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Ovarian cancer is one of the most common gynecological malignancies with highest
mortality rate among all gynecological malignant tumors. Advanced ovarian cancer
patients can obtain a survival benefit from chemotherapy, including platinum drugs
and paclitaxel. In more recent years, the administration of poly-ADP ribose polymerase
inhibitor to patients with BRCA mutations has significantly improved the progression-
free survival of ovarian cancer patients. Nevertheless, primary drug resistance or the
acquisition of drug resistance eventually leads to treatment failure and poor outcomes
for ovarian cancer patients. The mechanism underlying drug resistance in ovarian cancer
is complex and has not been fully elucidated. Interestingly, different non-coding RNAs
(ncRNAs), such as circular RNAs, long non-coding RNAs and microRNAs, play a critical
role in the development of ovarian cancer. Accumulating evidence has indicated that
ncRNAs have important regulatory roles in ovarian cancer resistance to chemotherapy
reagents and targeted therapy drugs. In this review, we systematically highlight the
emerging roles and the regulatory mechanisms by which ncRNAs affect ovarian
cancer chemoresistance. Additionally, we suggest that ncRNAs can be considered as
potential diagnostic and prognostic biomarkers as well as novel therapeutic targets for
ovarian cancer.
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Abbreviations: PTX, paclitaxel; ADR, adriamycin; PARPi, poly-ADP ribose polymerase inhibitor; PFS, progression-free
survival; ncRNAs, non-coding RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs;
MDR, multidrug resistance; EMT, epithelial-mesenchymal transition; piRNAs, PIWI-interacting RNAs; snoRNAs, small
nucleolar RNAs; snRNAs, small nuclear RNAs; 3′-UTR, 3′-untranslated region; mRNAs, messenger RNAs; DDP, cisplatin;
PRKC, protein kinase C; PTEN, phosphatase and tensin homolog; PPP1R12A, protein phosphatase 1 regulatory subunit 12A;
MST, STE20-like kinase; SAV1, protein salvador homolog 1; SFRP1, secreted frizzled-related protein 1; KCNMA1, potassium
calcium-activated channel subfamily M alpha 1; FOXO3, forkhead box O3; TRIM31, tripartite motif containing 31; EZH2,
zeste homolog 2; PTPN3, protein tyrosine phosphatase non-receptor type 3; ITGB8, integrin subunit beta 8; DDR1, discoidin
domain receptor 1; NOTCH1, notch receptor 1; HMGA1, high mobility group AT-hook 1; RAD51, RAD51 recombinase;
DNMT, DNA methyltransferase; AXL, AXL Receptor Tyrosine Kinase; APAF1, apoptotic peptidase activating factor 1;
CIC, capicua transcriptional repressor; ING5, inhibitor of growth family member 5; XIAP, X-linked inhibitor of apoptosis;
STAT3, signal transducer and activator of transcription; TRIM27, tripartite motif containing 27; SIK2, salt inducible kinase
2; DSB, double-strand breaks; RNASEH2A, ribonuclease H2 subunit A; FEN1, flap structure-specific endonuclease 1; SSRP1,
structure specific recognition protein 1; SSA, single-strand annealing; HGSOCs, high-grade serous ovarian carcinomas;
NHEJ, non-homologous end joining; NRP1, Neuropilin 1; RNAP II, RNA Polymerase II; ceRNA, competitive endogenous
RNA; UCA1, urothelial cancer associated 1; ABC, ATP binding cassette; HOTAIR, HOX antisense intergenic RNA; ATG7,
autophagy related 7; VPA, valproic acid; CCAT1, colon cancer associated transcript 1; MALAT1, metastasis-associated lung
adenocarcinoma transcript 1; ZEB1, zinc finger E-box binding homeobox 1; Gal-1, galectin 1; FOXR2, forkhead box R2;
SCAI, suppressor of cancer cell invasion.
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BACKGROUND

Ovarian cancer is one of the most deadly gynecologic
malignancy, there are approximately 313,959 new cases and
more than 207,252 deaths annually worldwide (Sung et al.,
2021). Unfortunately, due to lack of effective early screening
methods, 5-year survival rate was only 20–40% (Lheureux et al.,
2019). Currently, the main methods used for clinical treatment
of ovarian cancer are still based on cytoreductive surgery and
multidrug combination chemotherapy based on platinum drugs
(Armstrong et al., 2021). Chemotherapy is the main treatment
option available for advanced or recurrent ovarian cancers, and
the commonly used chemotherapeutic agents include platinum
drugs and paclitaxel (PTX). In addition, the administration
of poly-ADP ribose polymerase inhibitor (PARPi) to BRCA
mutation patients has significantly improved the progression-free
survival (PFS) of ovarian cancer (Tew et al., 2020). Although
chemotherapy in combination with targeted therapy prolongs the
overall survival of ovarian cancer patients, acquired multidrug
resistance (MDR) hinders its clinical benefits. Therefore, patients
with ovarian cancer frequently have a poor prognosis. The
complicated mechanisms involved in MDR ovarian cancer
include decreased drug uptake into the cell, increased drug efflux,
intracellular drug inactivation, DNA damage repair, resistance
to drug-induced apoptosis, activation of cancer stem cells, and
epithelial-mesenchymal transition (EMT) (Christie et al., 2019;
Liang et al., 2019; Belur Nagaraj et al., 2021; Chiappa et al.,
2021). While progress has been made in understanding the
pathogenesis of ovarian cancer, the detailed mechanisms of MDR
remain elusive.

