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Abstract
Recent advances in sequencing technologies have enabled the production of massive

amounts of data on somatic mutations from cancer genomes. These data have led to the

detection of characteristic patterns of somatic mutations or “mutation signatures” at an

unprecedented resolution, with the potential for new insights into the causes and mecha-

nisms of tumorigenesis. Here we present new methods for modelling, identifying and visual-

izing such mutation signatures. Our methods greatly simplify mutation signature models

compared with existing approaches, reducing the number of parameters by orders of mag-

nitude even while increasing the contextual factors (e.g. the number of flanking bases) that

are accounted for. This improves both sensitivity and robustness of inferred signatures. We

also provide a new intuitive way to visualize the signatures, analogous to the use of

sequence logos to visualize transcription factor binding sites. We illustrate our new method

on somatic mutation data from urothelial carcinoma of the upper urinary tract, and a larger

dataset from 30 diverse cancer types. The results illustrate several important features of our

methods, including the ability of our new visualization tool to clearly highlight the key fea-

tures of each signature, the improved robustness of signature inferences from small sample

sizes, and more detailed inference of signature characteristics such as strand biases and

sequence context effects at the base two positions 50 to the mutated site. The overall frame-

work of our work is based on probabilistic models that are closely connected with “mixed-

membership models” which are widely used in population genetic admixture analysis, and

in machine learning for document clustering. We argue that recognizing these relationships

should help improve understanding of mutation signature extraction problems, and sug-

gests ways to further improve the statistical methods. Our methods are implemented in an

R package pmsignature (https://github.com/friend1ws/pmsignature) and a web application

available at https://friend1ws.shinyapps.io/pmsignature_shiny/.
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Author Summary

Somatic (non-inherited) mutations are acquired throughout our lives in cells throughout
our body. These mutations can be caused, for example, by DNA replication errors or expo-
sure to environmental mutagens such as tobacco smoke. Some of these mutations can lead
to cancer. Different cancers, and even different instances of the same cancer, can show dif-
ferent distinctive patterns of somatic mutations. These distinctive patterns have become
known as “mutation signatures”. For example, C> Amutations are frequent in lung can-
ers whereas C> T and CC> TT mutations are frequent in skin cancers. Each mutation
signature may be associated with a specific kind of carcinogen, such as tobacco smoke or
ultraviolet light. Identifying mutation signatures therefore has the potential to identify
new carcinogens, and yield new insights into the mechanisms and causes of cancer, In this
paper, we introduce new statistical tools for tackling this important problem. These tools
provide more robust and interpretable mutation signatures compared to previous
approaches, as we demonstrate by applying them to large-scale cancer genomic data.

Introduction
Cancer is a genomic disease. As we lead a life, DNA within our cells acquires random somatic
mutations, mainly caused by DNA replication errors and exposures to mutagens such as chem-
ical substances, radioactivities and inflammatory reactions. Although most mutations are
harmless (called “passenger mutations”), a small portions of mutations at some specific sites in
cancer genes (“driver mutations”) affect cell growth, causing autonomous proliferation, tissue
invasion, and contributing to oncogenesis [1]. Cancer genome studies typically focus on identi-
fying driver mutations, to help understand the mechanism of cancer development. However,
passenger mutations can also yield important information, because they often show patterns
(“mutation signatures”) which can provide insights into the forces that cause somatic muta-
tions. For example, classical studies of mutation patterns revealed that C> Amutations are
abundant in lung cancers in patients with smoking history, and these are caused by benzo(a)
pyrene included in tobacco smoke [2]. Also, C> T and CC> TT mutations are abundant in
ultraviolet-light-associated skin cancers, and these are caused by pyrimidine dimers as a result
of ultraviolet radiation [3].

The potential for classical studies to yield insights into somatic mutation processes was lim-
ited in several ways. Due to limited sequencing throughput, most classical studies focused on a
few cancer genes, such as TP53, where high mutation frequencies could be expected. They then
contrasted mutation pattern profiles among different cancer types, aggregating mutations
across multiple individuals within the same cancer type to yield sufficient mutations for analy-
sis. However, since many of the mutations in cancer genes are driver mutations causing cell
proliferation, the resultant mutation profiles are a biased representation of the underlying
mutation process. Furthermore, the paucity of mutation data made it effectively impossible to
assess variation in mutation patterns among individuals.

Recent advances in high-throughput sequencing provide new opportunities to investigate
sample-by-sample mutation signatures in an unbiased way using genome-wide somatic muta-
tion data. For example, a large-scale study using 21 breast cancer samples identified an associa-
tion of C> [AGT] mutations at TpC sites, which was later proved to be caused by APOBEC
protein family [4–6], and a novel phenomenon called kataegis [7]. Moreover, a landmark study
of 7,034 primary cancer samples, representing 30 different cancer classes, has provided the first
large-scale overview of mutation signatures across a large number of cancer types [8]. This has
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lead to great hopes that detection of novel mutation signatures and associated mutagens can
lead to identification of novel mutagens and prevention of cancer.

To make the most of these opportunities requires the development of efficient and effective
statistical methods for analyzing mutation signatures in vast amounts of somatic mutation
data. Current statistical approaches [9, 10] are excellent starting points, and have helped gen-
erate the new insights noted above. However, we argue here that these existing methods have
two important limitations, caused by the fact that they use an unconstrained model for each
“mutation signature”. First, although using an unconstrained model might appear to be a
good thing in terms of flexibility, in practice it can actually reduce flexibility, because the price
of using an unconstrained model is that one must limit the domain of mutation signatures
considered. For example, most recent analyses of mutation signatures consider only the
immediate flanking 50 and 30 bases of each substitution to be part of the signature, even though
it is known that more distal bases—and particularly the next flanking base on each side—can
contain important contextual information [11]. These recent analyses take this approach
because, in the unconstrained model, incorporating the more distal bases into the signature
very substantially increases the number of parameters, making estimated mutation signatures
unstable. Secondly, and just as important, the unconstrained model means that each signature
is a probability distribution in a high-dimensional parameter space, which can make signa-
tures difficult to interpret.

