict gene expression profiles for new
cell lines which can be difficult for measuring in in vitro
environment. However, current computational approaches for
predicting gene expression values for L1000 dataset cannot
work well in de novo setting. In particular, tensor completion
approach cannot predict gene expression profiles for new
chemicals because of the inaccessibility to chemical features.
Polyadic regression, theoretically, can predict gene expression
profiles for high-dimensional data in de novo chemical setting
because of using chemical features. However, in practice, it is
not feasible because of huge computational resources required
for handling high-dimensional data (i.e. this method fails
when applied to more than 3-dimensional data). Therefore,
there is a strong incentive to develop a new and effective
method that exploits high-dimensional data for predicting
gene expression profiles for de novo chemical setting.

To address the aforementioned problems, we design a mech-
anism-driven neural network-based model, DeepCE, which
captures high-dimensional associations among biological fea-
tures as well as non-linear relationships between biological
features and outputs to predict gene expression profiles given
a new chemical compound. Our proposed DeepCE signifi-
cantly outperforms the state-of-the-art models for predicting

gene expression profiles in L1000 dataset not only for de novo
chemical setting but also for traditional imputation setting.
Several novelties in the architecture of model contribute to
the success of DeepCE. First, we leverage graph convolu-
tional network to automatically extract chemical substructure
features from data. Second, attention mechanism is used to
capture associations among chemical substructures and genes,
and among genes in cell lines. Finally, gene expression values
of all L1000 genes are predicted simultaneously from hidden
features by multi-output multi-layer feed-forward neural net-
work. Besides developing this neural network-based model,
we propose a data augmentation method by which we can ex-
tract useful information from unreliable experiments in L1000
dataset to improve the prediction performance of our model.
We also verify the effectiveness of DeepCE by comparing
the performances of several classification models trained on
gene expression profiles generated from DeepCE and those
trained on original gene expression profiles in L1000 dataset
for two downstream tasks: drug-target and disease predic-
tions. Finally, we assess the value of our proposed method
for the challenge and urgent problem, finding treatment for
COVID-19, by in silico screening all chemical compounds
in Drugbank against COVID-19 patient clinical phenotypes.
The prioritized lead compounds are consistent with existing
clinical evidences. To our knowledge, it is the first work
of phenotype-based drug repurposing for COVID-19. The
source code of DeepCE and the generated gene expression
profiles of all chemical compounds in Drugbank are publicly
available for research purpose, which could make significant a
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contribution to drug discovery and development in particular,
and computational chemistry and biology research in general.

Methods
In this section, we present datasets used in our study and
our proposed model, DeepCE, as well as baseline models for
predicting gene expression profiles including linear models,
vanilla neural network, k-nearest neighbor, and tensor-train
weight optimization models. The general framework of train-
ing and testing these computational models for L1000 gene
expression profile prediction is shown in Figure 1. Basically,
computational models take L1000 experimental information
(i.e. chemical compound, cell line, time stamp, and chemical
dose size) from L1000 dataset as inputs, transform them into
numerical representations, and then predict L1000 gene ex-
pression profiles based on these representations. The details of
the numerical feature transformation process for chemical and
biological objects used in our study and model implementation
of DeepCE and other baselines are shown in Supplementary
Notes. Moreover, in this section, we present the data augmen-
tation method that extracts useful information from unreliable
experiment in L1000 dataset to improve the prediction per-
formance of our models, and the evaluation method for our
models.

Datasets
Bayesian-based peak deconvolution L1000 dataset Af-
ter the original version of L1000 dataset was released9, many
efforts have been made to improve the quality of this dataset.
For example, instead of using k-means clustering algorithm as
in the original version, some works propose to use Gaussian
mixture model to enhance the accuracy of peak deconvolution
step25, 26. One work, in another way, develops a multivari-
ate method called Characteristic Direction to compute gene
signatures instead of using the moderated Z-score as in the
original version10. In our study, we conduct experiments on
Bayesian-based peak deconvolution L1000 dataset which has
been shown to generate more robust z-score profiles from
L1000 assay data, and therefore, gives better representation
for perturbagens27. In particular, we train and evaluate our
proposed methods on level 5 data of this dataset. The gene
expression profiles result from experiments of 7 most frequent
cell lines and 6 most frequent chemical dose sizes in L1000
dataset are used to construct our gene expression dataset. We
then select high-quality experiments from our dataset and split
into high-quality training set, and development and testing
set. We also construct the original training set by keeping
unreliable experiments in our gene expression dataset and
the augmented training set generated by our data augmented
algorithm. The details of constructing these sets are described
in Supplementary Notes. The statistics of these training, de-
velopment, and testing sets are shown in Supplementary Table
1.