Non-coding RNAs (ncRNAs) are a kind of DNA transcription
product that cannot be encoded into proteins. NcRNAs can be
classified according to their length and shape into tiny/short
ncRNAs, long ncRNAs (lncRNAs) which is larger than 200
nucleotides (nt), and circular RNA (circRNAs). Various small
ncRNAs have been identified, such as microRNAs (miRNAs),
PIWI-interacting RNAs (piRNAs), small nucleolar RNAs
(snoRNAs), and small nuclear RNAs (snRNAs) (Kristensen
et al., 2019; Shuai et al., 2019; Jin et al., 2020; Cui et al., 2021;
Han et al., 2021; Luo et al., 2021; Tsitsipatis et al., 2021).
NcRNAs have been proven to have important regulatory
potential, both in transcription and post transcription,
instead of just being “transcription noise” or “transcription
garbage.” There is ample evidence that ncRNAs are of crucial
importance in the regulation of gene expression. Meanwhile,
ncRNAs participate in many biological functions, such as cell
proliferation, cell cycle progression, and apoptosis (Cocquerelle
et al., 1993; Memczak et al., 2013; Cech and Steitz, 2014;
Li et al., 2021; Ramat and Simonelig, 2021; Statello et al.,
2021). In addition, a large number of studies have shown
that abnormally expressed ncRNAs participate in tumor
cell invasion, metastasis, drug resistance and radiotherapy
resistance (Bi et al., 2020; Chen et al., 2020; Wang P. et al.,
2020). Similarly, previous research suggested that ncRNAs are
dysregulated when drug resistance develops, which indicates that
in ovarian cancer, multiple ncRNAs might play a vital role in
drug resistance.

In this review, we summarized the detailed mechanisms
by which miRNAs, lncRNAs, and circRNAs affect ovarian
cancer drug resistance. The potential mechanisms of ncRNAs
related to drug-resistance in ovarian cancer are summarized in
Figure 1. NcRNAs have potential as diagnostic and prognostic
biomarkers as well as novel therapeutic targets for ovarian
cancer in the future.

MiRNAs AND DRUG RESISTANCE

MicroRNAs are a class of small ncRNAs containing 20–24 nt
that can post transcriptionally suppress gene expression by
binding to the 3′-untranslated region (3′-UTR) of multiple
target messenger RNAs (mRNAs) and/or other RNAs (Wang X.
et al., 2021). MiRNAs are key molecules that are involved in
many different kinds of fundamental cellular processes, including
cell differentiation and proliferation, cell cycle regulation,
angiogenesis, metabolic stress, and other functions (He et al.,
2019; Komoll et al., 2021; Xing et al., 2021). It has been found
that multiple miRNAs are dysregulated in ovarian cancer and
are closely related to its occurrence, development, metastasis and
drug resistance (Mak et al., 2017; Tung et al., 2020; Zhang Z. et al.,
2020). Significant changes in miRNA expression profiles have
been observed in drug-resistant cancer cells in comparison with
parental drug-sensitive cancer cells. The involvement of miRNAs
in ovarian cancer resistance to platinum drugs, PTX, ADR, and
PARPi is summarized below.

MiRNAs AND RESISTANCE TO
PLATINUM

Platinum drugs are cell cycle non-specific drugs that are widely
used in the clinic. They induce DNA damage or ribosome
biosynthesis stress and activate tumor cell death by apoptosis
or necrosis. However, a series of complex mechanisms lead to
platinum resistance (Bruno et al., 2017; Huang et al., 2019). The
commonly used platinum drugs include the first generation of
drug cisplatin (DDP), the second generation of drug carboplatin,
as well as the third-generation drugs oxaliplatin and Lopatin.
Many miRNAs are related to the resistance to platinum drugs in
ovarian cancer (Table 1).

Several oncogenic miRNAs can promote resistance to
platinum drugs in ovarian cancer cells. For example, miR-
205-5p and miR-216a confer DDP resistance by suppressing
the PTEN (phosphatase and tensin homolog)/Akt signaling
pathway in ovarian cancer cells (Jin et al., 2018; Shi
et al., 2018). Similarly, miR-483-3p and miR-224-5p have
also been found to promote DDP resistance by silencing
protein kinase C (PRKC) family members (Zhao et al.,
2014; Arrighetti et al., 2016). Studies have shown that miR-
30b and miR-149-5p are involved in the Hippo signaling
pathway and promote DDP resistance by downregulating
the target genes protein phosphatase 1 regulatory subunit
12A (PPP1R12A), STE20-like kinase 1 (MST1), and protein
salvador homolog 1 (SAV1), respectively (Xu M. et al., 2018;
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FIGURE 1 | A summary diagram of miRNAs, lncRNAs, and circRNAs involved in the drug resistance of ovarian cancer. Several ncRNAs could participate in drug
resistance of ovarian cancer by influencing cell apoptosis, proliferation, cell cycle, autophagy, DNA repair, and epithelial-mesenchymal transition through modulating
the expression of downstream target genes and related signaling pathway.

Munoz-Galvan et al., 2020). In addition, oncogenic miR-1180,
miR-493-5p, and miR-31 confer DDP resistance to ovarian
cancer cells through silencing secreted frizzled-related protein
1(SFRP1), BRCA2, and potassium calcium-activated channel
subfamily M alpha 1 (KCNMA1), respectively (Samuel et al.,
2016; Meghani et al., 2018; Gu et al., 2019). In animal models,
miR-98-5p can potentiate the resistance of ovarian cancer to
DDP, suggesting that miR-98-5p is a possible therapeutic target
of ovarian cancer (Wang Y. et al., 2018; Guo et al., 2019).
MiR-551b functions through the suppression of forkhead box
O3 (FOXO3) and tripartite motif containing 31 (TRIM31),
two important tumor suppressors. It was also found that
elevated expression of miR-551b is significantly associated with
worse survival of xenograft ovarian cancer models (Wei et al.,
2016). Additionally, miR-20a could enhance DDP resistance
of OVCAR3 ovarian cancer cells by altering the expression
of EMT markers (E-cadherin, N-cadherin, and vimentin)
(Liu et al., 2017).

