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Development of multidrug resistance (MDR) still remains a major obstacle to the

long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identifiedmembrane

transporter with capability to efflux drug molecules out of the cancer cell leading to

reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an

adaptive response to evade chemotherapy mediated cell death. While several P-gp

inhibitors have been discovered by in silico and pre-clinical studies, very few have

successfully passed all phases of the clinical trials. Studies show that application of P-gp

inhibitors in cancer therapy regimen following development of MDR achieved limited

beneficial outcomes. While, the non-specific substrate binding to P-gp has made the

drug-design a challenge, a bigger perplexing challenge comes from its role in tumor

immunology. Expression of P-gp was noted immune cell phenotypes with apparently

antagonistic functionality. Both pro-tumor M82-macrophages and, anti-tumor NK-cell

and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug

based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor

elimination, however, it would not be a rational choice to exert inhibition of P-gp

on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp

functionality requires a more comprehensive and detailed understanding of its role in

tumor microenvironment with active interplay of cancer and immune cells in the tumor

mileu. In this review, we focus on the current understanding of the role of P-gp in

cancer cells and immune cells and finally attempt to highlight some caveats in the

current understanding of its role in comprehensive tumor microenvironment along with

challenges in the development of P-gp inhibitors toward anti-cancer therapy.
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INTRODUCTION

Multidrug resistance (MDR) accounts for chemotherapeutic resistance in cancer cells (1). Three
major proteins namely P-glycoprotein (P-gp, also referred to as MDR1), MDR-associated protein
1 (MRP1) and breast cancer resistance protein (BCRP), were shown to play a critical in MDR (2).
These three proteins belong to a family of 48 energy-dependent membrane transporter proteins
called adenosine triphosphate (ATP)-binding cassette (ABC) efflux pumps (3, 4). This group of
ABC transporters have a diverse epithelial cell surface expression including on gastrointestinal tract,
hepatobiliary tract, renal tubules, adrenal cortex, placenta, and blood-brain barrier membranes (5).
Under physiological conditions, ABC transporters are involved in efflux of lipids, sterols, small
microbial peptides and toxins out of the cytoplasm (6). P-gp is most studied and well-characterized
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MDR transporter associated with resistance to cancer
chemotherapy (7). Szackas et al. have previously tested 118
compounds with known putative mechanism of action on
NCI-60 cancer cell lines (8). Their results have demonstrated
that more than 95% of the compounds exerted a negative
correlation between drug sensitivity and P-gp expression.
Compounds such as geldanamycin, paclitaxel and its taxane
analogs, doxorubicin, vinblastine, and bisantrene demonstrated
a striking negative correlation, while compounds such as
hydroxyurea, methotrexate, and 5-fluorouracil were found
to have been invariably non-correlated or slightly positively
correlated with drug sensitivity index. While some cancer
cells (such as melonama and renal cancers) have an enhanced
genetic and epigenetic modulators causing higher constitutive
expression of P-gp, majority of other solid tumors induce
expression of P-gp as a tumor resistance response following
initiation of chemotherapy (9). Several P-gp inhibitors have
been studied to improve the chemotherapeutic susceptibility
of solid tumors (10). However, majority of these clinical trials
have failed due to several reasons, an important reason being
the high drug doses need to exert P-gp transporter inhibition.
Currently, several new drug discovery projects have an array
of novel pro-drug compounds in pipeline to bypass or exert
a more sustained P-gp inhibition (11). Interestingly, over the
past two and half decade accumulating evidence suggested that
the expression of P-gp in inflammatory immune cell subset
(12–15). This could exert a potential anti-cancer cytotoxic
functionality. However, a detailed understanding of this
apparently contrasting role of P-gp in cancer and immune cells
in the context of tumor microenvironment is yet to evolve. In
this review, we will briefly describe the molecular details of
P-gp and prevailing understanding on its inhibitors. We will
than focus on the current immunological evidence of P-gp in
various immune cell phenotypes with potential future insights on
tumor immunotherapy.

