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Despite the extreme importance of food intake in human health, it is currently difficult

to conduct an objective dietary assessment without individuals’ self-report. In recent

years, a passive method utilizing a wearable electronic device has emerged. This

device acquires food images automatically during the eating process. These images

are then analyzed to estimate intakes of calories and nutrients, assisted by advanced

computational algorithms. Although this passive method is highly desirable, it has been

thwarted by the requirement of a fiducial marker which must be present in the image for

a scale reference. The importance of this scale reference is analogous to the importance

of the scale bar in a map which determines distances or areas in any geological region

covered by the map. Likewise, the sizes or volumes of arbitrary foods on a dining table

covered by an image cannot be determined without the scale reference. Currently, the

fiducial marker (often a checkerboard card) serves as the scale reference which must be

present on the table before taking pictures, requiring human efforts to carry, place and

retrieve the fiducial marker manually. In this work, we demonstrate that the fiducial marker

can be eliminated if an individual’s dining location is fixed and a one-time calibration using

a circular plate of known size is performed.When the individual uses another circular plate

of an unknown size, our algorithm estimates its radius using the range of pre-calibrated

distances between the camera and the plate from which the desired scale reference is

determined automatically. Our comparative experiment indicates that the mean absolute

percentage error of the proposed estimation method is ∼10.73%. Although this error

is larger than that of the manual method of 6.68% using a fiducial marker on the table,

the new method has a distinctive advantage of eliminating the manual procedure and

automatically generating the scale reference.

Keywords: wearable device, fiducial marker, dining plate size, egocentric image, technology-based dietary

assessment

INTRODUCTION

Many chronic diseases, such as heart diseases, cancer and diabetes, are associated with unhealthy
diet. A recent study by the Global Burden of Disease found that poor diet accounted for ∼20% of
adult deaths in 2017 (1). As diet-related health risks are high, it is important to conduct dietary
assessment among individuals’ with, or in an emerging stage of, chronic diseases. Traditionally,
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this assessment depends on individuals’ self-report, which
is subjective and often inaccurate (2). In recent years, as
microelectronic and mobile technologies advance, image-based
dietary assessment has emerged (3, 4). The images of food are
acquired from an individual either actively or passively. In the
active approach, the individual takes pictures of his/her food
before and after each eating event (5). Although this method is
inexpensive (because of the wide availability of the smartphone)
and the image quality is high, picture-taking must be volitionally
initiated, which depends on the individual’s memory. In the
passive approach, the individual is provided with a small
electronic wearable device, such as the eButton in the form of
a chest pin [Figure 1A, (6, 7)]. This device is equipped with a
wide-angle camera aiming at the food on the table during the
eating process. Rather than taking pictures manually, a sequence
of images is acquired automatically at a pre-set rate (4–6 s
between images). For a complete dietary assessment, the device
can be activated for the entire day, producing a large amount
of data saved on the device. Once the data are uploaded to a
computer, they are first screened using the Artificial Intelligence
(AI) technology (8). This screening automatically filters out all
image segments not containing foods or beverages, both reducing
the burden of data examination by human experts and mitigating
the related privacy concerns. The AI approach also allows
objective studies of snacking and a wide range of other diet-
related activities, such as food shopping, storage, preparation,
cooking, and post-eating events. This work is in the domain of
the passive approach.

Although image-based dietary assessment has many
advantages over the traditional self-report method, it requires

FIGURE 1 | (A) A skeletal representation of a person wearing eButton during a meal; (B) Part of an egocentric image sequence acquired by the eButton showing

quasiperiodic variations of the ellipses of the plate; (C) Definition of Di ; (D) Parameters of an ellipse.

a scale reference within each image. The scale reference is
extremely important, analogous to the importance of the scale
bar in a map which enables the determination of the distance
between any two points on the map or the area of any geological
region covered by the map. Likewise, the volumes of foods and
beverages on a dining table in the scope of an image cannot
be determined without the scale reference. Currently, the scale
reference is provided by a fiducial marker which is an object of
known dimensions, such as a checkerboard or a business card
(2, 5, 9). This method requires the individual to physically carry
the card, place it on the dining table before the eating process
and retrieve it afterwards. Clearly, these tasks are inconvenient
and contradicts the goal of passive dietary assessment. In order
to eliminate these tasks, we previously developed a method
to use the dining plate itself as the scale reference (10, 11).
Since a circular plate appears in the image as an ellipse and
the eccentricity of the ellipse depends on the viewing angle of
the wearable device, the coordinate transformation between
the image pixel coordinates and the world coordinates can be
established, under the condition that the radius of the plate
is known. Although this method eliminates the need to carry,
place and retrieve the fiducial marker, it requires a measurement
of the plate radius, which is still a manual procedure and a
significant burden to the participant. Eliminating this manual
procedure would lead to a true passive dietary assessment,
removing the last bottleneck that undermines the passiveness.
Because of the high importance of this problem, considerable
effort has been spent by the research community, and several
approaches have been reported, such as using two cameras for a
stereo view (12), adopting a depth camera (13), and using a laser
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reference produced by an add-on device (14, 15). Although these
solutions are effective, the extra power consumption, enlarged
wearable device size and increased cost have hampered their
practical utility.