In contrast, multiple tumor suppressor miRNAs have been
found to be able to reverse DDP resistance in ovarian cancer.
For instance, tumor suppressors miR-411, miR-873, and miR-
514 have been confirmed to be involved in DDP resistance of
ovarian cancer by modulating the expression/function of the

ABC transporters family members (Wu et al., 2016; Chen et al.,
2018; Xiao et al., 2018). In the meantime, miR-1301, miR-1271,
miR-429, miR-363, and miR-146b can sensitize ovarian cancer
cells to DDP by inhibiting the expression of multiple EMT-related
genes (Zou et al., 2017; Cao et al., 2018; Yan et al., 2018; Chen Y.
et al., 2019; Yu and Gao, 2020). By inhibiting the Bcl-2 signaling
pathway, several tumor suppressor miRNAs, including miR-142-
5p, miR-335-5p, miR-146a-5p, and miR-137 have been confirmed
to sensitize ovarian cancer cells to DDP (Li et al., 2017a,b; Liu R.
et al., 2018; Li X. et al., 2019). In addition, exogenous expression
of miR-137 can also strongly promote DDP chemosensitivity
through downregulating the expression of X-linked inhibitor
of apoptosis (XIAP) and the zeste homolog 2 (EZH2) (Sun
et al., 2019). Similarly, miR-708 and miR-503 can modulate
ovarian cancer resistance to cisplatin through regulating the Akt
pathway (Qin et al., 2017; Wu et al., 2018).Recently, emerging
evidence has shown that miRNAs are aberrantly expressed in
ovarian cancer, and some of them regulate different mRNAs and
inhibit cisplatin resistance. Abnormal expression of the miR-
199 cluster, for example, has been confirmed to increase the
sensitivity of ovarian cancer cells to DDP through silencing
the expression of protein tyrosine phosphatase non-receptor
type 3 (PTPN3), integrin subunit beta 8 (ITGB8) and discoidin
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TABLE 1 | MiRNAs and platinum resistance in ovarian cancer.

MiRNAs Expression1 Genes and pathways Drugs References

miR-205-5p ↑ PTEN/Akt Cisplatin Jin et al., 2018

miR-216a ↑ PTEN Cisplatin Shi et al., 2018

miR-483-3p ↑ PKC-alpha Cisplatin Arrighetti et al., 2016

miR-224-5p ↑ PRKCD Cisplatin Zhao et al., 2014

miR-30b ↑ MYPT1 Cisplatin Munoz-Galvan et al., 2020

miR-149-5p ↑ MST1, SAV1 Cisplatin Xu M. et al., 2018

miR-1180 ↑ SFRP1 Cisplatin Gu et al., 2019

miR-493-5p ↑ BRCA2 Cisplatin Meghani et al., 2018

miR-31 ↑ KCNMA1 Cisplatin Samuel et al., 2016

miR-98-5p ↑ CDKN1A, Dicer1 Cisplatin Wang Y. et al., 2018; Guo et al., 2019

miR-551b ↑ FOXO3, TRIM31 Cisplatin Wei et al., 2016

miR-20a ↑ Vimentin, E-cadherin, N-cadherin Cisplatin Liu et al., 2017

miR-411 ↓ ABCG2 Cisplatin Chen et al., 2018

miR-873 ↓ ABCB1 Cisplatin Wu et al., 2016

miR-514 ↓ ABCA1, ABCA10, ABCF2 Cisplatin Xiao et al., 2018

miR-1301 ↓ E-cadherin, N-cadherin, ATG5, Beclin1 Cisplatin Yu and Gao, 2020

miR-1271 ↓ E-cadherin, N-cadherin, α-SMA Cisplatin Chen Y. et al., 2019

miR-429 ↓ ZEB1 Cisplatin Zou et al., 2017

miR-363 ↓ Snai1 Cisplatin Cao et al., 2018

miR-146b ↓ Vimentin, ZEB1, cyclin D1 Cisplatin Yan et al., 2018

miR-142-5p ↓ XIAP, BIRC3, BCL2, BCL2L2, MCL1 Cisplatin Li X. et al., 2019

miR-335-5p ↓ BCL2L2 Cisplatin Li et al., 2017a

miR-146a-5p ↓ XIAP, BCL2L2, BIRC5 Cisplatin Li et al., 2017b

miR-137 ↓ XIAP, EZH2 Cisplatin Liu R. et al., 2018; Sun et al., 2019

miR-708 ↓ IGF2BP1/Akt Cisplatin Qin et al., 2017

miR-503 ↓ PI3K/Akt Cisplatin Wu et al., 2018

miR-199 ↓ PTPN3 Cisplatin Li S. et al., 2016

miR-199a-3p ↓ ITGB8, DDR1 Cisplatin Deng et al., 2017; Cui et al., 2018

let-7d-5p ↓ HMGA1 Cisplatin Chen Y. N. et al., 2019

let-7e ↓ BRCA1, Rad51 Cisplatin Xiao et al., 2017

miR-200b/c ↓ DNMT3A/DNMT3B/DNMT1 Cisplatin Liu et al., 2019

miR-515-3p ↓ AXL Oxaliplatin Hisamatsu et al., 2019

let-7d-3p ↑ ABC transporters, HIF-1, RAS, ErbB Carboplatin Garcia-Vazquez et al., 2018

miR-34c-5p ↓ AREG-EGFR-ERK Carboplatin Tung et al., 2017

1MiRNAs either up-regulated (↑) or down-regulated (↓) in platinum resistant ovarian cancer cells. This table shows 34 miRNAs whose expression levels and potential
targets in platinum resistance of ovarian cancer.

domain receptor 1 (DDR1) (Li S. et al., 2016; Deng et al.,
2017; Cui et al., 2018). Additionally, ectopic miR-let-7 cluster
expression can weaken DDP resistance in ovarian cancer cells
by inhibiting high mobility group AT-hook 1 (HMGA1), RAD51
recombinase (RAD51), and BRCA1, indicating that the miR-
let-7 cluster might be a candidate biomarker to predict ovarian
cancer responders to DDP treatment (Xiao et al., 2017; Chen
Y. N. et al., 2019). Moreover, the miR-200b/c cluster can
improve the sensitivity of ovarian cancer cells to cisplatin by
inhibiting the expression of DNA methyltransferase (DNMT)
(Liu et al., 2019).