P-gp GENETICS

The p-gp/abcb1 gene is located on chromosome 7q21.12 and
contains 29 exons in a genomic region spanning 209.6 kb. The
messenger RNA (mRNA) is 4872 bp in length, including the
5′ untranslated region (RefSeq accession NM_000927.3), which
is expressed into a 141 KDa protein with 1,280 amino acids
(16). To date (as of Nov 2019, NCBI-SNP view database),
in the coding region alone, upto 1,200 single nucleotide
polymorphisms (SNPs) have been reported with varied impact
on protein expression and functionality. Of these the three
most studied SNPs in the protein coding region of P-gp
are rs1045642 (3435T>C, Ile1145Ile), rs2032582 (2677T>G/A,
Ser893Ala/Thr), and rs1128503 (1236T>C, Gly412Gly) (17).
Further, while 28% of the SNPs were reported in the
transmembrane domain 72% of the SNPs were reported in intra-
and extracellular regions of P-gp.

The synonymous mutation, C to T transition at position
3435 (rs1045642, 3435T>C) results in an unaltered amino
acid sequence (Ile1145Ile) and could be expected not to

change the protein functionality (18). In general, the 3435C
allele occurs at 34–90% frequency across all populations with
high expression 3435CC genotype in Africans compared to
Caucasians or Japanese (19–21). Although this is a synonymous
mutation, interestingly, it is not generally considered a silent
mutation. Hoffmeyer et al. have demonstrated that 3435
TT genotype population demonstrated lower expression of
P-gp in the epithelial cells of digestive tract (22). The
3435C allele showed higher mRNA transcript levels compared
to the 3435T allele (23). This differential gene expression
level is considered to be due to instability in the mRNA
secondary structure which requires more time for mRNA
folding/unfolding during translation process resulting in altered
membrane insertion and tertiary structural orientation and
thus leading to variations in the substrate affinity. For these
reasons, the 3435CC genotype is correlated with a higher
P-gp expression and function compared to either 3435CT
or 3435TT genotypes (24, 25). In the context of tumor
resistance, patients with 3435TT genotype might be expect
to develop minimal resistance to chemotherapy compared
to 3435CC genotype, and therefore requiring lower amount
of drug for cancer cell elimination (25). Pharmacokinetic
studies with cyclosporine have demonstrated that patients with
3435TT genotype had enhanced intracellular drug concentration
compared to 3435CC genotype. Similarly, pharmacodynamic
studies with tacrolimus and sirolimus have demonstrated that
compared to 3435CC genotype, patients with 3435TT genotype
had higher immunosuppression as evidenced by decreased
circulating levels of inflammatory cytokine, interleukin-2 (IL-
2) (26).

The rs2032582 SNP (2677T > G/A, Ser893Ala/ Thr),
with three allelic variants, although well-studied have some
discordant outcomes on the actual protein functionality. The
frequency of 2677T allele coding for serine-893 varies as
widely as 2–65% among various ethnicities (23). Interestingly,
the frequency of homozygous 2677 GG genotype leading to
893-Ala/Ala P-gp is found to be as high as 81% in African
populations, as compared to the frequency of only 10–32%
in other demographics such as European, Mexican, Native
America, Asian, and Indian populations. Along with these
SNPs, another allele, 2677A bearing Thr-893 P-gp has been
reported to be at lower frequency of only 0–17% across
various populations. In spite of extensive studies on this non-
synonymous mutation inducing SNP, the potential impact
on the P-gp expression and functionality is unclear (27). The
Ser-893 P-gp has shown to have apparently conflicting functional
outcomes with all three (increase, decrease and no change)
outcomes on the pharmacodynamics properties. Similarly,
studies with Ala-893 vs. Ser-893 mutation have shown no
difference in the treatment outcomes in inflammatory bowel
diseases (Crohn’s and ulcerative colitis) (28). Similarly, a third
SNP, rs1128503 (1236T>C) bearing synonymous mutation
leading to Gly412Gly P-gp is reported to have a wide frequency
of 30 to 93% among various populations (29). However,
the pharmacokinetic and pharmacodynamics differences
between the genotypes, 1236CC/CT/TT, have not been
confirmed (30).
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P-gp: PROTEIN EXPRESSION,
STRUCTURE, AND FUNCTION