Unfortunately, elimination of the manual procedure and
automatic determinization of the scale reference based purely
on image contents represent an extremely difficult problem. The
theory of computer vision has indicated that it is impossible to
estimate the real size of an object in a single 2D image without
providing the scale information (16). However, we will show, in
this work, that this theoretical constraint can be circumvented if
we use a sequence of images as the input and meet the following
assumptions: (1) the heights of the dining table and chair at each
dining location are fixed, (2) a one-time calibration is performed
at each dining location using a circular plate of known size, (3) the
individual uses the same wearable device affixed at the same body
location to capture images, and (4) one of the food containers
on the dining table is a circular plate. Then, we show that the
desired scale reference can be determined automatically from the
circular plate. Here we point out that, as in the case of a map
where the scale bar is applicable to all geological regions covered
by the map, this scale reference, once obtained, is applicable to all
foods, beverages and other objects on the dining table. As a result,
their lengths and volumes can be estimated from the image.

The rest of the paper is organized as follows. Section Methods
presents the details of our method including the concepts
utilized, the formulation of the method, and the plate radius
estimation procedure. Section Experimental Results summarizes
the experimental data and analysis results. In section Discussion,
several issues of this method are discussed. Finally, limitations
and future work are described in section Limitation and Future
Work and conclusions are drawn in section Conclusion.

METHODS

System Design Concepts
In real life, most individuals follow a certain eating pattern. With
exceptions of traveling or “eating out,” they usually use fixed
locations to have meals, for example, the kitchen or dining room
at home for breakfast and dinner, and the office desk, a cafeteria,
or a favored restaurant for lunch. At each location, the heights of
the dining table and chair are usually fixed. Additionally, when a
wearable device is used for dietary assessment, the location of the
wearable device is usually fixed also, such as the chest location of
the eButton (Figure 1A). All these factors indicate that, during
eating events, the imaging environment of the individual at each
dining location does not change drastically regardless of the food
served and utensils utilized.

Although, as indicated previously, the theory of computer
vision prohibits the determination of plate radius from a single
image alone without the scale information, the estimation
becomes possible when a sequence of images is captured by a
wearable camera. Our key approach is to investigate the variation
in the size of the observed dining plate in the image sequence
(see an example in Figure 1B) as the result of the individual’s
repeated motion for reaching and fetching food. Although this
body motion is not truly periodic (hence we call it “quasiperiodic

motion”) involving considerable irregularities in the camera-
to-plate distance, it is reasonable to assume that the statistical
range of camera-to-plate distance variations remains the same
for all eating events if the eating environment is fixed. From our
previous studies (10), we know that the camera-to-plate distance
can be calculated when a circular plate presents in the image
and the plate size is known. If a one-time calibration with a
plate of known size is conducted for an individual, the range
of camera-to-plate distances during all future eating events of
this person can be considered known. Then, the radius of an
unknown plate can be estimated using this known range of the
distances if his/her eating happens at the same location. These
represent the key concepts of our method.

Our method, to be detailed below, for estimating the radius
of an unknown plate from the image sequence is highlighted as
follows. First, the relationship between the image of the plate
(i.e., an ellipse) and the camera-to-plate distance is investigated
and simplified. Then, a set of lines is generated to represent
such relationship for different plate sizes. Next, from these
lines, a particular line (i.e., the optimal line) is determined that
best-matches the known range of the camera-to-plate distances
obtained during the calibration process. The radius of the
unknown plate is determined to be the radius represented by
that line.

Modeling Camera-to-Plate Distance
Let Di be the distance (unit: mm) between the lens of the
wearable device to the center of the plate, where subscript i
denotes the ith image in the image sequence (Figure 1C). We
have previously shown (10) that Di can be determined from
the ellipse (representing the plate) in the image if the actual
radius of the plate is measured, and the intrinsic parameters
of the camera, including the focal length and pixel size of
the semiconductor chip, are provided. Figure 2A illustrates the
change of camera-to-plate distance (red dots) during an eating
episode. The mathematical expression for Di is derived based on
intersecting a cone (with its vertex located at the optical center
of the camera) by the surface of the tabletop, where the circular
plate (assuming that its height can be ignored) coincides with the
intersection contour (10, 17). While the mathematical details of
the expression are quite complex, here we write it as g, given by

Di = g
(

xi, yi, ai, bi, θi,R
)

, (1)

where (xi, yi) denote the coordinate of the center for the ellipse
in the image;

(

ai, bi, θi
)

represent the length of the semimajor
axis, the semiminor axis, and the major axis angle of the ellipse,
respectively (shown in Figure 1D); and R is the radius of the
plate (unit: mm). Among the six variables of g, R is the only one
that has a physical size in the world coordinates. With the ellipse
parameters, the orientation and location of the dining table where
the plate is placed on can be determined.