Studies on carboplatin and oxaliplatin are far less extensive
than cisplatin. Tumor suppressor miR-515-3p can regulate
oxaliplatin sensitivity by targeting AXL Receptor Tyrosine Kinase
(AXL) (Hisamatsu et al., 2019). Similarly, let-7d-3p could
enhance carboplatin-resistance (Garcia-Vazquez et al., 2018).
Tumor suppressors miR-634 and miR-34c-5p have been proven

to be involved in the regulation of carboplatin sensitivity through
the MAPK pathway (Tung et al., 2017).

MiRNAs AND PTX RESISTANCE

Paclitaxel is one of the first-line chemotherapy drugs used
to treat ovarian cancer. It is highly cytotoxic against tubulin.
It induces and promotes the polymerization of tubulin and
microtubule assembly, and it prevents depolymerization,
stabilizing microtubules, and inhibiting the mitosis of cancer
cells, leading to cell cycle arrest in G2/M. This effectively
prevents the proliferation of cancer cells. It has been reported
that various miRNAs are involved in PTX-resistance of ovarian
cancer (Table 2).

Several oncogenic miRNAs can facilitate PTX resistance, such
as miR-21 and miR-630. Exogenous expression of miR-21 and
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TABLE 2 | MiRNAs and paclitaxel resistance in ovarian cancer.

MiRNAs Expression1 Genes and
pathways

References

miR-21 ↑ APAF1 Au Yeung et al.,
2016

miR-630 ↑ APAF1 Eoh et al., 2018

miR-1307 ↑ CIC, ING5 Chen W. T. et al.,
2017; Zhou et al.,
2019

miR-181a ↑ E-cadherin,
N-cadherin

Li L. et al., 2016

miR-215 ↓ XIAP Ge et al., 2016

miR-200bc/141 ↓ EMT Duran et al., 2017

miR-92 ↓ DKK1 Chen M. W. et al.,
2017

miR-503-5p ↓ CD97 Park and Kim, 2019

miR-136 ↓ NOTCH3 Jeong et al., 2017

miR-383-5p ↓ TRIM27 Jiang et al., 2019

miR-874 ↓ SIK2 Xia et al., 2018

1MiRNAs either up-regulated (↑) or down-regulated (↓) in paclitaxel resistant
ovarian cancer cells. This table shows 11 miRNAs whose expression levels and
potential targets in paclitaxel resistance of ovarian cancer.

miR-630 enhanced PTX resistance of ovarian cancer cells by
silencing apoptotic peptidase activating factor 1 (APAF1) (Au
Yeung et al., 2016; Eoh et al., 2018). Similarly, miR-1307, a
highly expressed miRNA in ovarian cancer tissues and cell lines,
has been demonstrated to be positively correlated with PTX
resistance. By targeting the capicua transcriptional repressor
(CIC) and the inhibitor of growth family member 5 (ING5),
miR-1307 could dramatically inhibit apoptosis induced by PTX
(Chen W. T. et al., 2017; Zhou et al., 2019). Moreover, the
miR-181a level in chemoresistant cancer tissues is significantly
higher than in chemosensitive cancer tissues and in normal tissue,
and its upregulation is associated with an increased level of
EMT and decreased cell apoptosis induced by PTX treatment
(Li L. et al., 2016).

In contrast, several tumor suppressor miRNAs may reverse
PTX resistance in ovarian cancer. The Bcl-2 family participates
in the chemoresistance of malignancies, including ovarian
cancer. Tumor suppressors miR-215 can promote PTX-induced
apoptosis of ovarian cancer cells by silencing the expression
of XIAP (Ge et al., 2016). Activation of the EMT pathway
has also been observed to regulate PTX resistance of ovarian
cancer. A variety of miRNAs, such as miR-200b and miR-
200c, have been observed to be involved in the EMT pathway
mediated PTX resistance of ovarian cancer (Duran et al.,
2017). By inhibiting the signal transducer and activator of
transcription 3 (STAT3) signaling pathway, several tumor
suppressor miRNAs, including miR-92 and miR-503-5p, have
been found to sensitize ovarian cancer cells to PTX. In animal
models, targeting STAT3 in combination with paclitaxel can
synergistically reduce intraperitoneal dissemination and prolong
the survival of mice with ovarian cancer (Chen M. W. et al.,
2017; Park and Kim, 2019). Similarly, tumor suppressors miR-
136, miR-383-5p, and miR-874 have been reported to conquer

PTX resistance of ovarian cancer cells by silencing NOTCH3,
tripartite motif containing 27 (TRIM27), and salt inducible
kinase 2 (SIK2), respectively (Jeong et al., 2017; Xia et al., 2018;
Jiang et al., 2019).