In this paper, we present a novel probabilistic approach to mutation signature modelling
that addresses these limitations. In brief, we first simplify the modelling of mutation signatures
by decomposing them into separate “mutation features”. For example, the substitution type is
one feature; flanking bases are each another feature. We then exploit this decomposition by
using a probabilistic model for signatures that assumes independence across features. This
approach substantially reduces the number of parameters associated with each signature,
greatly facilitating the incorporation of additional relevant sequence context. For example, our
approach can incorporate the two bases 30 and 50 of the substitution and transcription strand
biases using only 18 parameters per signature, compared with 3,071 parameters per signature
with current approaches. We demonstrate the benefits of this simplification in data analyses.
These benefits include more stable estimation of signatures from smaller samples, refinement
of the detail and resolution of many mutation signatures, and possibly identification of novel
signatures.

Assuming independence among features in a signature may initially seem unnatural. How-
ever, its use here is analogous to “position weight matrix models” which have been highly suc-
cessful for modelling transcription factor binding motifs. Indeed, an important second
contribution of our paper is to provide intuitive visual representations for mutation signatures,
analogous to the “sequence logos” used for visualizing binding motifs. Finally, we also highlight
the close connection between mutation signature models and the “mixed-membership mod-
els”, also known as “admixture models” [12] or “Latent Dirichlet Allocation”models [13] that
are widely used in population genetics and document clustering applications. These connec-
tions should be helpful for future elaboration of computational and statistical methods for can-
cer mutation signature detection.

Software implementing the proposed methods is available in an R package pmsignature
(probabilisticmutation signature), at https://github.com/friend1ws/pmsignature. The core
part of the estimation process is implemented in C++ by way of the Rcpp package [14], which
enables handling millions of somatic mutations from thousands of cancer genomes using a
standard desktop computer. In addition, a web-based application of our method is available at
https://friend1ws.shinyapps.io/pmsignature_shiny/.

A Simple Model-Based Approach to Cancer Mutation Signatures

PLOS Genetics | DOI:10.1371/journal.pgen.1005657 December 2, 2015 3 / 21

https://github.com/friend1ws/pmsignature
https://friend1ws.shinyapps.io/pmsignature_shiny/


Result

Newmodel for mutation signatures
The term “mutation signature” is used to describe a characteristic mutational pattern observed
in cancer genomes. Such patterns are often related to carcinogens (e.g., frequent C> A muta-
tions in lung cancers with smoking histories).

What constitutes a mutational pattern varies among papers. The simplest approach is to
consider 6 possible mutation patterns, corresponding to 6 possible substitution patterns (C>A,
C>G, C>T, T>A, T>C, T>G; the original base is often fixed to C or T to remove redundancy
of taking complementary strands). However, in practice we know that DNA context of a substi-
tution is often important, and so it is common to go the next level of complexity, and include
the immediate 50 and 30 flanking bases in the mutation pattern. This results in 96 (6 × 4 × 4)
patterns. Further incorporating the strand (plus or minus) of each substitution extends this to
192 patterns [8, 9].

Mathematically, mutation signatures have previously been characterized using an uncon-
strained distribution over mutation patterns [9, 10]. Thus, if the number of mutation patterns
considered isM then each mutation signature is characterized by a probability vector of length
M (which must sum to 1, soM − 1 parameters). A problem with this approach is that it
requires a large number of parameters per mutation signature. As noted above, even account-
ing only for immediately flanking bases givesM = 96. Furthermore,M increases exponentially
if we try to account for additional context: to take account of up to n bases 50 and 30 to the
mutated site (henceforth referred to as the −n position and the +n position, respectively) gives
M = 6 × 42n. Having a large number of parameters per signature causes two important prob-
lems: i) estimates of signature parameters can become statistically unstable; ii) signatures can
become difficult to interpret.

The first contribution of this paper is to suggest a more parsimonious approach to model-
ling mutation signatures, with the benefit of producing both more stable estimates and more
easily interpretable signatures. In brief, we substantially reduce the number of parameters per
signature by breaking each mutation pattern into “features”, and assuming independence
across mutation features. For example, consider the case where a mutation pattern is defined
by the substitution and its two flanking bases. We break this into three features (substitution, 30

base, 50 base), and characterize each mutation signature by a probability distribution for each
feature (which, by our independence assumption, are multiplied together to define a distribu-
tion on mutation patterns). Since the number of possible values for each feature is 6, 4, and 4
respectively this requires 5 + 3 + 3 = 11 parameters instead of 96 − 1 = 95 parameters. Further-
more, extending this model to account for ±n neighboring bases requires only 5 + 6n parame-
ters instead of 6 × 42n − 1. For example, considering ±2 positions requires 17 parameters
instead of 1,535. Finally, incorporating transcription strand as an additional feature adds just
one parameter, instead of doubling the number of parameters.