Model Simplification
To simplify Equation (1) and make the relationship between
D and

(

x, y, a, b, θ ,R
)

more intuitive, we start with a simple
case assuming that the optical axis of the camera goes through

Frontiers in Nutrition | www.frontiersin.org 3 January 2021 | Volume 7 | Article 519444

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Jia et al. Dining Plate Size Estimation

FIGURE 2 | (A) Plot of change of camera-to-plate distance (red dots) during an eating episode; (B) Simulated camera-to-plate distance vs. 1/a using Equation (3); (C)

A set of fitted curves for R = 60, 70, · · · , 150 mm; (D) Camera-to-plate distance D vs. 1/a plot for the real data in (A); (E) The two dotted blue lines represent the

distance range [Dl ,Du] obtained from calibrated data (red dots). The black lines represent the fitted lines for different plate radii. The green dots are the corresponding

Di to each 1/ai obtained from the image with unknown plate. (F) Plot of P and fitted Gaussian function.

the center of the plate and the camera is level (the bottom of
the camera is parallel to the horizon) but tilting downwards
by an angle γ to capture the food on table. Under these
assumptions, we explicitly derive function g based on a pin-hole
camera model. Even with these simplifications, the derivation
is still complex. It is thus not included here. Interested readers
are referred to the Supplementary Material (attached). The
final relationship between camera-to-plate distance D and the
reciprocal of semimajor axis a of the observed ellipse is given by:

1

a
=

1

f

√

(

D

R

)2

− cos2γ , (2)

where R is the plate radius, γ is the tilting angle, and f is the
camera’s focal length. The reason that the semiminor axis b is
not included is also discussed in the Supplementary Material.
Note that the unit of a is millimeter in the image plane (i.e., the
sensor chip) within the camera. The conversion between the pixel
coordinates in the image and the real-world coordinates in the
image plane can be made through the intrinsic parameters of the
camera (such as focal length, pixel size) (16).

With Equation (2), we can find the relationship between 1/a
and D when R and γ are given. In practice, angle γ changes
during eating due to human body’s movement for reaching,
fetching and delivering the food to the mouth (exemplified in
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Figure 1B as snapshots of this process). Thus, γ is set to a
uniformly distributed random number between 20 and 70◦. By
simulation, a large number of pairs of (1/ai,Di), i = 1, 2, · · · ,N,
using Equation (2) can be generated for different R values (see
examples in Figure 2B). The red dots represent the data points
for R = 150mm, green dots for R = 100mm and blue dots for
R = 60mm. It can be seen that the relationship between 1/a
and D can be approximated by a linear function. By least-square
fitting of the simulated data points for each Rt according to the
following criterion

min
m,n

N
∑

i=1

(

Di −
m

ai
− n

)2

, (3)

the fitting parameters m, n corresponding to the given radius Rt
(t = 1, . . . ,T) can be obtained, as shown in Figure 2B. Here T is
the total number of simulated fitting lines. Then, we have

Di ≈
m

ai
+ n (i = 1, . . . ,N) . (4)

Figure 2C illustrates a case for T = 10 where each line represents
a different value of R. Thus, for each R value, the ellipse
parameter 1/a can be calculated from camera-to-plate distance
D. Conversely, if D is known, we can determine R. Although D
varies during the eating process as stated previously, the range
of D is known from pre-calibration. If the calibrated range of D
is [Dl,Du] and the extracted ellipse parameters from the image
sequence are {1/ai}, for i = 1, . . . ,N, the problem of estimating
the unknown plate size becomes finding the optimal line among
all the simulated (or pre-tabulated) lines that best-maps the set of
{1/ai} into the range of [Dl,Du].

Although, in this simplification, the requirement that the
optical axis of the camera goes through the plate center cannot
be met normally, our data indicate that the approximate linear
relationship between 1/a and camera-to-plate distance D still
hold for real image sequences obtained during eating events
(exemplified in Figure 2D). This demonstrates that the simplified
model is generally acceptable. In some cases, however, the
quasiperiodic body movement of the individual during eating
is interrupted because of certain activities related or unrelated
to the eating process (e.g., reaching a can of drink far away
from the individual or operating a TV remote control). These
activities result in sudden large changes in the positions and/or
orientations in the observed sequence of ellipses. These changes
do not fit our model but can be easily identified from the image
sequence and discarded as data outliers.

System Calibration and Plate Radius
Estimation
In the following, we will first describe the calibration procedure.
Then, we will provide two different estimates for the camera-
to-plate distance, one by analytic calculation and the other
by simulation. Finally, these two estimates are combined
to estimate the unknown plate radius based on the result
of calibration.