MiRNAs AND PARPi RESISTANCE

Poly-ADP ribose polymerase inhibitor have emerged as exciting
new chemotherapy options for women with ovarian cancer,
especially for patients with BRCA1 or BRCA2 mutations or
non-functional homologous recombination repair pathways. The
most advantageous feature of PARPi is its mechanism of action.
PARPi is able to eliminate the function of PARP, leading to
the accumulation of single-stranded breaks (SSB), which in
turn can be converted into double-strand breaks (DSB) that
the cell cannot repair, leading to cancer cell death (Wiltshire
et al., 2010). Moreover, PARPi can enhance the efficacy of
radiotherapy and chemotherapy with docetaxel and platinum
drugs. Three PARPis have been approved for the treatment
of recurrent epithelial ovarian cancer in the United States:
olaparib, rucaparib, and niraparib. However, long-term use of
PARPis may cause PARPi resistance. In ovarian cancer cells,
multiple miRNAs were found to be involved in PARPi resistance
(Table 3).

Multiple oncogene miRNAs can promote PARPi resistance.
According to a recent report, miR-493-5p is significantly
upregulated in BRCA2-mutated ovarian cancer cells and it
participates in the PARPi resistance process by regulating
ribonuclease H2 subunit A (RNASEH2A), flap structure-specific
endonuclease 1 (FEN1), and structure specific recognition
protein 1 (SSRP1). miR-493-5p can reduce single-strand
annealing (SSA), stabilize the replication fork, and thus
induce PARPi tolerance (Meghani et al., 2018). In addition,
miR-622 is highly expressed in BRCA1-deficient high-grade
serous ovarian carcinomas (HGSOCs), which can rescue the
homologous recombination repair (HRR) defect of BRCA1
mutant ovarian cancer and promote PARPi resistance by
regulating the expression of Ku complex and inhibiting HR and
non-homologous end joining (NHEJ) (Choi et al., 2016).

In contrast, multiple tumor suppressor miRNAs can reverse
the PARPi resistance of ovarian cancer. For instance, miR-506-
3p acts as a vital regulator in the sensitivity to PARPis and

TABLE 3 | MiRNAs and PARPi resistance in ovarian cancer.

MiRNAs Expression1 Genes and
pathways

References

miR-493-5p ↑ RNASEH2A,
FEN1, SSRP1

Meghani et al., 2018

miR-622 ↑ Ku Choi et al., 2016

miR-506-3p ↓ EZH2/β-catenin Sun et al., 2021

miR-200c ↓ NRP1 Vescarelli et al., 2020

1MiRNAs either up-regulated (↑) or down-regulated (↓) in paclitaxel resistant
ovarian cancer cells. This table shows four miRNAs whose expression levels and
potential targets in PARPi resistance of ovarian cancer.
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cisplatin by targeting EZH2/β-catenin pathway in ovarian cancers
(Sun et al., 2021). Additionally, ectopic miR-200c expression can
increase apoptosis and weaken the resistance to olaparib in the
ovarian cancer cells SKOV3/PARPi by silencing Neuropilin 1
(NRP1) (Vescarelli et al., 2020).

LncRNAs AND THERAPY RESISTANCE

Long non-coding RNAs are a category of RNA transcripts longer
than 200 nt without coding capacity, which are transcribed
by RNA Polymerase II (RNAP II) and expressed in a tissue-
specific manner (Quinn and Chang, 2016). At present, it is
known that lncRNAs can regulate the malignant biological
behavior of cells by acting as a competitive endogenous RNA
(ceRNA), recruiting downstream molecules, serving as protein
scaffolds, transmitting regulatory signals (Wong et al., 2018), and
regulating endolysosome pH (Miller et al., 2018). A number of
lncRNAs have a close relationship to the development of ovarian
cancer metastasis, recurrence, and chemotherapy resistance
(Winham et al., 2019; Zhang M. et al., 2019; Sun et al., 2020).
Aberrantly expressed lncRNAs may participate in ovarian cancer
progression through various mechanisms, including inducing
autophagy, increasing DNA damage repair, changing cell cycle
progression and checkpoints, inducing anti-apoptosis, regulating
cell signaling pathways, and promoting EMT (Liu et al., 2015;
Yan et al., 2017; Xu Q. F. et al., 2018; Wu et al., 2019). Several
lncRNAs have been found to be involved in drug resistance in
ovarian cancer (Tables 4, 5).

It has been reported that lncRNA UCA1 (urothelial cancer
associated 1) is significantly upregulated in PTX-resistant ovarian
cancer tissues and cell lines and confers ovarian cancer resistance
to PTX. UCA1 promote tumor progression both in vitro
and in vivo. SIK2 protein is involved in the separation of
centrosomes during mitosis, which can lead to ovarian cancer
drug resistance (Ahmed et al., 2010; Zhou et al., 2017).
In ovarian cancer cells, UCA1 can induce SIK2 expression
via endogenous sponging of miR-654-5p and thus antagonize
chemosensitivity to PTX (Li Z. Y. et al., 2020). Additionally,
ABCB1 (ATP binding cassette subfamily B member 1) is one
of the members of the superfamily of ABC transporters that
are involved in MDR. In ovarian cancer cells, UCA1 can
also induce ABCB1 expression though endogenous sponging
of miR-129 to enhance PTX tolerance (Wang J. et al., 2018).
In recent years, lncRNA UCA1 has also been found to be
involved in cisplatin resistance in ovarian cancer and blood
UCA1 levels are upregulated in patients after cisplatin treatment.
Via binding to the 3′-UTRs of FOS-like 2 (FOSL2), miR-143
can negatively regulate FOSL2 expression, suggesting that the
UCA1/miR-143 axis may have potential therapeutic value for
the treatment of cisplatin resistance in ovarian cancer patients
(Li Z. et al., 2019).

Long non-coding RNAs HOTAIR (HOX antisense intergenic
RNA) is one of the most well-studied lncRNAs, which is
transcribed from the antisense strand of the HOXC gene
cluster present on chromosome 12 with a length of 2.2 kb.
HOTAIR, a highly expressed lncRNA in ovarian cancer tissues

TABLE 4 | LncRNAs and platinum resistance in ovarian cancer.