Since the aim of a mutation signature is, in some ways, to capture dependencies among fea-
tures, the independence assumption may seem counter-intuitive. However, the idea is exactly
analogous to the use of a “position weight matrix” (PWM) to represent motifs in sequence
data. In this analogy, a motif is analogous to a mutation signature, and each location in the
motif is analogous to a “feature”. Just as we use a probability vector for each feature, a PWM
defines a probability vector for each location in a motif, and these probabilities at each location
can be multiplied together to yield a probability distribution on sequences. Even though a
PWM cannot capture complex higher-order dependencies, some of which likely do exist in
practice, it has been a highly successful tool for motif analysis—likely because it can capture
the most important characteristics of transcription factor binding sites (that some locations
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will show strong preference for a particular base, whereas others will not), and also because it
can be represented in an easily interpretable way via sequencing logos [15]. For similar reasons
—in addition to the empirical demonstrations we present later—we believe our mutation sig-
nature representation will prove useful for mutation signature analysis.

Fig 1 illustrates the way that our new representation of signatures can simply capture a pre-
viously identified signature [9, 16] and provides an easily interpretable visualization of the sig-
nature that is analogous to sequencing logos [15]. We particularly note how the key elements
of this mutation signature are more immediately visually apparent than with visualizations of
the full vector of probabilities used by existing approaches.

Fig 1. Examples of visualizations and parameter values for the mutation signatures of the unconstrained (full) model and our independent model,
where substitution patterns, two 50 and 30 bases and transcription strand direction are considered asmutation features. (A) The barplots are divided
by 6 substitution patterns and transcription strand direction. In each division, 256 bars show joint probabilities of up to two base 50 and 30 bases (ApApNpApA,
ApApNpApC, ApApNpApG, ApApNpApT, � � �, TpTpNpTpT). (B, C) An example mutation signature representation and parameter values from our
independent model, where mutation features (substitution patterns, two 50 and 30 bases and strand direction) are assumed to be independent (L = 6,M = (6,
4, 4, 4, 4, 2)). In the bottom five rectangles, the width of each box represents the frequencies of bases (A, C, G and T) at the substitution and flanking site. To
highlight the most informative flanking sites, the heights of flanking site boxes are scaled by 1þ 0:5�logPn¼A;C;G;T f

2
n , where fn is the parameter for each base,

which can be interpreted as 1 − 0.5 × Rényi entropy [17]. This is analogous to the information content scaling used in sequencing logos. In the top rectangle,
the height of each box represents the conditional frequencies of mutated bases for each original base (C and T). In the upper right, the height of the
+ box represents the frequencies of mutations in the coding strand (the plus strand, the sense strand or the untranscribed strand in other words) whose
nucleotide sequences directly corresponds to mRNA, whereas the height of − box represents those in the template strand (the minus strand, the antisense
strand, the transcribed strand or the noncoding strand in other words) whose sequences are copied during the synthesis of mRNA.

doi:10.1371/journal.pgen.1005657.g001
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An overview of mathematical specification of mutation signatures and
the generative model of somatic mutations
Suppose each somatic mutation has Lmutation features,m = (m1,m2, � � �,mL), where eachml

can takeMl discrete values. Also, letM: = (M1, � � �,ML). For example, when taking account of 6
substitution patterns and ±2 flanking sites,M = (6, 4, 4, 4, 4). See S1 Table for other examples.

Suppose we have observed mutations in I sampled cancer genomes, and let Ji denote the
number of observed mutations in the i-th cancer genome. Further, let xi, j = (xi, j, 1, � � �, xi, j, L),
(i = 1, � � �, I, j = 1, � � �, Ji) denote the observed mutation feature vector for the j-th mutation of i-
th cancer genome, where xi, j, l 2 {1, � � �,Ml}.

Our model assumes that each mutation arose from one of K possible mutation signatures.
Each cancer sample has its own characteristic proportion of mutations of each signature type
(which might depend on lifestyle, genetic differences, etc.).g We let qi, k denote the proportion

of signature k in sample i, so qi = (qi, 1, qi, 2, � � �, qi, K)2ΔK, (i = 1, � � �, I) where DS ¼
fðt1; � � � ; tSÞ : ts � 0 8s;PS

s¼1 ts ¼ 1g denotes the S-dimensional simplex of non-negative vec-
tors summing to 1. Further, each mutation signature is characterized by parameter vectors Fk:
= (fk, 1, . . ., fk, L), where fk, l is a probability vector for the l-th feature in the k-th signature. That
is, fk, l = (fk, l, 1, . . ., fk, l, Ml) 2 ΔMl.

Our generative model for the observed mutations {xi, j} in each cancer sample can now be
described as a two-step process.

1. Generate zi, j *Multinomial(qm), where zi, j 2 {1, � � �, K} denotes the (unobserved) underly-
ing mutation signature that caused the j-th mutation in the i-th sample.

2. For each l(= 1, � � �, L), generate xi, j, l*Multinomial(fzi, j, l). Thus,

Pr ðxi;j;l ¼ mjzi;j ¼ kÞ ¼ fk;l;m ð1Þ

This generative model is summarized in Fig 2. This model is essentially a “mixed-member-
ship model”, also known as an “admixture model” [12] or “Latent Dirichlet Allocation” [13].
For example, the membership proportions for each sample are analogous to admixture propor-
tions in an admixture model; the mutation signatures are analogous to populations, and the
mutation signature-specific parameters are analogous to population-specific allele frequencies.

The key parameters in this model are the membership proportions for each sample, qi, and
the mutation signature parameters, Fk. We estimate these parameters by maximizing likelihood
using an EM algorithm. A simulation study demonstrates that the estimation method can
reproduce the mutation signature very accurately provided enough mutations and samples are
available (see S1 Text). See Methods for more detailed models, parameter estimation, further
discussion on relationships with mixed membership models, how to select K, etc.