STRING database for human protein-protein interactions
STRING28 is a multi-source database of protein-protein in-

teractions. These interactions which can be known or pre-
dicted, direct (physical) or indirect (functional) are collected
from five main sources including genomic context prediction,
high-throughput lab experiments, conserved co-expression,
automated text-mining, and previous knowledge databases. In
our setting, we extract the human protein-protein interaction
network (i.e. ∼ 19,000 nodes (proteins) and ∼ 12,000,000
edges (interactions)) from this database to compute vector
representations for L1000 genes. The drug-target vector rep-
resentations for chemical compounds used in our study are
also computed from this human protein-protein interaction
network. The details of generating these representations from
STRING database are shown in Supplementary Notes.

Drugbank database for drug-target interaction and dis-
ease predictions Drugbank is a well-known, comprehen-
sive database used in many bioinformatics and cheminformat-
ics tasks29. This database consists of information about drugs
and their targets. In our experiments, we extract ATC labels
derived from the first level of ATC tree and targets of drugs
appeared in L1000 dataset from Drugbank. There are 698
drug targets and 14 ATC labels in the extracted dataset. We
select the most frequent ATC labels and drug targets based on
their frequents on this dataset as the labels of drugs to form
drug-target prediction and ATC prediction datasets. These
datasets are used to evaluate the performance of gene expres-
sion profiles generated from our models.

Patient expression in response to SARS-CoV-2 infection
Patient expression data for this study is downloaded from
NCBI Gene Expression Omnibus(GSE147507).30 We used
expression profile from SARS-CoV-2 patient and healthy neg-
ative controls in series 15 for differential expression analysis.
Two technical replicates are from one male diseased patient
(age 74) and 2 uninfected samples are from one male (age
72) and one female (age 60). DESeq231 package is used to
generate the differential gene expression profile of the patient.
Not all L1000 genes appear in the result of DESeq2 pack-
age so we only consider genes appear in both L1000 dataset
and DESeq2 package (i.e. 838 genes) when comparing with
chemical-induced gene expression profiles.

Overall architecture of DeepCE
Our neural network-based model for L1000 gene expression
profile prediction, DeepCE, consists of several components
as follows. First, we use graph convolutional network to
learn numerical representation for chemical compound from
its graph structure and feed-forward neural network to learn
numerical representations for cell line and chemical dose size.
We also use numerical representations for L1000 genes which
are derived from the human protein-protein interaction net-
work (described in Supplementary Notes). After that, these
vector representations are put into the interaction component
to capture high-level feature associations including chemical
substructure-gene and gene-gene feature associations. Finally,
the prediction component takes the outputs of the interaction
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component as inputs to predict the gene expression values
for all L1000 genes simultaneously. The overall architecture
of DeepCE and its hyperparameters used in our experiments
are shown in Figure 2 and Supplementary Table 3 respec-
tively. The following paragraphs describe each component of
DeepCE in detail.