Calibration Procedure
A one-time calibration is required for each subject at each
eating location. This calibration is nothing more than having
a meal by the individual at the location with a circular plate
of known radius R. From the calibration image sequence, the
ellipse parameters are extracted from the ith image and thus
the camera-to-plate distance can be computed using Equation
(1) which specifies the relationship between Di and ellipse
parameters. Although the mathematical expression for Equation
(1) is complex, an analytic solution has been reported and
can be computed using ellipse parameters (10, 17). From the
whole image sequence, we can obtain a set of {Di} and a set
of ellipse parameters

{

xi, yi, ai, bi, θi
}

. Thus, the range of Di,
defined as [Dl,Du], can be estimated from the distribution of
{Di}. Due to the limited number of images in a sequence and
the noisy nature of the experimental data, the minimum and
maximum value of Di, i = 1, 2, · · · ,N, may not reflect the
actual distance range. We thus manipulate the histogram of {Di}

to obtain the distance range, which will be described in section
Data Analysis.

Camera-to-Plate Distance by Simulation
For a new image sequence including an unknown plate,
the ellipse parameters

(

xi, yi, ai, bi, θi
)

can also be extracted
for each image in the sequence. Then, we set R to be a
variable and equally sample this variable to form Rt , t =

1, 2, · · · ,T with a sufficient range and resolution (e.g., from
R1 = 30mm to RT = 165mm with an increment of 1mm).
Next, the fitting parameters m,n corresponding to the given
radius Rt (t = 1, 2, . . . ,T) are obtained using Equation
(3) as illustrated in Figure 2B. By substituting ai to the
simplified form of Equation (1), i.e., Equation (4), the camera-
to-plate distances Di, i = 1, 2, · · · ,N, for each Rt , t =

1, 2, · · · ,T, can be simulated (i.e., pre-tabulated), defined
as

{

D1
i

}

.

Calculated Camera-to-Plate Distance
Since the available data obtained from an eating event are
usually limited (N is usually <100), we calculate another set
of {Di} called

{

D2
i

}

for the same values of Rt , t = 1, 2, · · · ,T,
using Equation (1) although the calculation is complicated (10,
17). The main reason of adding this part of calculation is to
double the number of data points that can be used to make the
estimation more reliable.

Plate Size Estimation
After combining the two sets of {Di} as {Di} =

{

D1
i

}

∪
{

D2
i

}

for each R, the number of {Di} that fall into the calibrated
range [Dl,Du] can be counted. An index representing
how close each R is to the actual radius can be calculated
as P = |{Di ∈ [Dl,Du]}| / |{Di}| (see Figure 2F for
an example), where the vertical bars “|·|” represent
the number of elements in a set. Finally, we fit the
curve with a Gaussian function, and the estimated R
corresponds to this maximum point (i.e., the mean of the
Gaussian distribution).
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EXPERIMENTAL RESULTS

To validate our plate radius estimation method, we conducted
experiments in real-world settings. In this section, we describe
the details of our experiments, including human subjects,
experimental procedure, data analysis, and experimental results.

Human Subjects
With an approval by the Institutional Review Board at the
University of Pittsburgh, three human subjects participated in the
experimental study. In order to satisfy the assumptions presented
in section Model Simplification, these subjects were selected
based on the following criteria: (1) they were healthy with normal
body posture at both sitting and standing positions; (2) they
followed a regular daily routine during the study (e.g., traveling
was excluded); and (3) their dining locations were mostly fixed.

Experimental Procedure
The subjects were first trained for using the eButton to record
their dining events. They were instructed to comply with the
following requirements: (1) using circular plates as the food
container for serving; (2) wearing the eButton at a fixed chest
location; and (3) keeping the heights of dining table and chair
at each dining location unchanged. The subjects were instructed
to follow their regular dietary patterns without restrictions on
types of food and activities while sitting at the table (e.g., listening
to music, watching TV, making a phone call, or interacting with
people). No limitation was imposed on food types and utensils.

In each meal during the experiment, the subject wore the
eButton and had meals normally using the pre-measured plate.
The measured values were used either for the calibration process
or as the gold standard for assessing the accuracy of our plate
radius estimation algorithm.

Data Analysis
After the study, the subjects returned the eButton to our
laboratory where the recorded data were read from the microSD
card within the device. The following data analysis steps
were implemented.

Image Screening and Ellipse Extraction
All the images in each eating event were visually examined by
a researcher. The images that contained no plate or a plate
with most of its boundary missing were regarded as outliers
and excluded from data analysis. For each image, the contour
of the plate edge, observed as an ellipse in the image, was first
extracted automatically using an automatic algorithm developed
by us previously (18). In some cases, the automatic method failed
due to occlusion or shadowing. In these cases, we used interactive
method in which six points on the ellipse were manually selected.
In either case, the parameters of each ellipse (e.g., semimajor axis
a) were extracted by a least-squares fitting of the ellipse boundary.