The intrinsic composition of genome sequence, if unaccounted for, can undesirably influ-
ence estimated mutation signatures. For example, since the di-nucleotide CpG is underrepre-
sented in most genomic regions (other than promoters), a signature with substitutions from a
C base can have weaker signals of G base at the +1 position. In previous work [10], this back-
ground problem was dealt by explicitly incorporating “mutation opportunity” coefficients into
the model. Here, to reduce the influences of intrinsic sequence composition on our signature

estimates, we introduce a special “background signature” fF0g 2 DM1�����ML , which is designed
to capture biases in intrinsic genome sequence composition and is calculated from the compo-
sition of consecutive nucleotides of the human genome sequence (See Methods for the detail).
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Robustness experiments using cancer genomes from urothelial
carcinoma of the upper urinary tract
Here we compare our new “independent model” for mutation signatures, which assumes inde-
pendence among mutation features, with the “full model”, which corresponds to existing
approaches. We compare mutation signatures obtained by the two approaches and investigate
the robustness of each approach by down-sampling experiments.

The data consist of 14,717 somatic substitutions collected from a study of 26 urothelial car-
cinomas of the upper urinary tract (UCUT) [18]. The original study identified a novel muta-
tion signature in these data: T> A substitutions at CpTpG sites with a strong transcription
strand specificity caused by aristolochic acids (AA).

We consider a mutation pattern to consist of the substitution pattern, the ±2 flanking bases,
and the transcription strand direction. Thus each signature is characterized by 18 parameters
in our independent model, and by 3,071 parameters in the full model. After analyzing the data
with various numbers of mutation signatures K, we selected K = 3 signatures for these analyses
(see S2 Text).

The inferred APOBEC signature under the independent model shows a clear depletion of G
base at the −2 position, which is consistent with the previous study [9] and results in the next

Fig 2. An overview of the generative model of somatic mutations proposed in this paper. Suppose there are three types of mutation sources (mutation
signatures) such as ultraviolet, tobacco smoking chemicals and transcription coupled repairs. Each cancer genome has ratios showing which types of
mutation sources are contributing to its mutations (membership parameters). The generative model of the pattern of each mutation is: first, one of the
mutation signatures is chosen according to the membership parameter. Second, each mutation feature such as substitution patterns and flanking bases is
generated by the corresponding multinomial distributions for the selected mutation signature.

doi:10.1371/journal.pgen.1005657.g002
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subsection (Fig 3A and 3B). In contrast, for the full model, this tendency is rather mild (Figs
3C, 3D, and S1). The inferred AA mutation signature has no clear characteristics at the −2
position. These results suggest that our independent model has the potential to identify signa-
tures in more detail and with less data than existing approaches based on the full model.

Fig 3. Themutation signatures for the UCUT data, and the results of down-sampling experiments. 3,072 elements in the full model mutation
signatures were shown divided by 6 substitution patterns and strand directions. (A, B) APOBEC and AA signature for the independent model. (C, D)
APOBEC and AA signature for the full model. (E, F) APOBEC and AA signature stability (the mean cosine similarity for each down-sampling ratio).

doi:10.1371/journal.pgen.1005657.g003
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To investigate this further we performed down-sampling experiments. Using the mutation
signatures obtained using all 14,717 substitutions as a gold standard, we assessed performance
of the proposed method on down-sampled data consisting of r% of the original data, where r =
(1%, 2.5%, 5%, 10%, 25%, 50%). To measure robustness we used the cosine similarity on the
full dimensional vector space, which allows comparison between the full model and the inde-
pendent model. We repeated each down-sampling experiment 100 times for each model.

The results (Fig 3E and 3F) confirm that the results of the independent model are substan-
tially more robust to reductions in data size than the full model. Indeed, mutation signatures
inferred using the independent model with only 10% of the data remain highly similar to the
signatures inferred from the full data; by comparison the full model shows a much larger drop-
off in similarity, especially in the APOBEC signature where even using 50% of the data gives a
substantial drop-off in similarity. Both methods found the AA signature easier to recover than
the APOBEC signature. We believe that this is because the number of T> A substitutions at
GpTpC sites are far more frequent in this dataset.

Application to somatic mutation data of 30 cancer types
To provide a more comprehensive practical illustration of our method, we applied it to somatic
mutation data from 30 cancer types [8]. We applied the method to each cancer type separately
to assess similarity of estimated signatures across cancer types. For each cancer type we selected
the number of signatures K by fitting the model with increasing K and examining the log-likeli-
hood, bootstrap errors, and correlation of membership parameters. The selected values of K
are given in S2 Table. Also, we simply removed somatic mutations located in an intergenic
region to include transcription strand biases as mutation features. Finally, we merged similar
mutation signatures across different cancer types (when their Frobenius distances were< 0.6,

where the Frobenius distance between two matrices (F1, F2) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr ððF1 � F2ÞðF1 � F2ÞtÞ

q

(Tr means the trace of square matrices).
Figs 4 and 5 summarize the results. In total, we identified 27 mutation signatures. Many of

these signatures show reassuring similarities with signatures identified in previous studies.
However signatures from our independence model, because of its ability to effectively and par-
simoniously deal with both ±2 flanking base context and strand bias, are often more refined,
highlighting additional details or features not previously evident. By comparing the composi-
tion of nucleotides and cancer types exhibiting the signatures with results of previous studies,
we were able to associate many of the detected signatures with known mutational processes. In
addition, as we reviewed these signatures and compared them with previous work, we noticed
connections that, while not directly related to our new model, appear novel and noteworthy.
The remainder of this section provides a comprehensive discussion of these findings.