Graph convolutional network for neural fingerprint Re-
cently, data-driven chemical fingerprints are shown to be more
effective than predefined chemical fingerprints (e.g. PubChem,
ECFP) for many biological prediction problems. Therefore,
we propose to use graph convolutional network (GCN) to
capture the chemical substructure information. The original
GCN model for chemical fingerprint32 takes a graph structure
of chemical compound as input and update vector represen-
tations for each node (atom) in graph (chemical compound)
from its neighborhoods by convolutional operation. Thus,
the vector for each node after convolutional operation can be
seen as the representation of chemical substructures. The final
vector which is the sum of vectors of every node is used as the
chemical fingerprint. GCN model used in our experiments is
primarily based on that model but with a minor modification.
In particular, we output vector representations for every nodes
instead of one vector representation for the chemical com-
pound because we want to model the associations of chemical
substructure features with gene features. In our settings, we
use the GCN model with 2 convolutional layers (radius R =
2). It means that the output vector from GCN for each atom
represents the chemical substructure which is a span of 2-hop
distance from that atom. The initial representations for atoms
and bonds are multi-hot vectors that capture the symbol, de-
gree, number of Hydro neighborhoods, and aromaticity of
atoms, and type of bonds that have lengths of 62 and 6, respec-
tively. The details of GCN model used in our experiments are
shown in Supplementary Algorithm 1.

Multi-head attention for gene-gene and chemical substruc-
ture-gene feature associations Attention mechanisms wh-
ere an element of one set selectively focuses on a subset of
another set (attention) or its set (self-attention) based on atten-
tion weights are used widely in neural network-based models
and effectively applied to many AI tasks including computer
vision and natural language processing. In our experiments,
we propose to apply the attention method named multi-head
attention for modeling associations among gene features, and
among gene and chemical substructure features. Multi-head
attention was first proposed in Transformer model which
achieves state-of-the-art results for many natural language
processing tasks33. Basically, each element in sets can be
represented by a set of three vectors query, key, and value. An
individual attention module is a function of mapping queries
and sets of key-value pairs to output matrix computed by:

Attention(Q,K,V) = so f tmax(
QKT
√

dk
V)

where Q,K,V are matrices (sets) of queries, keys, values
respectively and dk is a scaling factor. Multi-head attention fo-
cuses on different representation subspaces by concatenating
several individual attention modules:

MultiHead(Q,K,V) = concat((head1, ...,headh)WO

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ).

This multi-head attention mechanism is the main ingredient
used to construct the interaction component of DeepCE. In
particular, the interaction component consists of two identical
layers where outputs of the first layer are used as inputs for
the second layer. For each layer, we use 2 separate multi-head
attention modules with 4 heads for each module to model
associations among genes in gene set and among elements in
gene set and chemical substructure set. Length of query, key,
value vectors is set at 512. Outputs from these two multi-head
attention modules are concatenated and put into normalization
layer followed by feed-forward layer and another normaliza-
tion layer. The abstract architecture of interaction component
is shown in Figure 2.

Multi-output prediction The multi-output prediction com-
ponent which is a 2-layer feed-forward neural network with
ReLU activation function takes input as the concatenation of
chemical neural fingerprint, gene feature generated by interac-
tion component, cell line and chemical dose size features to
predict gene expression values for all L1000 genes together
as follows:

Y = W2(ReLU(W1X+b1))+b2

where W1,W2,b1,b2 are weight matrices and bias vectors
of this network. The output size of this feed-forward neural
network is set at 978 which is the number of L1000 genes.

Objective function The objective function used in DeepCE
model is mean squared error (MSE) between predicted and
ground-truth gene expression values and is computed as fol-
lows:

lossDeepCE(Θ) =
1

NM

N

∑
i=1

M

∑
j=1

(zi, j− yi, j)
2

where Θ are the set of parameters in DeepCE model. N and M
the number of gene expression profiles in a batch and number
of L1000 genes respectively. zi, j and yi, j are ground-truth
and predicted gene expression values of jth gene in ith gene
expression profile.

Baseline Models
In this section, we describe several baseline models used in our
experiments including linear models, vanilla neural network,
k-nearest neighbor, and tensor-train weight optimization24.
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Linear models We experiment with multi-output linear re-
gression model and its regularization versions including Lasso
regression (L1 regularization) and ridge regression (L2 regu-
larization) models. Like DeepCE, input for these models is
the concatenation of numerical representations for chemical,
gene, cell line, and chemical dose size features but we use pre-
defined chemical fingerprints and drug-target features instead
of data-driven representations derived from GCN for chem-
icals. The details of these representations are described in
Supplementary Notes. Multi-output linear models can be seen
as 1-layer feed-forward neural network without activation
function.