Distance Range From Calibrated Image Sequence
For each image in the calibrated image sequence, all
{

xi, yi, ai, bi, θi
}

, i = 1, 2, · · · ,N, where N is the number
of images in an eating event after eliminating outliers, were
extracted. Then, distance Di corresponding to each image was

obtained using Equation (1) with the pre-measured R. The red
dots in Figures 2D,E represent the pairs of {1/ai,Di} calculated
from the calibrated image sequence. To determine the range
of {Di} reliably, the histogram of {Di} was calculated and the
values in the two extreme bins were removed if the frequency in
either bin was small (i.e., less than half of the average frequency).
After that, the maximum and minimum values of the remaining
Di were set to [Dl,Du]. Examples are shown in Figure 2E.

Simulation of the Relationship Between Ellipse

Parameter and Camera-to-Plate Distance
The simulation was described in section System Calibration
and Plate Radius Estimation. Simulated lines represent the
relationship between D and 1/a, as shown in Figure 2C. In our
experiment, the range of was chosen from 30 to 165mm with an
increment of 1 mm.

Plate Radius Estimation From the Image Sequence

With Unknown Plate Size
For each human subject at each dining location, we collected data
containing different eating events using plates of different radii.
We call this collection of data “eating episodes” in which each
episode is a particular event in the collected dataset. We took
each plate as the calibration/reference plate sequentially from
the dataset and the radii of the remaining plates were estimated
using the procedure described in section System Calibration and
Plate Radius Estimation. Our experiment resulted in M (M − 1)
estimates of plate radii for each human subject where M is the
number of plates utilized by the subject during the experiment.

Statistical Analysis
To observe the estimation error statistically, we calculated the
percentage error for the estimated plate radius in each eating
episode using different plates for calibration. Then, we calculated
several statistical measures, including the mean Percentage Error
(mPE), mean absolute Percentage Error (maPE), mean relative
Root Mean Square Error (mrRMSE), defined as follows:

Percentage Error (PE) =
Rk,j − Rj

Rj

mean Percentage Error (mPE) =
1

M (M − 1)

∑

k

∑

j 6=k

Rk,j − Rj

Rj

mean absolute Percentage Error (maPE)

=
1

M (M − 1)

∑

k

∑

j 6=k

∣

∣

∣

∣

Rk,j − Rj

Rj

∣

∣

∣

∣

mean relative Root Mean Square Error (mrRMSE)

=

√

√

√

√

1

M (M − 1)

∑

k

∑

j 6=k

(

Rk,j − Rj

Rj

)2
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where Rj is the true radius of the plate in the jth episode, Rk,j
is the estimated radius of plate in the jth eating episode using
the plate in the kth episode as the reference plate for calibration,
and M is the total number of episodes. Note that each error
calculation is represented in the percentage value.

Results
In our experiments, a total of 37 eating episodes (15 for Subject 1,
12 for Subject 2, and 10 for Subject 3) were recorded, and the plate
radius used in each episode was measured as the ground truth.
One episode of Subject 3 was removed from further analysis
because the number of images in this episode was insufficient.
Thus, 36 episodes were analyzed, and 15 different circular plates
with different radii and heights were used in this study. Typical
images are illustrated in Figure 3A, where one image is shown
for each episode. In these eating episodes, the foods consumed
included beef, rice, noodle, dissert, bread, Chinese pancake, pasta,
and different kinds of vegetables. Chopsticks, forks, knifes, and
spoons were used as utensils.

While our results for all subjects are summarized in Figure 3,
specific values of estimated plate radii for Subject 3 are provided
in Table 1 as an example. Total nine tests were conducted for this
subject. In this table, the values in each row (denoted by “Test
#”) represent estimated radii of different plates using the same
reference, while the values in each column (denoted by “Plate
#”) represent estimated radii of the same plate using different
references. The boldfaced values along the diagonal lines are true
radii, which are actually measured values. The calculated mPE,
maPE, mrRMSE using the formula in section Data Analysis for
each subject are listed in Figure 3B. A set of statistical measures
is provided in Figure 3C, including distributions of percentage
errors for all subjects, 25th percentiles of errors, 75th percentiles
of errors, and median errors.