Signatures 1 and 8 (C> A at TpCpT and C> T at TpCpG, respectively) observed in colo-
rectal and uterine cancers appear likely to be associated with deregulated activity of the error-
prone polymerase Pol �. In previous analyses of these data [8], the signature for Pol � dysfunc-
tion was represented by a single signature (their “signature 10”, see S2 Fig). In contrast our new
approach uses two signatures. Since these signatures are highly correlated, and appear con-
nected by a single biological mechanism, we certainly do not argue that inferring them as a sin-
gle signature is “wrong”. However, splitting them into two signatures does help highlight
certain features. Specifically, signature 1 shows a transcription strand bias whereas signature 8
does not, and this is true for both colorectal and uterus cancers (S3C and S3D Fig). This strand
bias may be connected with the enrichment of C>A at TpCpT mutations in leading strands of
replication forks observed by [19]. Although replication strand bias is different from
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Fig 4. The summary of mutation signatures across 30 cancer types [8] obtained using the proposedmethod.Here, the substitution patterns and two
50 and 30 bases from the mutated sites are taken into account as mutation features. First, mutation signatures were estimated separately in each cancer type,
and then similar signatures were merged (see text).

doi:10.1371/journal.pgen.1005657.g004
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transcription strand bias, these two biases may be connected through the fact that replication
origins prefer transcription start sites [20].

These signatures also illustrate the ability of our model to help highlight sequence context
effects beyond the immediate flanking bases. Specifically, both signatures 1 and 8 show an ele-
vated frequency of the T base at position −2, and signature 1 also shows slightly elevated fre-
quency of the T base at position +2 (Figs 6B, 6C, S3C, and S3D). A previous study of Pol � [19]
found that a nonsense mutation R23X of TP53 is enriched in cancers with Pol � defects. In fact,
the pattern of this mutation is C> T at TpTpCpGpA, closely matching signature 8. This illus-
trates that the inclusion of ±2 bases into signatures may be helpful for identifying underlying
mechanisms.

Fig 5. The summary of membership of eachmutation signature across 30 cancer types obtained using the proposedmethod.

doi:10.1371/journal.pgen.1005657.g005
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Fig 6. The estimated frequencies of bases at two 50 to the mutated site for each cancer type. The bar heights show the estimated frequency for bases
A, C, G and T at the −2 position (two 50 to the mutated site). The error bars show bootstrapped standard errors. (A, B, C, D, E) The intensities of signature 13
(APOBEC signature), signature 1 (the first Pol � signature), signature 8 (the second Pol � signature), signature 10 (ultraviolet signature) and signature 11,
respectively, at the −2 position.

doi:10.1371/journal.pgen.1005657.g006
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Signature 2 (C> A at [CT]pCpT) is observed solely in low grade gliomas, and appears
related to, but slightly different from, the signature previously detected in the same cancer
types (“signature 14”, [9]). Indeed, the corresponding signature in the previous study shows
very complex patterns (C> A at NpCpT or C> T at GpTpN). Further investigation revealed
that this signature is driven by a single sample with an extremely high mutation rate (see S4A
and S4B Fig), and signature 2 disappeared when we removed this sample (S5 Fig). It may be
that the complex low-grade-glioma specific signature detected in the previous study is driven
by the same single sample. We suggest that these signatures should be treated with caution
until validated in additional samples.

Signature 4 (C> A at CpCpG) observed in kidney clear cell carcinomas, lung adenocarcino-
mas and melanomas seems to correspond to the “signature R2” detected in the same cancer
types (plus lung squamous carcinomas) in [9] (see their Supplementary Figures). Again our
analysis highlights additional contextual information, with a strikingly elevated frequency of
base C at the −2 position (S6A, S6B and S6C Fig). However, for each cancer type, only a few
samples support this signature (see S6D, S6E and S6F Fig), and the corresponding signature
could not be validated in the previous study: most somatic mutations corresponding to that sig-
nature could not be validated by re-sequencing or visual inspection of BAM files using genomic
viewers. Again, further investigation yielded a potential explanation for this finding: this signa-
ture largely matches that of a putative artifact caused by oxidation of DNA during acoustic
shearing [21], and we conclude that this signature, and the corresponding signature in previous
work, are likely artefactual. Although not of direct biological interest, identifying artefactual
signatures could be helpful in removing false positive mutations.

Signature 13 (T> [AGT] at TpCpN sites) was observed in 12 cancer types, and is surely
related to the activity of the APOBEC family. The 12 inferred signatures were highly consistent
among cancer types except for B-cell lymphoma (see S3A Fig), highlighting the robustness of
our approach. Almost all of them show enrichment of A and T and depletion of G base at the
−2 position (Figs 6A and S3A), consistent with the UCUT data above and previous analyses
[9]. The estimated transcribed strand specificities varied among cancer types, suggesting that
there is not consistent strand-specificity in APOBEC signatures (and the observed variation
may be due to estimation errors). Signatures 15 and 16 may also be related to APOBEC,
although the estimated signatures are sufficiently different from 13 that they were not merged
into a single cluster by our specified clustering criteria.

Signatures 10, 11, 12, 19 and 21 provide further examples of our method refining previously
observed signatures, highlighting strand biases and/or sequence context effects, particularly 2
bases upstream of the substitution. Signature 10 (C>T at [CT]pCpC) was observed in head
and neck cancers and melanomas, and probably relates to ultraviolet light. Consistent strand
specificities among the two cancer types (S3E Fig) matches previous results [9], but our analysis
additionally highlights elevated abundance of T at the −2 position (Figs 6D and S3E). Signature
11 (C> T at GpCp[CG]) appears in small-cell lung cancers and stomach cancers, and seems to
be the same as “signature 15” in the previous study, whose function remains unclear. Again our
analysis highlights elevated abundance of G at the −2 position (Figs 6E and S3F). Signatures 12
(C> T at [CG]pCp[CT]), 19 (T> C at GpTpN) and 21 (T> [CG] at CpTpT) observed in
pilocytic astrocytomas, stomach cancers and oesophagus cancers, respectively, agree well with
those detected in the same cancer types in the previous study [9]. However our analysis again
refines these signatures, highlighting a strand bias in all three, and sequence context effects at
the −2 position in Signatures 12 and 21.