Biedler et al. (31) for the first time suggested the potential
existence of multidrug resistance (MDR) phenomena mediated
by a cell surface protein (31). Riordan et al. (32) have first
cloned the P-gp cDNA and expressed in mammalian cell
lines to provide proof that MDR is indeed mediated by a
membrane protein (32). Later, Schinkel et al. (33) using a
murine abcb1 (P-gp) knock-out model demonstrated a 100-fold
increased brain tissue concentration of antiparasitic medication,
ivermectin, in these genetically engineered mice (33). For
constitutive expression of this gene, there seems to be two
transcriptional start regions in the proximal promoter region
of exon 1 and intron 1. The mRNA transcript for this gene
compromising of 5’ untranslated region is 4,872 bp long and is
translated into 1,280 amino acid P-gp protein. The secondary
structure has twelve transmembrane domains (TMD) as also
evidence by Kyte-Doolittle hydropathy plot (Figure 1). Several
alternative transcripts and splice variants with undetermined
significance were reported in the literature, however, not
discussed in the current review. P-gp is post-translationally
modified by differential phosphorylation and N-glycosylation
which is thought to impact its final functionality (34). The serine
residues of P-gp, S661 and S683 are phosphorylated by PKC
and PKA, respectively (35). Additionally, phosphorylation of
S683 by Pim-1 selectively on glycosylated P-gp is considered
to induce multimerization and surface membrane stabilization
(36). While two phosphorylation residues were shown to bind
with tubulin, it has not been shown to be important in
inducing downstream signaling and protein functionality (37,
38). The 12 TMDs form a hydrophobic pore-like-channel in
the cell membrane to promote drug efflux of hydrophobic
and amphipathic compounds (Figure 1). The two ATP-binding
domains are located in the cytoplasmic intracellular side of
the protein. The first high-resolution X-ray crystallography
structure at a resolution of 3.8 Å of mouse P-gp, which has
87% homology with human P-gp, was reported in 2009 (39).
Further studies with slightly improved (up to 3.3 Å) resolution
also showed predominantly similar tertiary structural features
(40, 41). The tertiary structure of P-gp protein exhibits high
membrane flexibility to allow for multiple three-dimensional
(3D) reorientations, possibly playing an important functional
role in binding and efflux of a wide array of drug substrates
(42). Interestingly, in silico structure activity relationship (SAR)
studies demonstrated that P-gp had the capacity to differentially
bind with stereoisomers of the same compound and also has
multiple binding sites to allow binding and efflux ofmultiple drug
substrates (43). While the initial SAR studies with P-gp have been
challenging mainly due to its high hydrophobicity index making
it insoluble in water and high tertiary structural flexibility, more
recent studies by Alam et al. revealed a 3.5- Å resolution structure
using reconstituted in lipidic nanodiscs allowing for much better
SAR biochemical understanding (44).

The structure of P-gp displays the canonical ABC transporter
fold consisting of two pseudo-symmetric transmembrane
domains, with each half containing six transmembrane helices

(TM) and one cytosolic domain has ATP-nucleotide binding
functionality (NBD). The two NBD domains in P-gp, which
are largely conserved in many ABC proteins, dimerize to bind
and hydrolyze ATP at the interface. A 60–70 amino acid
flexible linker with several phosphorylation sites connects the
two pseudo-halves of P-gp (45). The cytoplasmic side of the
protein encloses a 6000 Å3 large cavity (39). Drugs are thought
to enter this cavity for binding through portals open on the
cytoplasm and the inner leaflet of the membrane and exit out
through the extracellular side which generally has a 70–200 Å3
pore size depending on the protein orientation (Figure 1). P-
gp undergoes dynamic conformational changes to allow for an
array of substrate binding and efflux which is associated with
ATP binding and hydrolysis on the cytoplasmic side allowing
unidirectional outward flow of the substrates. Thermodynamic
studies have demonstrated that while inward V-conformation
is energetically-feasible conformation and transient outward
facing conformation is adopted at high-energy state with the
consumption of ATP-derived energy (46). In spite of the
controversies in the reported crystal structure regarding the
location of ATP-binding domain due to the use of detergents,
and the absence of nucleotides to obtain the crystal structure,
however, it is well-documented that the two ATP-binding
domains should be on the intracellular side as the cellular
concentration of ATP (1–10mM) far exceeds the domain binding
constant (∼0.01mM) (47, 48). Regardless of the controversies on
the P-gp tertiary membrane bound structure, the resolved crystal
structure enables the in silico identification of the drug substrates
and inhibitors for P-gp.