Vanilla neural network The vanilla neural network used in
our experiments can be seen as the simpler version of DeepCE
model that does not include the interaction network compo-
nent for modeling gene-gene and gene-chemical substructure
feature associations and GCN for generating neural finger-
prints. Input for this vanilla neural network is similar to its for
linear models. The following layers in this network are sim-
ilar to the prediction network component in DeepCE model
which is a 2-layer feed-forward neural network with ReLU
activation function.

K-nearest neighbor We also propose a k-nearest neighbor-
based approach for gene expression prediction for de novo
chemical setting. In particular, gene expression profile for a
new chemical compound in one particular setting (i.e. cell line,
chemical dose size) is generated by averaging gene expression
profiles of its nearest neighborhoods in the training set in the
same setting. In our research, we experiment with different
numbers of neighborhoods from 1 to 15 and different distance
measures including cosine, euclidean, correlation, Jaccard and
Tanimoto distances.

Tensor-train weight optimization Tensor-train weight op-
timization (TT-WOPT) is a tensor completion approach pro-
posed to retrieve missing values in tensor data from existing
values. It has been shown to be effective for predicting miss-
ing values of L1000 dataset which can be formulated as a
tensor-structure object without using additional information24.
In our research, we conduct experiments to compare it with
our proposed model, especially in de novo chemical setting.
Because this model does not require additional information
so input for it is L1000 gene expression values formulated as
a tensor.

Data augmentation
From Supplementary Figure 1, we can see that only a small
number of experiments in L1000 dataset are reliable (i.e. APC
score ≥ 0.7) so it would be wasteful if we cannot exploit use-
ful information from a large number of unreliable experiments.
It will be shown in the Results section (i.e. Table 1) that sim-
ply adding unreliable experiments to the high-quality training
set (original training set) makes the performances of our mod-
els worse. Thus, we propose the data augmentation method
by which we can effectively exploit unreliable experiments

to improve the performances of our models. We argue that
although an experiment (level 5 data) is unreliable, not all its
bio-replicates experiments (level 4 data) are also unreliable
and we will extract these reliable bio-replicate experiments
by our proposed data augmentation method. The basic idea is
that we, first, train our model on the high-quality training set,
and then, generate predicted gene expression profiles for unre-
liable experiments. These predicted gene expression profiles
are compared with their bio-replicate gene expression profiles
and we incorporate bio-replicate gene expression profiles that
have the similarity scores with their predicted gene expression
profiles larger than the threshold. Supplementary Algorithm
2 presents this data augmentation method in detail. In our
settings, the similarity score is Pearson correlation.

Performance evaluation
Pearson correlation coefficient is used to evaluate perfor-
mances of models in our experiments. Correlation scores
which measure the relationship between ground-truth and pre-
dicted gene expression profiles have been shown to be more
effective than error measures for microarray data analysis34, 35.
Moreover, using Pearson correlation allows us to conduct unbi-
ased evaluation for our models which are optimized for mean
squared error. We calculate the average Pearson correlation
for a dataset as follows:

r =
1
N

N

∑
j=1

∑
M
i=1(zi, j− z̄i)(yi, j− ȳi)√

∑
M
i=1(zi, j− z̄i)2

√
∑

M
i=1(yi, j− ȳi)2

where N and M are number of gene expression profiles in the
dataset and number of L1000 genes respectively. zi, j,yi, j, z̄i, ȳi
are ground-truth and predicted gene expression values of jth

gene in ith gene expression profile and ground-truth and pre-
dicted mean values of ith gene expression profile.

Besides using Pearson correlation to directly evaluate the
quality of our predicted gene expression profiles, we also use
area under the receiver operating characteristic curve (AUC)
to verify the effectiveness of these predicted profiles for down-
stream binary classification tasks including drug-target and
ATC code predictions.