LncRNAs Expression1 Genes and
pathways

Drugs References

UCA1 ↑ miR-143/FOSL2 Cisplatin Li Z. et al., 2019

HOTAIR ↑ Wnt/β-catenin
pathway

Cisplatin Li J. et al., 2016

NF-κB pathway Cisplatin Ozes et al., 2016

ATG7 Cisplatin Yu et al., 2018

H19 ↑ EMT Cisplatin Liu et al., 2015

GSH metabolism Cisplatin Zheng et al.,
2016

EZH2/p21/PTEN
pathway

Cisplatin Sajadpoor et al.,
2018

NEAT1 ↑ miR-770-
5p/PARP1

Cisplatin Zhu et al., 2020

CCAT1 ↑ miR-454/survivin Cisplatin Wang D. Y. et al.,
2020

MALAT1 ↑ NOTCH1 Cisplatin Bai et al., 2018

↑ miR-1271-
5p/E2F5

Cisplatin Wang Y. et al.,
2020

Linc00161 ↑ miR-128/MAPK1 Cisplatin Xu et al., 2019

CHRF ↑ EMT and STAT3
pathway

Cisplatin Tan et al., 2020

ANRIL ↑ miR-324-5p/Ran
axis

Cisplatin Wang K. et al.,
2021

SNHG22 ↑ miR-2467/Gal-1 Cisplatin Zhang P. F. et al.,
2019

GAS5 ↓ E2F4/PARP1/
MAPK

Cisplatin Long et al., 2019

PANDAR ↓ SFRS2-p53 Cisplatin Wang H. et al.,
2018

LINC01125 ↓ miR-1972 Cisplatin Guo and Pan,
2019

MEG3 ↓ miR-214 Cisplatin Zhang et al.,
2017

1LncRNAs either up-regulated (↑) or down-regulated (↓) in platinum resistant
ovarian cancer cells. This table shows 14 lncRNAs whose expression levels and
potential targets in platinum resistance of ovarian cancer.

and cell lines, has been found to be positively correlated
with advanced tumor stages, high histological grade, lymph
node metastasis, drug resistance, and poor prognosis of
ovarian cancer patients (Qiu et al., 2014; Wang et al., 2015).
Moreover, it has been reported that exogenous HOTAIR
overexpression in ovarian cancer cells significantly promoted
cisplatin resistance by regulating the Wnt/β-catenin signaling
pathway as well as the NF-κB-HOTAIR axis, indicating that
HOTAIR may act as a regulator of cisplatin resistance (Li
J. et al., 2016; Ozes et al., 2016). Similarly, knockdown of
HOTAIR can inhibit autophagy via decreasing autophagy related
7 (ATG7) expression, and the inhibition of cisplatin-induced
autophagy by silencing HOTAIR has been shown to enhance
the chemotherapeutic efficacy of cisplatin in ovarian cancer
(Yu et al., 2018).

Increasing findings indicate that lncRNA H19 plays an
important role in chemotherapy drug resistance of ovarian
cancer. In the OVCAR3/DDP resistant ovarian cancer cell,
silencing lncRNA H19 can significantly increase E-cadherin
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TABLE 5 | LncRNAs and paclitaxel resistance in ovarian cancer.

LncRNAs Expression1 Genes and pathways References

UCA1 ↑ miR-654-5p/SIK2 Li Z. Y. et al., 2020

miR-129/ABCB1 Wang J. et al., 2018

NEAT1 ↑ miR-194/ZEB1 An et al., 2017

LINC01118 ↑ miR-134/ABCC1 Shi and Wang, 2018

PRLB ↑ RSF1/NF-κB Zhao and Hong, 2021

SNHG22 ↑ miR-2467/Gal-1 Zhang P. F. et al., 2019

FER1L4 ↓ MAPK Liu S. et al., 2018

SNHG5 ↓ miR-23a Lin et al., 2020

1LncRNAs either up-regulated (↑) or down-regulated (↓) in paclitaxel resistant
ovarian cancer cells. This table shows seven lncRNAs whose expression levels
and potential targets in paclitaxel resistance of ovarian cancer.

expression and reduce twist, slug, and snail expression, indicating
that lncRNA H19 induces cisplatin resistance via EMT (Wu et al.,
2019). In addition, lncRNA H19 can also confer resistance to
cisplatin to ovarian cancer cells by promoting glutathione (GSH)
metabolism (Zheng et al., 2016). It has been reported that valproic
acid (VPA) acts on A2780/CP resistant cells, which negatively
regulates the expression of lncRNA H19, and then induces cell
apoptosis and inhibits cell proliferation, thereby making A2780
resistant cells sensitive to cisplatin (Sajadpoor et al., 2018). These
findings suggest that lncRNA H19 has potential as a new target
for overcoming drug resistance in ovarian cancer.

Long non-coding RNAs NEAT1 (nuclear paraspeckle
assembly transcript 1) was reported to be correlated with
clinically poor paclitaxel response ovarian cancer. It has been
found that lncRNA NEAT1 promotes paclitaxel resistance via
competitively binding miR-194 to facilitate ZEB1 expression in
ovarian cancer cells (An et al., 2017). Recently, LncRNA NEAT1
is also found to play a part in cisplatin resistance of ovarian
cancer. NEAT1 is significantly upregulated in ovarian cancer,
associates with cisplatin resistance and FIGO stage. Knockdown
of NEAT1 suppresses cisplatin resistance of ovarian cancer
cells in vitro and in vivo. LncRNA NEAT1 contributes to DDP
resistance of ovarian cancer cells by regulating PARP1 expression
via miR-770-5p (Zhu et al., 2020).