Several causes such as intrinsic cancer genomic instability,
epigenetic mechanisms and inflammatory stressors in the tumor
microenvironment have been implicated to play a critical role in
the upregulation of P-gp expression (Figure 2) (49). Studies have
demonstrated that gene rearrangements and tumor mutational
burden are important mechanisms to control and modulate
promoter region of abcb1 gene leading to its expression (50, 51).
Oncogenes such as Ras, p53, c-Raf, etc. have been associated with
the regulation of P-gp expression (52, 53). In various kinds of
leukemias with enhanced P-gp expression, the promoter region
of the gene was shown to be demethylated, suggesting the role
of epigenetic modification toward activation of P-gp mediated
drug resistance (9, 54). Studies have shown that, following
cancer chemotherapy, there is an upregulation of acetyl-H3
and histone deacetylase activity (55, 56). The acetyl-H3 was
shown to act at 968 bp upstream P-gp gene in the promoter
region. Transcription factors such as CEBPβ have been shown
to induce P-gp expression in MCF-7 breast cancer cell lines
(57). Previous studies from our laboratory demonstrated that
high salt-mediated osmotic stress (10.05mM NaCl) on MCF-7
andMDA-MB-231 breast cancer cells enhanced intracytoplasmic
calcium concentration through activation of store operated
calcium entry (SOCE) from endoplasmic reticulum (58). This
hypertonic stress induced P-gp expression leading to paclitaxel
drug resistance in these breast cancer cells. Further, our murine
tumor studies demonstrated that orthotopic breast tumors with
MCF-7 cells pre-cultured in hypertonic stress conditions, exerted
higher tumor progression kinetics compared to the basal media
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FIGURE 1 | Membrane localization of P-glycoprotein (P-gp, PDB ID: 6QEX). (A) Kyte-Doolittle hydropathy plot determining the amino acid positions in the twelve

transmembrane domains (TMD) of P-gp (https://embnet.vital-it.ch/cgi-bin/TMPRED_form_parser; EXPASy Bioinformatics resource portal); (B) Schematic of the

membrane localization of 12 TMDs, 2 ATP- nucleotide binding domains (NBD), and 3 most common single nucleotide polymorphisms (SNP) on P-gp; (C) Tertiary

three dimensional inverted V-shaped structure of P-gp.
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FIGURE 2 | Mechanisms leading to upregulation of P-gp expression.

cultured counterpart. These data suggest that osmotic stress
in most solid organ tumors in itself induces P-gp mediated
drug resistance.

Studies from some laboratories have demonstrated that
hypoxic stress enhances P-gp expression through interaction of
HIF1α to P-gp promoter region (59). Sakata et al. have previous
demonstrated that cells which developed hypoxia mediated drug
resistance did not demonstrate significant increase in the mRNA
of P-gp, thus suggesting that the mechanism of hypoxia mediated
chemoresistance is different from P-gp pathway (60). Similarly,
P-gp-independent MDR was also reported in osteosarcoma cells.
Avnet et al. have demonstrated that short term changes in
extracellular acidosis induced a reversal plasma membrane pH
gradient along with decreased intracellular concentration of
drugs such as doxorubicin and cisplatin, with no change P-
gp functionality, thus suggesting a non-P-gp mediated MDR
(61). Therefore, along with P-gp, other factors in the tumor
microenvironment could also play a significant role in MDR.