Results and Discussions
DeepCE significantly outperforms baseline models in the
novel chemical setting In this experiment, we compare
DeepCE model and its simpler variants constructed by remov-
ing either the whole interaction component or just one part
of its (i.e. chemical substructure-gene or gene-gene feature
association modules) with several baseline models including
vanilla neural network, kNN, linear models, and TT-WOPT.
While TT-WOPT predicts output based on gene expression
values only, other models learn the relationship between ex-
perimental information and gene expression profiles to make
predictions. For DeepCE, we use neural fingerprints while
for other models, we use predefined fingerprints including
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Training sets Models PubChem ECFP Drug-target LTIP Random

Original Vanilla neural network 0.1101 0.0705 0.1076 0.0770 -
kNN 0.0844 0.1469 0.1811 0.1231 -

High-quality

Vanilla neural network 0.3929 0.4105 0.4270 0.4259 0.3129
kNN 0.3903 0.3991 0.3907 0.3922 -
Linear regression 0.1762 0.1770 0.1763 0.1764 -
Lasso 0.1761 0.1770 0.1764 0.1764 -
Ridge regression 0.1762 0.1770 0.1764 0.1764 -

Augmented Vanilla neural network 0.4204 0.4177 0.4302 0.4299 -
kNN 0.3973 0.4121 0.4023 0.4016 -

Table 1. Performances (Pearson correlation) on testing set of vanilla neural network, kNN, and linear models with different
chemical features trained with different training sets

Training sets Models Performances

High-quality

TT-WOPT 0.0133
DeepCE w/o interaction component 0.4418
DeepCE w/o chemical substructure-gene attention 0.4620
DeepCE w/o gene-gene attention 0.4477
DeepCE 0.4907

Augmented DeepCE 0.5014

Table 2. Performances (Pearson correlation) on testing set of TT-WOPT and DeepCE with its simpler variants trained with
different training sets

Figure 3. Performances of DeepCE, vanilla neural network,
and kNN with different distances among chemicals in the
training and testing sets

PubChem and circular (ECFP6) fingerprints, and drug-target
information including latent target interaction profile (LTIP)36

and our proposed drug-target feature to represent chemicals.
All models are trained on the high-quality training set and are
evaluated on the test set.

As listed in Table 1 and Table 2, DeepCE model and
its variants achieve order-of-magnitude improvements over
baseline models. In particular, DeepCE model significantly
outperforms other models including vanilla neural network,
kNN, linear models, and TT-WOPT by achieving a Pear-
son correlation of 0.4907 on the testing set (paired t-test,
p− value < 4.63× 10−15). Comparing to its simpler vari-

Figure 4. Pearson correlation scores of vanilla neural
network and kNN trained on training sets generated by
filtering unreliable experiments with different APC thresholds

ants whose interaction components are removed, DeepCE
also achieves better performance, indicating that the effec-
tiveness of modeling chemical substructure-gene and gene-
gene feature associations. Specifically, the performance of
DeepCE decreases to 0.4620, 0.4477, and 0.4418 when re-
moving chemical substructure-gene feature association part,
gene-gene feature association part, and the whole interaction
component (paired t-test, p− value < 2.25× 10−5), respec-
tively. For baseline models, vanilla neural networks and kNN
achieve pretty good performances. Linear models including
linear regression, Lasso, and ridge regression do not work well
for our problem. It indicates that the linear relationship is not
sufficient to model the dependencies among variables in this
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(a) Per cell-specific profile,
across experiments for different
classification tasks and models

(b) Per model, across experiments
for different cell-specific profiles
and classification tasks

(c) Per ATC code, across
experiments for different
cell-specific profiles and models

(d) Per drug-target, across
experiments for different
cell-specific profiles and models

Figure 5. Improvement of predicted profiles over original profiles in AUC

dataset. TT-WOPT, which does not leverage additional fea-
tures besides gene expression values to make the predictions,
as we expect, does not work well for de novo chemical setting.
In particular, it achieves a Pearson correlation of 0.0144 which
is similar to randomness.