One signature, Signature 20, appears not to match any signatures in the previous analysis
[9] and represents a potentially novel signature. This signature (T> C at [AC]pTpN) is
observed in thyroid cancers, and shows a very strong strand specificity, which could be due to
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transcription-coupled nucleotide excision repairs. This signature may have been too weak for
previous methods to detect, perhaps because the mutation ratio of thyroid cancer is low, possi-
bly reflecting improved sensitivity of our more parsimonious model.

The remaining signatures largely recapitulate previous results. Signature 3 and 5 (C> A at
NpCpN) observed in head-and-neck cancers and three types of lung cancers are probably asso-
ciated with tobacco smoking. The estimated signature in each cancer type shows higher muta-
tion prevalence on the template strand (S3B Fig), which is consistent with the previous study
[2, 9]. Signature 6 (C> A at NpCp[AT]) observed in neuroblastomas matches the pattern
detected in the same cancer type in the previous study. Signature 7 (C> T at NpCpG sites) was
observed in 25 out of 30 cancer type, and arguably relates to deamination of 5-methyl-cytosine.
Signature 9 (C> T at NpCp[CT]) was observed in melanomas and glioblastomas, and is prob-
ably associated with a chemotherapy drug, temozolomide. Signature 18 (T> C at ApTp[AG])
observed in liver cancers has been shown to be more common in Asian cases than in other
ancestries [16], though the source of this signature is still not clear. In this signature, we observe
a very strong strand specificity as shown in [9, 16], suggesting a possible role for transcription-
coupled nucleotide excision repairs.

Discussion
In this paper, we presented new methods for inferring and visualizing mutation signatures from
multiple cancer samples. The new methods exploit simpler, more parsimonious, models for
mutation signatures than existing methods. This improves stability of statistical estimation, and
easily allows a wider range of contextual factors (e.g. more flanking bases) to be incorporated
into the analysis. In addition, we provide a new intuitive way to visualize the inferred signatures.

We have also emphasized the connection between mutation signature detection, and the
use of mixed-membership models in other fields, particularly admixture analysis and docu-
ment clustering. This connection naturally raises the possibility of improving the proposed
approach by learning from experiences in those other fields. For example, in admixture analy-
sis, [22] found that the use of a correlated prior on allele frequencies improved sensitivity to
detect population clusters; this suggests that it might be fruitful to consider a correlated prior
distribution on signatures, to allow that some signatures—perhaps in different cancers—may
be similar to one another (though not identical). More generally, introducing certain prior dis-
tributions or penalty terms, such as sparsity-promoting penalties [23, 24] and determinantal
point process priors [25, 26] could improve both accuracy and interpretation. Further, as the
scale of cancer genome data becomes large, more sophisticated computational approaches for
estimating parameters may become necessary. We can potentially borrow a number of compu-
tational techniques such as those using EM-algorithm [27, 28], sequential quadratic program-
ming [29], Gibbs sampling [12, 30] and variational methods [13, 31, 32]. Finally, to address the
problem of determining the number of signatures, it may be fruitful to extend the framework
to the Hierarchical Dirichlet processes [33].

Although we have focused on point substitution mutations in this paper, many other types of
mutations occur in cancer genomes, including insertions, deletions, double nucleotides substitu-
tions, structural variations and copy number alterations [34, 35]. Our framework could incorpo-
rate these additional mutation types, by summarizing them using appropriate mutation features.
In some cases, choice of appropriate features may need investigation. For example, longer dele-
tions could be represented by the length of deletion and the adjacent bases; for short deletions (a
few bases) it may be fruitful to include the actual deleted bases as part of the features.

We have detected a number of mutation signatures having transcription strand biases,
which are naturally considered to be associated with transcription activities. Therefore, to
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further understand the effect of transcription activities on mutational mechanisms, we can
include gene expression or RNA polymerase II occupancies to mutation features, so that the
relationships of strand biases and transcription activities will be clarified. Also, it may be inter-
esting to devise a probabilistic model for mutation signatures somewhere between complete
independence and non-independence assumption, for example, using ideas analogous to those
in [36] that uses a Markovian structure for transcription factor binding sites. This may help
improve the modelling flexibility of mutation signatures while keeping the number of parame-
ters moderate.

Although we believe our new methods already provide useful gains compared with existing
approaches, the methods are perhaps even more important for their future potential to incor-
porate other contextual data, including epigenetic data, into mutation signature analysis. This
is important, because local mutation densities are closely related to a number of genomic and
epigenetic factors, such as GC content, repeat sequences, chromatin accessibility and modifica-
tions, and replication timing [37–40]. A recent study found that epigenetic information in the
cell types of origin of the corresponding tumors is the most predictive [41] for local mutation
densities. A growing range of epigenetic data from many cell types are now available, and it
will be interesting to integrate these epigenetic factors into mutation signature analysis to help
understand how these epigenetic factors influence DNA damage and repair mechanisms. Our
work here provides a straightforward way to do this: epigenetic data can be simply added as
features to the mutation signature. This has the potential to improve accuracy of signature
detection (e.g. S7 Fig), and to produce novel biological insights. We believe that the value and
impact of our work, and specifically our proposed approach to modelling mutation signatures
via independent features, will grow as more and more features are incorporated into the
analysis.