P-gp Substrate and Drug Interactions
A large variety of molecules with divergent chemical structures
(cyclic, linear, polar, non-polar, linear-hydrophobic, aromatic)
and molecular weights (from 250 to 4,000 Da) are known to
efflux through P-gp transporter (Table 1) (62). cyclosporine-
A and verapamil were some of the first identified competitive
inhibitors to P-gp. Crystallograhy studies (based on mouse P-gp)
have shown that drug-binding motif in the inward V-orientation
of P-gp is made up of both hydrophobic (and aromatic) residues
to facilitate hydrophobic and van derWaals interactions, and also
has few polar side chains (e.g., Q343, Q721, Q942, Q986, and
S975) to facilitate the formation of hydrogen-bonds with ligands,
thus explaining for the diverse substrate and inhibitor binding
to P-gp (63, 64). A recent high-throughput screen of 10,804
compounds by Lee et al. has identified a total of 90 substrates
of which 55 were novel. Among these, substrates for P-gp

TABLE 1 | List of the known P-gp substrates and inhibitors.

P-gp Substrates P-gp Inhibitors

Vincristine Verapamil

Vinblastine Cyclosporin A

Etoposide Tamoxifen

Mitomycin C Megestrol acetate

Paclitaxel Quinine

Topotecan Azodipin

Actinomycin D Flupentixol

Doxorubicin Valspodar

Daunorubicin Dofequidar

Mitoxantrone Tesmilifene

Epirubicin Zosuquidar

Tariquidar

included anti-cancer small molecules such gedatolisib (PKI-587,
phosphoinositide 3-kinase/mammalian target of rampamycin
inhibitor), AT7159 (cyclin-dependent kinase inhibitor), AT9283
(Janus kinase 2/3 inhibitor), and ispinesib (kinesin spindle
protein inhibitor) (65). Currently, although there is a lot of
interest in the development of small molecule inhibitors of
P-gp, to overcome multi-drug resistance (MDR) in cancer
chemotherapy, this enthusiasm is curtailed by the fact that
majority of previously discovered inhibitors could not succeed
in passing FDA approved clinical phase trials. There are several
reasons for this failure to pass clinical trials, but a major reason
is that the tissue toxicity of the drugs at the high dose needed for
P-gp inhibition (66). For example, verapamil and cyclosporine-A,
some of the first discovered P-gp inhibitors tested in clinical trials,
demonstrated low-affinity to P-gp requiring several micro-molar
plasma concentration at which they have unacceptable cardiac
and immunosuppressive side-effects, respectively (67, 68). The
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recently optimized P-gp inhibitors, tariquidar and zosuquidar,
were designed for increased potency (10–100 nM) and enhanced
specificity to P-gp (69–71). However, there seems to be some
conflicting literature evidence on the role of tariquidar as an
ATPase inhibitor or enhancer and if it is a substrate or inhibitor
to P-gp (72, 73). Weidner et al., have recently reported that
tariquidar is an inhibitor and nor substrate or both human and
mouse P-gp (69).

Unlike enzyme-substrate interactions, such as lock-and-key
model or induced-fit model, the tertiary structure of P-gp does
not have a well-defined ligand-binding pocket making it innately
perplexing to design highly specific competitive inhibitors for P-
gp (74, 75). However, development of uncompetitive inhibitors
for drug-binding pockets, and also, as ATP-binding NBD is
well-characterized development of competitive inhibitors for
NBD is feasible. Some bivalent inhibitors such as reversible
dimer of quetiapine (74) and prodrug dimer of paliperidone
(74), with ability to bind with multiple interaction sites of P-
gp have been designed with limited success to enable better
inhibition compared to monovalent binding (76). A drug
design strategy to modify the already identified and natural
compounds with known P-gp interaction to enhance specificity
and potency will minimize the dose needed for clinical human
application. Epothilones which have a chemical structure similar
to taxanes, a microtubule mediated cell-division inhibitors, have
been suggested to be substrates of P-gp with poor specificity
(77). An analog of epothilone B, ixabepilone (azaepothilone B),
in combination with capecitabine, was demonstrated success
in treating anthracycline and taxane resistant metastatic breast
cancer (78, 79). Further ixabepilone demonstrated a 6–10 fold
higher cancer cell cytotoxicity compared to epothilone B, against
a panel of over 20 tumor cell lines which included both drug-
sensitive and resistant P-gp overexpressing cancer phenotypes
(43, 80). Similarly, semisynthetic analogs of taxanes have been
utilized in the development of several novel compounds with
significantly higher efficiency against paclitaxel-resistant cancers.
These include cabazitaxel (FDA approved) and ortataxel which
have been shown to be efficient in hormone refractory metastatic
prostrate cancer (81, 82). Further, these compounds have been
shown to be less amenable to efflux by P-gp. Along with taxanes
extensive studies have been performed on synthesizing analogs
of vinca alkaloids. Vinflunine, a fluorinated semisynthetic analog
of vinblastine, displayed 2–13 fold diminished susceptibility to
efflux by P-gp-mediated compared to vincristine and vinblastine
(83). Consequently, vinflunine received approval in Europe
(2009) as second-line therapeutic agent against urothelial
cancers. Similarly, an isoindoline urea derivative of vinblastine
(at the same chemical position C20) was shown to possess
100 fold higher cytotoxic potential against vinblastine- resistant
cancer cell lines (84, 85). Along the lines, an aryl amide
derivatives of vinblastine has also been demonstrated to be
less sensitive to P-gp mediated efflux in cancer cell lines (86).
However, the therapeutic efficiency of these drugs is yet be prove
in clinical settings.