DeepCE outperforms the state-of-the-art methods in the
imputation setting We further investigate the performance
of DeepCE for the traditional imputation setting that does
not require chemicals in the testing set to be different from
chemicals in the training set, and compare it with TT-WOPT
which has been shown to be effective for this setting. To
do that, we randomly split the high-quality dataset to the
new training, development, and testing sets and conduct the
experiment on these sets. Note that, at this time, we split
the dataset by gene expression profile instead of chemical
compound. The details of the training, development, and
testing set for imputation setting are shown in Supplementary
Table 2.

For the traditional imputation setting, we observe DeepCE
outperforms TT-WOPT with a large margin. In particular,
DeepCE achieves a Pearson correlation of 0.7010 compared to
its of 0.5113 of TT-WOPT. This result indicates that DeepCE
consistently achieves the best performances for both de novo
chemical and traditional imputation settings by effectively
leveraging features of chemical and biological objects includ-
ing chemical compounds and genes.

Chemical similarity has an impact on prediction perfor-
mance To investigate thoroughly the prediction performance
of our models, we investigate the impact of chemical similarity
between testing set and training set. In particular, we compute
the distance between one experiment in the testing set and its
nearest neighbors experiments in the training set which are
induced by the most similar chemicals (i.e. determined by
comparing their fingerprints with the fingerprint of the chemi-
cal compound induced the experiment in the testing set) on the
same cell line. The distance between the two experiments is
the Tanimoto coefficient of PubChem fingerprints of their two
chemicals, and the distance between the experiment on the
testing with its nearest neighbor experiments in the training
set is the average of distances between that experiment and
each of its nearest neighbors. After computing the distances

to the training set for all experiments on the testing set, we
sort them by the ascending order and compare the Pearson
correlation scores of these experiments. We calculate the
average Pearson correlation scores of all experiments in the
testing set that have their distances to the training set smaller
than the first quartile (Q1), from Q1 to the second quartile
(Q2), from Q2 to the third quartile (Q3), and larger than Q3
of the sorted list. Figure 3 shows the average Pearson corre-
lation scores with these distances of three models including
DeepCE, vanilla neural network, and kNN. From this figure,
we can see the same pattern for all models that the prediction
performances are higher when the experiments in the testing
set are more similar to their nearest neighbor experiments on
the training set. We also recognize that DeepCE achieves
better performances than vanilla neural network and kNN for
all distance categories, especially for experiments that have
their distances to the training set smaller than Q1.

Data quality has a significant impact on prediction per-
formance Besides sparseness problem, L1000 dataset also
includes many unreliable gene expression profiles. To inves-
tigate the impact of noisy profiles on the prediction perfor-
mances of our models, we train two baseline models including
neural network and kNN on different training sets generated
by filtering unreliable gene expression profiles with different
average Pearson correlation (APC) thresholds varying from -1
(original training set) to 0.7 (high-quality training set). Chem-
ical feature used in this experiment is PubChem fingerprint.

As shown in Figure 4, all models have the same pattern.
Starting at the threshold of 0.1, they achieve better perfor-
mances on the testing set when the threshold is higher and the
best setting is training our models on the high-quality train-
ing set (i.e. Pearson correlation of 0.3923 for vanilla neural
network and 0.3903 for kNN). For training on the original
training set and other training sets generated by filtering un-
reliable experiments with thresholds < 0.1, the ground-truth
and predicted gene expression profiles are uncorrelated show-
ing the randomness of the model predictions. These results
indicate that unreliable data has a severely negative impact
on prediction performances and removing this part from the
dataset is necessary for achieving good performances.
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Drug Structure Status Known Uses