Methods

Parameter estimation
The parameters {fk, l} and {qi} must be estimated from the available mutation data {xi, j}. Here
we adopt a simple approach that uses an EM-algorithm to maximize the likelihood.

Let gi, m denote the number of mutations in the i-th sample that have mutation feature vec-
torm. In the E step of the EM algorithm, we calculate values of auxiliary variables θi, k, m
defined as

yi;k;m ¼ qi;k
QL

l¼1 fk;l;mlPK
k0¼1 qi;k0

QL
l¼1 fk0 ;l;ml

: ð2Þ

Then, in the M-step, we update the parameters {fk, l} and {qi, k} as

fk;l;p ¼
P

m:ml¼p gi;myi;k;mP
p0
P

m:ml¼p0 gi;myi;k;m
; ð3Þ

qi;k ¼
P

m gi;myi;k;mP
k0
P

m gi;myi;k0;m
: ð4Þ

We use the R package SQUAREM [42] to accelerate convergence of this EM algorithm
(SQUAREM implements a general approach to accelerate the convergence of any fixed-point
iterative scheme such as an EM algorithm). To address potential problems with convergence to
local minima, we apply the EM algorithm several times (10 times in this paper) using different
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initial points, and use the estimate with the largest log-likelihood. See S3 Text for the derivation
of the above updating procedures.

Background signatures
Here, we describe how the background mutation signature is obtained in the case where muta-
tion features are the substitution patterns, the ±2 flanking bases, and the transcription strand.
Since the majority of the data used in this paper is exome sequencing data, and since we con-
sider transcription strand as a mutation feature, we use the exonic regions of the human
genome reference sequence to obtain the background mutation signature. First we calculate the
frequencies of 5-mers with transcription strands of the corresponding exon, where we take
complement sequences and flip the strand for those whose central bases are A or G. Then,
assuming alternated bases are equally likely from each central base C and T, the frequency of
each mutation feature is derived directly from those of the 5-mers and transcription strands.
Finally, the probability of each mutation feature is derived by normalizing each frequency to
sum to one.

Estimating standard errors
We use the non-parametric bootstrap [43] to calculate standard errors for parameter estimates.
This involves resampling somatic mutations from the empirical distribution of the original
data {xi, j} for each cancer genome. For each of 100 such bootstrap samples, we re-fitted the
model, using parameters obtained for the original data as initial points. We then used sample
standard errors of the inferred mutational signatures as estimates of parameter standard errors.

Selecting the number of signatures
Determining an appropriate number of mutation signatures K is a challenging task. One
approach is to utilize some statistical information criteria such as AIC [44] or BIC [45]. In the
population structure problems, for example, the Bayesian deviance [12] and cross-validation
[46] have been suggested. One previous study on mutation signature problems [10] utilized
BIC. On the other hand, the problem of using these statistical information criteria is that most
of them are based on the likelihood, where slight deviations between the specified probabilistic
models and the reality sometimes leads to additional (possibly spurious) mutation signatures
being selected to compensate for those deviations.

In this paper, instead of utilizing a statistical information criteria, we adopt the following
strategy:

• After calculating the likelihood and standard errors of parameters for a range of K, the value
of K is determined at the point where the likelihood is sufficiently high, and the standard
errors are sufficiently low [9].

• When, for k1-th and k2-th mutation signatures, we could detect strong correlations between
the estimated membership parameters for each cancer genome ((q1, k1, q2, k1, � � �, qI, k1) and
(q1, k2, q2, k2, � � �, qI, k2)), and the two mutation signatures ({Fk1} and {Fk2}) show similar pat-
terns, then this suggests that the method may have split one mutation signature into two. We
choose K to be small enough that such pairs of mutation signatures do not occur.

These strategies are not claimed as optimal, but appeared to provide satisfactory results in
our applications here. The development of automated and practical approaches for choosing K
is a possible area for future development.
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Existing methods as a special case
Previous approaches to mutation signature modelling in [8, 9] are a special case of our frame-
work. Specifically, they correspond to combining all possible combinations of mutation fea-
tures into a single “meta-feature”, which takesM1 ×M2 × . . . ×ML possible values. Thus,
instead of having L features withM = (M1, . . .,ML), existing approaches have one feature with
M = (M1 × . . . ×ML) (see S1 Table). The resulting model allows for arbitrary distributions on
theM1 × . . . ×ML feature space, and we call the resulting model the “full model”. The full
model can represent complicated dependencies in a single signature. For example, a situation
where C> A is frequent at ApCpG sites and C> T is frequent at TpCpA sites could be repre-
sented with one signature. This may be desirable in some settings and not in others. However,
when many mutation contextual factors are taken into account and the number of free parame-
ters becomes huge, estimated results can be unstable and unreliable. Furthermore, there is a
risk of over-interpreting the complex features of estimated signatures.

Relationship with mixed-membership models
Our model is closely related to mixed-membership models that have been adopted in other
applications, such as document classification and population structure inference problems. In
this subsection, we outline these relationships, slightly abusing notation to contrast the
relationships.

In the topic model [13, 27], which are a form of mixed-membership models frequently used
in document classification problems, each document is assumed to have K different “topics” in
varying proportions (qi 2 ΔK), where each topic is characterized by a word frequency (a multi-
nomial distribution on a set of wordsW (fk 2 ΔW). And each word is assumed to be generated
by one of Kmultinomial distributions (topics). The detailed generative process of the j-th word
in the i-th document xi, j is:

1. Generate the underlying topic for the j-th word: zi, j*Multinomial(qi), where zi, j 2 {1, � � �, K}.
2. Generate xi, j *Multinomial(fzi, j), where xi, j 2 {1, � � �,W}.