In addition, some other lncRNAs were found to be involved
in platinum-based chemotherapy resistance in ovarian cancer.
On the one hand, lncRNAs can promote platinum resistance.
For instance, lncRNA CCAT1 (colon cancer associated transcript
1) is upregulated in A2780/DDP and SKOV3/DDP resistant
ovarian cancer cells, and it can confer resistance to DDP by
modulating the miR-454/survivin axis (Wang D. Y. et al., 2020).
LncRNA metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) has been reported to be upregulated and to contribute
to ovarian cancer tumorigenesis. Knockdown of MALAT1
could enhance cisplatin-induced apoptosis and improve the
chemosensitivity of ovarian cancer cells to cisplatin through
inhibiting the notch1 signaling pathway (Bai et al., 2018). Besides,
MALAT1 could regulate ovarian cancer progression and DDP-
resistance by miR-1271-5p/E2F5 Axis (Wang Y. et al., 2020).
Moreover, it has been found that lncRNA linc0161 functions as a
ceRNA of microRNA-128 and promotes drug resistance through

blocking MAPK1 (Xu et al., 2019). In addition, CHRF contributes
to cisplatin resistance of ovarian cancer cells by regulating EMT
and STAT3 signaling via miR-10b (Tan et al., 2020). ANRIL could
modulate the progression, drug resistance and tumor stem cell-
like characteristics of ovarian cancer cells via miR-324-5p/Ran
Axis (Wang K. et al., 2021).

Some tumor suppressor lncRNAs can reverse platinum drug
resistance of ovarian cancer. LncRNA GAS5 expression in
SKOV3/DDP cells has been found to be significantly reduced
compared to that in drug-sensitive cells, and it has been
reported that GAS5 can sensitize ovarian cancer cells to DDP
by leading to G0/G1 cell cycle arrest and increasing apoptosis.
Further research showed that GAS5 could inhibit DDP-resistance
and tumor progression of ovarian cancer via the GAS5-E2F4-
PARP1-MAPK axis (Long et al., 2019). It has been reported
that lncRNA PANDAR dictates the chemoresistance of ovarian
cancer by regulating SFRS2-mediated p53 phosphorylation
(Wang H. et al., 2018). Interestingly, lncRNA linc01125 can
inhibit ovarian cancer cell proliferation and it enhances the
cytotoxicity of DDP in ovarian cancer cells. Tumor suppressor
linc01125 has been shown to enhance the cisplatin sensitivity
of ovarian cells by sponging miR-1972 (Guo and Pan, 2019). In
addition, the literature shows that curcumin inhibits cisplatin
resistance development partly by regulating extracellular vesicle-
mediated transfer of MEG3 and miR-214 in ovarian cancer
(Zhang et al., 2017).

There are several novel lncRNAs that have been found to play
crucial functions in ovarian cancer PTX resistance. For instance,
it has been reported that lncRNA linc0118 is significantly
upregulated in PTX-resistant ovarian cancer tissues and cell lines
and confers ovarian cancer resistance to PTX. Linc0118 can
promote tumor progression in vitro and in vivo. In ovarian cancer
cells, linc0118 can induce ABCC1 expression via endogenous
sponging of miR-134 and, thus, antagonize chemosensitivity to
PTX (Shi and Wang, 2018). In ovarian cancer cells, lncRNA-
PRLB have been found to promote TAX resistance by suppressing
miR-150-5p and activating NF-κB signaling. Moreover, PRLB
has been found to inhibit TAX in ovarian cancer cells through
enhancing RSF1 expression, whereas elevated PRLB expression
has been found to be associated with a poor response to TAX
treatment (Zhao and Hong, 2021). LncRNA SNHG22 is another
chemoresistance-related gene and it has been found to promote
DDP resistance and PTX resistance through regulating the miR-
2467/galectin 1 (Gal-1) axis and it is correlated with poor patient
outcomes (Zhang P. F. et al., 2019).

In contrast, a number of tumor suppressor lncRNAs can
reverse PTX drug resistance in ovarian cancer. In comparison
with normal ovarian epithelial cells, lncRNA FER1L4 is
downregulated in SKOV3/PTX resistant cells. Overexpression of
the lncRNA FER1L4 can inhibit paclitaxel tolerance of ovarian
cancer cells through regulating MAPK signaling pathway (Liu
S. et al., 2018). Recently, significantly diminished expression
of lncRNA SNHG5 was observed in SKOV3/PTX and HeyA-
8/PTX PTX-resistant ovarian cancer cells. Exogenous expression
of lncRNA SNHG5 has been found to promote apoptosis, inhibit
cell proliferation and enhance PTX sensitivity of ovarian cancer
cells by sponging miR-23a (Lin et al., 2020).
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TABLE 6 | CircRNAs and drug resistance in ovarian cancer.

CircRNAs Expression1 Genes and pathways Drugs References

circTNPO3 ↑ miR-1299/NEK2 Paclitaxel Xia et al., 2020

circNRIP1 ↑ miR-211-5p/HOXC8 Paclitaxel Li M. et al., 2020

Hsa_circ_0000714 ↑ miR-370-3p/RAB17 Paclitaxel Guo et al., 2020

CELSR1 ↑ miR-1252/FOXR2 Paclitaxel Zhang S. et al., 2020

circEXOC6B ↓ miR-376c-3p/FOXO3 Paclitaxel Zheng et al., 2020

Cdr1as ↓ miR-1270/SCAI Cisplatin Zhao et al., 2019

circFoxp1 ↑ miR-22/CEBPG, miR-150-3p/FMNL3 Cisplatin Luo and Gui, 2020

1CircRNAs either up-regulated (↑) or down-regulated (↓) in chemo-resistant ovarian cancer cells. This table shows seven circRNAs whose expression levels and underlying
pathways in chemoresistance of ovarian cancer.