As P-gp is considered to recognize hydrophobic compounds
for efflux, adding a polar moiety to the drug by chemical
modification of the drug or conjugating the drug with polar

ligand could be considered some of the possible strategies
toward reduced P-gp mediated efflux. Various nano-sized
carriers and drug-conjugates have been studied to treat P-
gp mediated MDR. Liposome-mediated doxorubicin delivery
has received FDA approval in as early as 1995 (87). Other
ionic and block copolymer-based drug modifications are still
under study. An albumin-bound paclitaxel, abraxane, has already
received FDA approval for treatment of metastatic breast
cancers (88). Opaxio/Xyotax, a poly-L-glutamic acid- paclitaxel,
is currently under Phase III clinical trials for the treatment
of ovarian and esophageal cancers (89). Cell-penetrating
macromolecules (CPMs) and antibody-drug conjugates (ADCs)
have been extensively utilized in targeted drug delivery and
reduce side-effects (90, 91). Octaarginine-conjugated taxol
has been extensively studied in resistant cancers. These
conjugation techniques were primarily intended to enhance drug
internalization (92). However, cytoplasmic drug concentration
and eventual impact on lowering P-gp mediated efflux by
these conjugation techniques is not convincing. Gemtuzumab-
ozogamicin was approved by FDA for a brief time-period, but
later the approval was withdrawn due to lack of improved overall
survival profile (93). Similarly, CD33-conjugated maytansine
is efficient in pre-clinical studies, however, clinical benefit is
yet to be proven (94). Brentuximab-vedotin with a potency to
evade P-gp-efflux seems to be one of the very few ADCs which
received FDA approval for treatment of refractory hodgkin’s
lymphoma and systemic anaplastic large cell lymphoma (95).
As the understanding of conjugation techniques improve more
efficient compounds could designed.

P-gp FUNCTION IN TUMOR IMMUNITY

The expression of P-gp on immune cells is shown to be correlated
with immune cell activation, phenotype switch, and cytokine
release. While expression of P-gp in peripheral circulating
monocytes is extremely limited, however, its expression in
tumor infiltrating anti-inflammatory M82 tissue macrophages
is extremely high (96). In dendritic cells, P-gp expression is
correlated with their maturation and activation with enhanced
professional antigen presenting functionality (97, 98). Blockade
of P-gp with valspodar impaired DC maturation as shown by
decreased expression of activation markers, CD80 and CD40
(98). Among all the innate immune cells, natural killer (NK)
cells have been shown to have highest surface expression
of P-gp, which is shown to correlate with the downstream
cytotoxic functionality of these cells with enhanced Fas-mediated
(Fas/FasL) surface binding of P-gp+NK cells to the target cells
leading to release of inflammatory cytotoxic secretory granules
leading to apoptotic death of target cell (99, 100).