Elbasvir Approved Hepatitis C, NS5A inhibitor

Pibrentasvir Approved Hepatitis C, NS5A inhibitor

Velpatasvir Approved Hepatitis C, NS5A inhibitor

Ruzasvir Investigational Hepatitis C, NS5A inhibitor

Samatasvir Investigational Hepatitis C, NS5A inhibitor

Odalasvir Investigational Hepatitis C, NS5A inhibitor

Coblopasvir Investigational Hepatitis C, NS5A inhibitor

Baloxavir Marboxil Approved Influenza A and B

Metocurine Approved Muscle relaxant

Dactinomycin Approved Cancer

Laniquidar Investigational Cancer, P-glycoprotein inhibitor

Tadalafil Approved Erectile Dysfunction, PDE5 inhibitors

GE-2270A Experimental Antibiotic

SD146 Experimental Binds HIV-1 protease

AMG-487 Experimental CXCR3 antagonist

Table 3. The chemical structures, status, and known uses of potential drugs for COVID-19 treatment (i.e. drugs appeared in
top 100 drugs for all 8 cell lines when comparing their cell-specific predicted gene expression profiles with the patient profile
by Spearman’s correlation.
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A novel data augmentation method improves the model
performance We propose the data augmentation method
(described in detail in Supplementary Algorithm 2) to effec-
tively exploit useful information from unreliable gene expres-
sion profiles. In this experiment, we evaluate the impact of
this method on our models. In particular, DeepCE trained on
high-quality training set are used to generate gene expression
profiles and the threshold for selecting bio-replicate profiles is
0.5 which is similar to the performance of DeepCE. The statis-
tics of this augmented training set are shown in Supplementary
Table 1.

The experimental results for training vanilla neural network,
kNN, and DeepCE on the augmented training set are shown in
Table 1 and Table 2. We can see that the performances of all
models trained on this augmented training set are improved in
most cases. For example, the Pearson correlation of DeepCE
is increase from 0.4907 to 0.5014 (paired t-test, p− value <
0.05). These results indicate that information extracted from
unreliable gene expression profiles by our data augmentation
method is effective for gene expression prediction.

Selection of chemical feature affects model performance
In this experiment, we investigate the effectiveness of several
chemical feature representations for our models. Models used
in this experiment are vanilla neural network for PubChem,
ECFP fingerprints, our proposed drug-target features, and
LTIP, and DeepCE model without interaction component for
neural fingerprint. These models are trained on the high-
quality training set. We also create random chemical features
by generating random binary vectors whose size is similar to
PubChem fingerprint from discrete uniform distribution.

Table 1 (vanilla neural network) and Table 2 (DeepCE)
show the performances measured by Pearson correlation of
these models with different chemical feature representations.
First, chemical features achieve much better performances
than the random feature, indicating that chemical features
capture important information about chemicals which is use-
ful for predicting gene expression profiles. Second, DeepCE
which uses neural fingerprint achieves the Pearson correlation
of 0.4418 which is the best performance compared to other
settings (paired t-test, P− value < 4.89× 10−5). For other
chemical features, biological-based features including drug-
target feature and LTIP achieves better performances than
chemical-based features including PubChem and ECFP fin-
gerprints. All of these observations are verified by the paired
t-tests with P−values < 0.01. In fact, most of the P−values
are much less than 0.01.

DeepCE is effective in predictive down-stream tasks In
this section, we design an experiment to answer a question
about whether these predicted gene expression profiles can
provide added values for downstream prediction tasks, es-
pecially in the case that original gene expression profiles in
L1000 dataset are unreliable. We first extract gene expression
profiles of chemicals that do not have reliable experiments in

L1000 dataset (original feature set) as well as use DeepCE
model trained on high quality training set to generate gene
expression profiles for these drugs (predicted feature set). We
then use these sets as the features for drugs to train clas-
sification models for two tasks: ATC code and drug-target
predictions. The details of constructing these datasets are
presented in Supplementary Notes and Supplementary Table
4. Finally, we train 4 popular classification models includ-
ing logistic regression (LR), support vector machine (SVM),
k-nearest neighbor (kNN), and decision tree (DT) using 14
different versions of chemical features (7 cell-specific features
for each original and predicted feature sets) for 14 binary clas-
sification tasks (i.e. 10 ATC codes and 4 drug-targets). For
each experiment setting, we use 5-fold cross-validation and
report the average results.