In order to compare the accuracies of our automatic and
the traditional manual methods, we conducted an additional
experiment using a fiducial marker, which was a rectangular
checkerboard of 6 × 7 cm. Ten circular plates with different
radii and heights were utilized in this comparative experiment.
The range of the plate radii was identical to that in the
previous experiment. The checkerboard card was manually
placed next to each plate before taking pictures with an eButton.
Since the thickness of checkerboard was small, its surface can
be considered as the same surface of the table. Due to the
plate height, the plane of table surface estimated from the
checkerboard in the image was different from the plane of the
plate border, causing a small amount of error in plate radius
estimation. For a fair comparison with our method, we assumed
that the plate height was standard, which was the height of the
reference plate, the same as the assumption made in our method.
Under this assumption, each of the ten plates was taken as the
reference plate and the remaining nine plates were estimated.
Thus, total 90 plate radius estimates were obtained. In each
estimate, five images in different viewing distances and angles
were processed, and the five results were averaged. Example
pictures, the data processing algorithm, estimated values and
estimation errors are included in the Supplementary Material.
Finally, the estimation errors were studied using the same

statistical measures (i.e., mPE, maPE, mrRMSE, and boxplot),
as in the previous experiment. The results of this comparative
experiment are summarized in Figures 3B,C. It can be observed
that our automatic method has a larger error than the manual
method using a fiducial marker (10.73% vs. 6.68% in terms of
the mean absolute percentage error). This is not surprising since
the fiducial marker provides a scale reference directly in the
image. Although a larger error is involved, the new method has
a distinctive advantage of eliminating the manual procedure and
automatically generating the scale reference.

DISCUSSIONS

In this work, we develop a new method to eliminate the
requirement for a fiducial marker in egocentric image based
dietary assessment. We take advantage of the fixed environment
at the dining location to model the eating behavior of an
individual. Our study yields a new method to estimate the dining
plate radius automatically. If there is only one plate of food in
the image, the plate radius (or diameter) is sufficient to serve
as the scale reference. In cases where the captured image shows
multiple foods on the table, we need to go only one step further.
Using this radius and the orientation information obtained from
the observed elliptic shape of the plate, a plane equation for the
tabletop can be determined which serves as the desired scale
reference. This plane equation is easy to obtain because the ellipse
in the image provides the orientation (or the norm vector) of
the plate, the circle of the plate is in or close to the plane of the
tabletop, and the radius provides the scale in a real-world unit
(e.g., mm). Analogous to a map where the sizes of all regions
in the map can be estimated using the scale bar, the sizes or
volumes of any foods (within containers of any forms or shapes
or even without containers) or beverages on the table can be
estimated using the scale reference. Compared with the existing
methods using additional sensors and laser emitters, our method
requires no added cost. A simple, once-for-all calibration is the
only requirement to implement our method.

Our method is built upon a number of assumptions: (1) it is
applicable only to each individual, (2) the heights of the dining
table and chair at the dining location are invariant, (3) the device-
wearing position on the body is fixed, and (4) the range of
body rotation during normal eating is invariant. Clearly, these
are strong assumptions which may not be met exactly in a real-
world setting. However, making such assumptions is a key step to
simplify the complex six-variable relationship (Equation 1) into
a single-variable linear equation (Equation 4). Our experimental
results have indicated that, even if the assumptions are not met
completely, the mean absolute percentage error of plate radius
estimation is <11%. Nevertheless, attention should be paid to
the validity of the data as we did in data analysis. It is strongly
recommended to exclude the images with a considerable portion
of the plate shifted out of the image frame. These cases can be
easily identified from the image data.

In our method, estimating the range of the distance from
the calibrated image sequence is an important step. However,
due to the limited data points in an image sequence (e.g., the
eButton acquires one image in every 4–6 s, preset by the user), the
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FIGURE 3 | (A) Illustrations of one typical image for each episode; (B) Calculated mPE, maPE, and mrRMSE for each subject and the fiducial marker method; (C)

Box-plot of percentage errors for each subject with extreme percentage errors, 25th percentiles of errors, median, and 75th percentiles of errors marked for the three

subjects and the fiducial marker method.

estimation of the distance range may not be sufficiently accurate.
Increasing the frame rate of the wearable camera to obtain more
images may improve the estimation.

We would also like to point out two main reasons of using a
circular plate to obtain the scale reference. First, it is a commonly
used utensil in most parts of the world. Second, if the plate is
shallow, its top surface is close and parallel to the table surface.
However, with exception of the disposable paper plate, most
plates have significant heights. In our algorithm, we implicitly
assume that the height of the reference plate is the height of
the unknown plate, and this “standard height” is used as an
offset to be considered in the plane equation for the tabletop.
Nevertheless, this method involves a certain error. In some

cultures, bowls are used more commonly than plates. We point
out that our method can still be used by changing the reference
plate to the reference bowl and use its height as the standard
height, with some tolerance of the height-related error. Finally,
since our method relies only one circular plate to estimate the
scale reference, in our experiments, each image contains only
a single plate. However, our method is applicable to images
containing multiple foods in any forms of containers as long as
one of them is a circular plate (or bowl if the reference is a bowl).

The result of the comparative experiment indicates that the
manual fiducial marker method is more accurate than our
automatic method. This is understandable because the marker
provides a scale reference directly while the automatic method
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TABLE 1 | Comparison of measured (ground truth) and estimated plate radii for Subject 3.