The role of P-gp expression in adaptive immune cells varies
with individual cell type. In B-cells, P-gp expression is correlated
with cell migration and transitional phenotype in lymph nodes
(101, 102). In CD4+T cells, P-gp is associated with inflammatory
Th1/Th17 effector phenotype, while its expression is extremely
limited in anti-inflammatory Treg phenotype (13, 103, 104). In
CD8+T cells, the expression of P-gp is associated with memory
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(IL18Rα+CD161+CD62Llo) phenotype (105–107). These P-gp
expressing CD8+ memory T cells in mucosal associated T-cells
(such as in gastrointestinal tract) is associated with a bidirectional
responses, with initial protective role to evade xenobiotic toxins,
but later when normal microbiome is disrupted, could cause
enhanced effector responses leading to autoimmune diseases
such as crohn’s disease and ulcerative colitis (107).

The immune cells in the patients with hematological
malignancies, such as acute myeloid leukemia (AML), diffuse
large B Cell lymphoma, multiple myeloma, and follicular
lymphoma, demonstrate enhanced expression of P-gp, thus
making these cancers resistant to chemotherapy (108, 109).
Enhanced expression of P-gp in myeloid and lymphoid lineage
cells of AML and B-cell lymphomas, respectively, is associated
with upregulation of MAPkinase/ERK signaling (110). It is of
interest to note that P-gp mediated chemoresistance could be
overcome with monoclonal antibodies (mAb)-based anti-CD20
and anti-CD19 therapy, possibly because mAb could not be
effluxed by P-gp (111).

To date there is very limited data from solid organ tumors
showing P-gp expression in the infiltrating immune cells. Studies
on human colorectal cancer demonstrated that there is enhanced
frequency of P-gp expressing mucosal derived CD8+T cells in
the tumor tissue specimens (112). However, the exact role of
these CD8+T cells remains elusive. Further, the infiltration of
the immune cells into the tumor could be skewed by the chemo-
resistance of the cancer cells in the tumor microenvironment. In
AML patients on long term chemotherapy there was enhanced
CD4+CD161+P-gp+ T cells phenotype (113). Further this subset
of CD4+helper-T-cells demonstrated diminished expression of
T-cell exhaustion markers PD-1 and CTLA-4. The subsets
of CD4+T-helper cells, Th17 and Th1 are known to induce
anti-tumor effect through secretion of inflammatory cytotoxic
cytokines such as IL-17, IFNγ, TNFα, and granzyme (114, 115).
Interestingly, the tumor infiltrating P-gp-expressing CD4+T-
cells (CD4+CD73+T cells) in breast and ovarian carcinomas
were shown to exert enhanced secretion of these anti-cancer
cytokines (116, 117). Importantly, chemical inhibition of P-gp
inhibited vesicular secretion of these cytotoxic cytokines by these
T-lymphocytes (14). Therefore, it will not be favorable to use

P-gp-inhibitors in this scenario, as thismight reduce the cytotoxic
potential of these tumor infiltrating anti-cancer Th1 and Th17
CD4+T cell phenotypes (118). Further, as mentioned above P-gp
expression is shown in pro-tumor M82-macrophage phenotype
and, anti-tumor NK-cell and Th17/CD4+T cell subsets, thus
suggesting an apparently conflicting role of P-gp in tumor
immunology. Therefore, the role of P-gp expression in tumor
infiltrating immune cells should be more carefully studied in
future to determine the potential application of combinatorial
strategy of P-gp inhibitors with immune-checkpoint therapy
(anti-CTLA4/anti-PD1) (119, 120).

CONCLUSION

Despite of implementing multi-drug regimens, cancer therapy is
still a challenge as tumor cells quickly develop resistance. The
role of P-gp in chemo-resistance is well-appreciated for over past
three decades. However, development of P-gp-specific inhibitors
requires a better understanding of the tissue distribution, cell
type specificity, body distribution/toxicity, immune side-effects,
and cell-specific cytotoxicity. Synthetic modification of current
chemotherapeutic drugs to evade P-gp-mediated efflux seems
to be a very difficult drug-discovery task. Advances in the
understanding of the 3D-crystal structure of P-gp protein offered
novel insights into the drug-design strategies. To make the
matters more complicated, adopting a combinatorial therapeutic
regimen with P-gp inhibitors could enhance tumor cell drug-
sensitivity, but impair efficient infiltration of tumors with anti-
tumor immune cells. These changes in tumor microenvironment
require further in-depth research for efficient futuristic usage of
P-gp inhibitors.
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