CircRNAs AND CHEMORESISTANCE IN
OVARIAN CANCER

Circular RNAs are crucial members of the ncRNA family, and
those related to animal physiologies have been widely studied
in recent years. CircRNAs have a closed-loop structure because
of a covalent junction between their 3′ and 5′ ends. CircRNAs
show stability, conservation, abundance, and tissue and cell
specificity (Salzman et al., 2013; Ashwal-Fluss et al., 2014; Maass
et al., 2017; Xia et al., 2017). CircRNAs play important roles
in biological functions by acting as a “microRNA sponge,”
regulating gene transcription and interacting with RNA binding
proteins in most cases (Fan et al., 2021; Shen et al., 2021;
Zeng et al., 2021). Accumulating evidences have shown that
circRNAs are abnormally expressed in various malignant tumors,
and circRNAs can act as both proto-oncogenes and tumor
suppressors. It has been reported that circRNAs in tumors not
only contribute to multiple processes of malignancy, including
cell differentiation, proliferation, invasion, and metastasis but
are also involved in the mechanism of chemotherapy resistance
(Ding et al., 2020; Hong et al., 2020; Ou et al., 2020; Table 6).

Several circRNAs are known to be involved in PTX-resistant
ovarian cancer. The cancer-related circTNPO3 has, for example,
been found to function as an oncogene in ovarian cancer and
confer PTX resistance. CircTNPO3 associates with advanced
FIGO stage and histological type. CircTNPO3 promotes PTX
resistance of ovarian cancer cells in vitro and in vivo. CircTNPO3
promotes PTX resistance via competitively binding miR-1299
to upregulate NEK2 (Xia et al., 2020). Moreover, circNRIP1
was up-regulated in PTX-resistant ovarian cancer tissues and
cells. Silencing of circNRIP1 suppressed the PTX resistance
of ovarian cancer cells in vitro and in vivo. Oncogenic
CircNRIP1 could contribute to PTX resistance of ovarian
cancer by modulating expression of the miR-211-5p/HOXC8
axis (Li M. et al., 2020). Additionally, Hsa_circ_0000714 is
an up-regulated circRNA in PTX resistant cells SKOV3/PTX
and A2780/PTX, which is contributed to PTX resistance by
influencing cell cycle G1/S transition and colony formation.
Hsa_circ_0000714 mediates PTX resistance in ovarian cancer
cells by sponging miR-370-3p and regulating the expression
of RAB17 (Guo et al., 2020). Meanwhile, the cancer-related
circCELSR1 (hsa_circ_0063809) has also been identified to be
upregulated in SKOV3/PTX and HeyA-8/PTX PTX-resistant

ovarian cancer cell lines. Inhibiting circCELSR1 can cause
ovarian cancer cell cycle G0/G1 arrest and an increase in
apoptosis. CircCELSR1 has been shown to contribute to PTX
resistance by modulating forkhead box R2 (FOXR2) expression
through miR-1252 (Zhang S. et al., 2020). On the contrary,
tumor suppressor circRNAs can reverse PTX resistance in
ovarian cancer. circEXOC6B shows notably decreased expression
in ovarian cancer tissues and is associated with long survival
time of ovarian cancer patients. In ovarian cancer cells,
circEXOC6B could suppress FOXO3 expression via endogenous
sponging miR-376c-3p and, thus, elevate chemosensitivity to
PTX (Zheng et al., 2020).

Also, several circRNAs have been found to be involved in
ovarian cancer DDP chemoresistance. Significantly decreased
expression levels of circRNA Cdr1as have been observed in both
tissues and serum exosomes of Cisplatin-Resistant ovarian cancer
patients. It has been confirmed that downregulating suppressor
of cancer cell invasion (SCAI) by sponging miR-1270, Cdr1as
can conquer DDP resistance of ovarian cancer cells (Zhao
et al., 2019). Recently, circulating exosomal circFoxp1, whose
expression is positively associated with International Federation
of Gynecology and Obstetrics stage, primary tumor size,
lymphatic metastasis, distant metastasis, residual tumor diameter,
and clinical response, has been reported to promote resistance
to DDP of ovarian cancer cells through up-regulating expression
of CCAAT enhancer binding protein gamma (CEBPG) and
formin like 3 (FMNL3) through miR-22 and miR-150-3p
(Luo and Gui, 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

Ovarian cancer is a comprehensive disease, but the pathogenesis
has not been completely elucidated. Although substantial
progress has been made in the diagnosis and treatment of ovarian
cancer, unfortunately, the prognosis remains unsatisfactory.
A growing number of ncRNAs have been identified to be involved
in chemoresistance of ovarian cancer. Targeting ncRNAs, in
combination with traditional chemotherapy or targeted therapy,
may be a promising choice to combat drug resistance in advanced
ovarian cancers. NcRNAs affect cell drug resistance through
multiple mechanisms. In ovarian cancer, we reviewed EMT,
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drug efflux transporters, autophagy, cell cycle dysregulation,
and DNA repair abnormality. At present, it has also received
widespread attention that ncRNAs mediate exosomes to cause
cell drug resistance.

A variety of methods are used to identify ncRNA that affect
drug resistance, and the more commonly used methods include
high-throughput analysis, silicon analysis, integrated analysis,
bioinformatics, and expression arrays (Hartmaier et al., 2017; Cen
et al., 2021). These technologies enable researchers to target the
direction of tumor research, explore the mechanism of tumor
occurrence and development, and explore the mechanism of
clinical drug resistance. However, it is still a great challenge
to select the critical target ncRNAs from the large number of
candidates and there is still a long way to go for ncRNA to
be used as clinical drug targets. Further translational studies
or clinical trials are indispensable to develop ncRNAs-based
therapeutics, which may ultimately provide potential approaches
for overcoming ovarian cancer drug resistance.
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