Plate#1 Plate#2 Plate#3 Plate#4 Plate#5 Plate#6 Plate#7 Plate#8 Plate#9

Test#1 130 131 107 120 97 100 133 104 98

Test#2 130 125 103 115 93 96 128 99 95

Test#3 121 117 95 108 88 90 120 93 89

Test#4 148 146 118 127 107 110 147 114 109

Test#5 141 135 111 124 100 103 139 107 102

Test#6 154 153 124 141 113 112 154 121 115

Test#7 139 135 109 123 100 102 130 106 101

Test#8 132 128 105 118 95 98 131 100 97

Test#9 130 126 103 116 94 96 129 100 95

The numbers in each row (Test #) represent estimated radii of different plates using the same reference, while the numbers in each column (Plate #) represent estimated radii of the

same plate using different references. The boldfaced numbers on the diagonal lines are true radii (actually measured values).

does not have such information. However, in the fiducial marker
method, a checkerboard card must be carried by the individual,
placed on the tabletop next to the food before eating, and
retrieved after eating for the next use. These procedures are
unwelcome and can be forgotten easily.

LIMITATIONS AND FUTURE WORK

Our method provides an automatic way to estimate the size of
a circular plate. Therefore, as long as there is a plate on the
table and the assumptions about the fixed eating environment
are satisfied, we will be able to obtain a scale reference for all
items on the table based on a one-time calibration procedure. If
there are bowls, glasses/cups and/or snacks placed on the same
table, in theory, their volumes can be estimated based on the scale
reference that our method provides. However, the estimation is
subject to various constraints, assumptions and, in some cases,
availability of a certain set of knowledge (e.g., the shape of a
bowl or a cup). In addition, the problem of 3D food volume
estimation from a single or a series of 2D images has not yet
been fully solved, and there is a strong demand to develop new
computational methods using advanced technologies, such as
artificial intelligence (AI). Even though this volume estimation
problem is fascinating, its discussion would be lengthy, beyond
the scope of this paper which is focused solely on automatic plate
radius estimation to generate a scale reference. We emphasize
again that this reference is a fundamental requirement regardless
the technologies to be utilized.

Our method is currently limited to the dining scenarios where
a circular plate or bowl is used as a food container. For the
cases where only non-circular plates or bowls are present in the
image, we have not found an effective method to estimate their
parameters without pre-measurements. These types of containers
are still the subjects of further investigation.

CONCLUSION

We have developed a new method to estimate the radius of
a dining plate in a sequence of egocentric images acquired
by a wearable device thus a scale reference can be obtained
automatically. This method is based on mathematical analysis of
the eating behavior of an individual and the invariance of the

eating environment (i.e., the heights of the table and chair are
fixed at each dining location). Unlike the traditional methods
that use a fiducial marker or require measurement of plate radius
for every meal, our method requires only a once-for-all radius
measurement of a single plate. After this calibration step, the
radius of arbitrary plate can be estimated. Due to the elimination
of a fiducial marker, our method greatly reduces the research
burden for research participants, making the dietary assessment
passive and objective.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of Pittsburgh Institutional Review
Board. The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

MS, ZW, and WJ were responsible for concept formulation and
methodological design. ZW, YR, SC, and WJ conducted data
collection and image processing. WJ, YR, ZW, Z-HM, and MS
contributed to the algorithm for data analysis, final drafting, and
editing of the manuscript. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was supported by the National Institutes of Health
grant No. R56DK113819 and the Bill & Melinda Gates
Foundation Contract IDOPP1171395.

ACKNOWLEDGMENTS

We also appreciate the support from all research participants.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnut.2020.
519444/full#supplementary-material

Frontiers in Nutrition | www.frontiersin.org 9 January 2021 | Volume 7 | Article 519444

https://www.frontiersin.org/articles/10.3389/fnut.2020.519444/full#supplementary-material
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Jia et al. Dining Plate Size Estimation

REFERENCES

1. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries,

1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

Lancet. (2019) 393:1958–72. doi: 10.1016/S0140-6736(19)30041-8

2. Thompson FE, Subar AF, (eds.). Chapter 1 Dietary Assessment Methodology.

San Diego, CA: Academic Press (2001).

3. Gemming L, Utter J, Ni Mhurchu C. Image-assisted dietary assessment:

a systematic review of the evidence. J Acad Nutr Diet. (2015) 115:64–77.

doi: 10.1016/j.jand.2014.09.015

4. Min W, Jiang S, Liu L, Rui Y, Jain R. A survey on food computing. ACM

Comput Surv. (2018) 52:5. doi: 10.1145/3329168

5. Boushey CJ, Kerr DA, Wright J, Lutes KD, Ebert DS, Delp EJ. Use of

technology in children’s dietary assessment. Eur J Clin Nutr. (2009) 63(Suppl.

1):S50–7. doi: 10.1038/ejcn.2008.65

6. SunM, Burke LE, Mao ZH, Chen Y, Chen HC, Bai Y, et al. eButton: a wearable

computer for health monitoring and personal assistance. In: Proceeding 51st

Annual Design Automation Conference. San Francisco, CA: June (2014).