Actually our “full model” (L = 1) is essentially the same as a topic model.
On the other hand, in population structure inference problems [12, 47], each individual is

assumed to be an admixture of K ancestries in varying proportions, where each ancestry is
characterized by the allele frequency at each SNP locus. Each SNP genotype of an individual is
assumed to be generated by the two step model: first, an ancestry (“population”) is chosen
according to the admixture proportion for each individual, and then the SNP genotype is gen-
erated according to the allele frequency of the selected ancestry at that locus. The relationships
among the mutation signature models, topic models and population structure models are sum-
marized in Table 1.

As pointed out by [48], there is a close relationship between mixed-membership models
and nonnegative matrix factorization, which has been successfully used in the previous studies

Table 1. Relationships amongmutation signature model, topic models, and population structure models.

problem xi, j fk qi

mutation signature model the j-th mutation in the i-th cancer
genome

the feature dist. for the k-th
signature

the signature dist. for the i-th cancer
genome

topic model the j-th word in the i-th document the word dist. for the k-th topic the topic dist. for the i-th document

population structure
model

the j-th locus genotype of the individual i the allele freq. for the ancestry k the admixture dist. for the individual i

doi:10.1371/journal.pgen.1005657.t001
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for mutational signature problems [7–9]. In fact, the proposed method can be seen as non-neg-
ative matrix factorization with additional restrictions. See S4 Text for details of the relationship
between the proposed approach and nonnegative matrix factorization.

Supporting Information
S1 Text. Experiments on synthetic data.
(PDF)

S2 Text. Experiment on UCUT data with the various numbers of mutation signatures.
(PDF)

S3 Text. Derivation of EM algorithm.
(PDF)

S4 Text. Relationship with nonnegative matrix factorization.
(PDF)

S1 Table. Example of representation for mutation patterns (substitution patterns and one
50 and 30 bases). In the independent representation, the elements of vector show substitution
patterns, 50 adjacent bases and 30 adjacent bases, respectively. For substitution pattens, 1 to 6
values are assigned to C>A, C>G, C>T, T>A, T>C and T>G in this order. For 50 and 30 adja-
cent bases, 1 to 4 values are assigned to A, C, G and T. Note that the original base is fixed to C
or T to remove the redundancy of complement sequences.
(PDF)

S2 Table. The number of mutation signatures selected for each cancer type for each cancer
type in the Alexandrov et al. (2013) data.
(PDF)

S1 Fig. The frequencies of bases at two 50 to the mutated site for the APOBECmutation sig-
natures obtained in UCUT data using the independent and full models.
(EPS)

S2 Fig. The Pol epsilon signature (Signature 10) derived in the Alexandrov et al., (2013).
The barplots are divided by 6 substitution pattern. In each division, 16 bars show joint proba-
bilities of substitution pattern, 50 and 30 bases (ApNpA, ApNpC, ApNpG, ApNpT, � � �,
TpNpT).
(EPS)

S3 Fig. The list of several signatures extracted in each cancer type in the Alexandrov et al.
(2013) data. (A) APOBEC signatures (signature 13) obtained in each cancer type. (B) Smoking
signature in each cancer type. (C) The first Pol � signature (signature 1) in each cancer type.
(D) The second Pol � signature (signature 8) in each cancer type. (E) The ultraviolet signature i
(signature 10) n each cancer type. (F) Unknown signature (signature 11) obtained in lung
small cell carcinomas and stomach cancers.
(EPS)

S4 Fig. The estimated membership parameters of low grade gliomas. (A, B) Estimated mem-
bership parameter by the proposed method in normal and log scale. We have selected top 100
cancer samples according to the number of mutation. The height of bar shows (the logarithm
of) the number of mutations for each sample, and the ratio of colored division shows the ratio
of estimated membership parameters for each signature and sample. The low grade glioma spe-
cific signature detected by the proposed method is the signature 2. We can see that the
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mutations corresponding to signature 2 is mostly from the sample with an extremely high
mutation rate.
(EPS)

S5 Fig. The signatures obtained for the original data and for the data without the hyper-
mutated case. (A) The result for the original data (K = 3). The first (from the left) signature
seems to be one from deamination of 5-methyl-cytosine. The second signature is the low grade
glioma signature. (B, C, D, E) The result for the data without the hyper-mutated sample for
K = 2, 3, 4 and 5, respectively. Although the signature related to deamination of 5-methyl-cyto-
sine remained, low grade glioma specific signature could not be observed.
(EPS)

S6 Fig. The putative oxidative artifact signatures and membership parameters estimated
for each cancer. (A) The second signature detected in kidney clear cell carcinomas. (B) The
first signature detected in lung adenocarcinomas. (C) The first signature detected in melano-
mas (D, E, F) Estimated membership parameter for kidney clear cell carcinomas, lung adeno-
carcinomas and melanomas, respectively. For each cancer type, We have selected top 100
cancer samples according to the number of mutation. The height of bar shows the number of
mutations for each sample, and the ratio of colored division shows the ratio of estimated mem-
bership parameters for each signature and sample. We can see that the signature corresponding
to putative oxidative artifacts concentrates on a small number of samples.
(EPS)

S7 Fig. The accuracy of the proposed approach for simulated data when changing the num-
ber of features starting from the case where just substitution patterns and immediate 50

and 30 bases are considered (M = (6, 4, 4)), to 5 additional features (M = (6, 4, 4, 2, 2, 2, 2,
2)), for each number of samples and dispersion parameters. The accuracy of the estimated
mutation signature improves as the number of additional features increases, indicating that
incorporating additional features such as epigenetic data will be potentially beneficial.
(EPS)
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