The differences in AUC between training classification
models with predicted and original feature sets for drug-target
and ATC prediction tasks are shown in Figure 5. The im-
provements in AUC when using predicted features instead
of original features are recognized in all cell-specific pro-
files (Figure 5a), all classification models (Figure 5b), 8/10
ATC codes (Figure 5c), and 3/4 drug-targets (Figure 5d), and
these improvements are significant (paired t-test, P− value <
4.87× 10−5). The details of AUC scores for predicted and
original features for each setting (i.e. per model, cell line, ATC
code, and drug-target) are shown in Supplementary Table 5.
These results indicate that we can substitute unreliable gene
expression profiles in L1000 dataset with gene expression pro-
files generated from DeepCE to achieve better performances
on downstream prediction tasks.

Drug repurposing for COVID-19 To further demonstrate
the value of DeepCE, we use chemical-induced gene expres-
sion profile to discover potential drugs for COVID-19 treat-
ment. In particular, we first use trained DeepCE on the high-
quality part of L1000 dataset to generate predicted gene ex-
pression profiles for all of 11179 drugs in Drugbank database
at the largest chemical dose size. We then screen drugs in
Drugbank by computing Spearman’s rank-order correlation
scores between their gene expression profiles with the patient
gene expression profile (see Method section) and select drugs
that give the most negative scores as the potential drugs. Here,
we incorporate the gene expression profiles of A549 - the
cancerous lung tissue - beside the main 7 cell lines in the high-
quality dataset. Besides the predicted profiles, we also include
the gene expression profiles extracted from the high-quality
part of L1000 dataset. For each cell line, we extract the top
100 drugs that have the most negative correlation scores with
the patient profile as the potential drugs. Finally, we output
top 15 drugs that are potential drugs for COVID-19 treatment
at all cell lines as the result of our screening process.

As shown in Table 3, among the 15 drugs we identified, 9
drugs are antiviral drugs and 7 of them are used in treating
Hepatitis C as NS5A inhibitor. Especially, two of Hepatitis C
treatment, Elbasvir and Velpatasvir, have been shown as po-
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tential candidates for COVID-19 treatment by using other ap-
proaches37–39. Moreover, two drugs shows anti-inflammatory
or immune regulating function, and have the potential in regu-
late immune response under COVID-19 infection. Laniquidar
can suppress the function of P-glycoprotein 1 and affect trans-
portation of immunosuppressive agents. AMG-487 targets
Chemokine receptor CXCR3, which can regulate leukocyte
trafficking. It is noted that all potential drugs here are not avail-
able in L1000 dataset, showing the effectiveness of DeepCE
for phenotype compound screening.

Conclusion
Deep learning has attracted a great attention in drug discov-
ery. Past and existing efforts mainly focus on accelerating
compound screening against a single target40. However, such
one-drug-one-gene paradigm is proved to be less successful
in tracking complex diseases. A systematic compound screen-
ing approach, which both takes information on biological
system into consideration and uses chemical-induced system-
atic response as readouts, will provide new opportunities on
discovering safe and effective therapeutics that module the
biological system. In this study, we have proposed DeepCE -
a novel and robust neural network-based model for predicting
chemical-induced gene expression profiles from chemical and
biological objects, especially in de novo chemical setting. Our
model achieves state-of-the-art results of predicting gene ex-
pression profiles compared to other models not only in de novo
chemical setting but also in the traditional setting. In addition,
we have addressed the unreliable measurement problem of
L1000 dataset by introducing the data augmentation method
to effectively exploit useful information from unreliable gene
expression profiles to improve the prediction performances
of our models. Furthermore, the downstream prediction task
evaluation shows that training classification models with gene
expression profiles generated from DeepCE achieves better
performances than training them with unreliable gene expres-
sion profiles in L1000 dataset, indicating the added values
of DeepCE for downstream prediction. Finally, DeepCE is
shown to be effective in the challenge and urgent problem,
finding treatment for COVID-19, by in silico screening all
chemical compounds in Drugbank against COVID-19 patient
clinical phenotypes (i.e. comparing chemical-induced gene
expression profiles generated from DeepCE with the patient
profiles). In summary, DeepCE could be a powerful tool for
phenotype-based compound screening.

Data availability
Chemical-induced gene expression dataset used in our study,
gene expression profiles generated from DeepCE for all drugs
in Drugbank, source code and usage instructions are available
at https://github.com/pth1993/DeepCE.
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