7. Sun M, Burke LE, Baranowski T, Fernstrom JD, Zhang H, Chen HC,

et al. An exploratory study on a chest-worn computer for evaluation

of diet, physical activity and lifestyle. J Healthc Eng. (2015) 6:1–22.

doi: 10.1260/2040-2295.6.1.1

8. Jia W, Li Y, Qu R, Baranowski T, Burke LE, Zhang H, et al. Automatic food

detection in egocentric images using artificial intelligence technology. Public

Health Nutr. (2018) 22:1168–79. doi: 10.1017/S1368980018000538

9. Pendergast FJ, Ridgers ND, Worsley A, McNaughton SA. Evaluation

of a smartphone food diary application using objectively measured

energy expenditure. Int J Behav Nutr Phys Act. (2017) 14:30.

doi: 10.1186/s12966-017-0488-9

10. Jia W, Yue Y, Fernstrom JD, Yao N, Sclabassi RJ, FernstromMH, et al. Image-

based estimation of food volume using circular referents in dietary assessment.

J Food Eng. (2012) 109:76–86. doi: 10.1016/j.jfoodeng.2011.09.031

11. Jia W, Chen HC, Yue Y, Li Z, Fernstrom J, Bai Y, et al. Accuracy of

food portion size estimation from digital pictures acquired by a chest-worn

camera. Public Health Nutr. (2014) 17:1671–81. doi: 10.1017/S13689800130

03236

12. Subhi MA, Ali SHM, Ismail AG, Othman M. Food volume estimation

based on stereo image analysis. IEEE Instrum Meas Mag. (2018) 21:36–43.

doi: 10.1109/MIM.2018.8573592

13. Lo FP, Sun Y, Qiu J, Lo B. Food volume estimation based on deep

learning view synthesis from a single depth map. Nutrients. (2018) 10:2005.

doi: 10.3390/nu10122005

14. Yao N. (2010). Food Dimension Estimation From a Single Image Using

Structured Lights. (Ph.D. thesis). University of Pittsburgh, Pittsburgh, PA,

United States.

15. Makhsous S, Mohammad HM, Schenk JM, Mamishev AV, Kristal AR.

A novel mobile structured light system in food 3D reconstruction

and volume estimation. Sensors. (2019) 19:564. doi: 10.3390/s190

30564

16. Ma Y, Soatto S, Košecká J, Sastry SS. An invitation to 3-D vision : from images

to geometric models. In: Antman SS, Marsden JE, Sirovich L, Wiggins S,

editors. Interdisciplinary Applied Mathematics. New York: Springer Science

and Business Media, LLC (2004).

17. Safaee-Rad R, Tchoukanov I, Smith KC, Benhabib B. Three-dimensional

location estimation of circular features for machine vision. IEEE Trans Robot

Automat. (1992) 8:624–40. doi: 10.1109/70.163786

18. Nie J, Wei Z, Jia W, Li L, Fernstrom JD, Sclabassi RJ, et al. Automatic

detection of dining plates for image-based dietary evaluation. In: Proceeding

32nd Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. Buenos Aires (2010). p. 4312–5.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Jia, Wu, Ren, Cao, Mao and Sun. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Nutrition | www.frontiersin.org 10 January 2021 | Volume 7 | Article 519444

https://doi.org/10.1016/S0140-6736(19)30041-8
https://doi.org/10.1016/j.jand.2014.09.015
https://doi.org/10.1145/3329168
https://doi.org/10.1038/ejcn.2008.65
https://doi.org/10.1260/2040-2295.6.1.1
https://doi.org/10.1017/S1368980018000538
https://doi.org/10.1186/s12966-017-0488-9
https://doi.org/10.1016/j.jfoodeng.2011.09.031
https://doi.org/10.1017/S1368980013003236
https://doi.org/10.1109/MIM.2018.8573592
https://doi.org/10.3390/nu10122005
https://doi.org/10.3390/s19030564
https://doi.org/10.1109/70.163786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles

	Estimating Dining Plate Size From an Egocentric Image Sequence Without a Fiducial Marker
	Introduction
	Methods
	System Design Concepts
	Modeling Camera-to-Plate Distance
	Model Simplification
	System Calibration and Plate Radius Estimation
	Calibration Procedure
	Camera-to-Plate Distance by Simulation
	Calculated Camera-to-Plate Distance
	Plate Size Estimation


	Experimental Results
	Human Subjects
	Experimental Procedure
	Data Analysis
	Image Screening and Ellipse Extraction
	Distance Range From Calibrated Image Sequence
	Simulation of the Relationship Between Ellipse Parameter and Camera-to-Plate Distance
	Plate Radius Estimation From the Image Sequence With Unknown Plate Size
	Statistical Analysis

	Results

	Discussions
	Limitations and Future Work
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


