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Abstract
Diagnosis of etiology in early-stage ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) patients may be chal-
lenging. We aimed at investigating, by means of classification and regression tree (CART) modeling, the predictive power 
of heart rate variability (HRV) features together with clinical parameters to support the diagnosis in the early stage of IHD 
and DCM. The study included 263 IHD and 181 DCM patients, as well as 689 healthy subjects. A 24 h Holter monitoring 
was used and linear and non-linear HRV parameters were extracted considering both normal and ectopic beats (heart rate 
total variability signal). We used a CART algorithm to produce classification models based on HRV together with relevant 
clinical (age, sex, and left ventricular ejection fraction, LVEF) features. Among HRV parameters, MeanRR, SDNN, pNN50, 
LF, LF/HF, LFn, FD, Beta exp were selected by the CART algorithm and included in the produced models. The model based 
on pNN50, FD, sex, age, and LVEF features presented the highest accuracy (73.3%). The proposed approach based on HRV 
parameters, age, sex, and LVEF features highlighted the possibility to produce clinically interpretable models capable to 
differentiate IHD, DCM, and healthy subjects with accuracy which is clinically relevant in first steps of the IHD and DCM 
diagnostic process.

Keywords Computer-aided diagnosis · Heart rate variability · Ischemic heart disease · Dilated cardiomyopathy · 
Interpretable machine learning

1 Introduction

Ischemic heart disease (IHD), in its chronic stable form, is 
a subtle pathology due to its silent behavior before develop-
ing in unstable angina, myocardial infarction or, possibly, 
sudden cardiac death. This condition typically occurs when 
there is an imbalance between myocardial oxygen supply 
and demand, typically due to atherosclerotic heart disease. 

The diagnosis in the early stage of the IHD is necessary to 
improve clinical outcomes, which can often be challenging. 
Clinical diagnosis relies on the patient’s symptoms, espe-
cially chest pain, on the pathological ECG and on echocardi-
ography, while only invasive coronary angiography, includ-
ing the use of possibly toxic contrast means, can provide a 
definite diagnosis. At the same time, dilated cardiomyopathy 
(DCM) is a non-ischemic and non-valvular heart muscle dis-
ease frequently characterized by significant left ventricular 
(LV) or biventricular systolic dysfunction at the time of the 
diagnosis despite asymptomatic or scarcely symptomatic 
patients [1] reflecting a long period of asymptomatic silent 
disease progression [2]. Diagnosis of DCM, particularly in 
the early stages of the disease, can often be difficult and rely 
on advanced echocardiography (speckle tracking analysis), 
cardiac magnetic resonance imaging, including a compre-
hensive tissue characterization analysis, and genetic testing 
that often are not available or difficult to deliver to patients. 
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Therefore, novel biomarkers, preferably based on non-inva-
sive techniques, are needed.

Heart disease–related pathophysiologic changes and 
subsequent alteration of heart rate variability (HRV) can 
provide important prognostic information [3]. In addition, 
HRV-based biomarkers have a potentially important role in 
risk stratification for individuals with suspected heart dis-
ease [4]. Nevertheless, the diagnostic role of HRV differen-
tiation between IHD and DCM is still in the early research 
stage [3]. Indeed, the features extracted from ECG alone 
may not be able to discriminate these pathological condi-
tions, but they might be complementary to other clinical and 
instrumental parameters.

Despite the growing use of machine learning–based pre-
diction models in medicine [5–9], clinicians still struggle 
to rely on these models in clinical practice [10]. Machine 
learning methods were also applied to produce heart dis-
ease detection and prediction models [11] based on clinical 
history and ECG features [12], magnetocardiography [13], 
photoplethysmography signal parameters [14], and HRV and 
blood pressure variability features [15].

One of the problems of the complex machine learning 
methods (e.g., random forest [16], neural networks [17]) is 
that the published results are mostly focused on a classifi-
cation/regression model performance metric, but rarely on 
practical usability for prediction in medicine [18, 19]. Here 
is a need of ensuring that machine learning models used in 
healthcare are interpretable [10, 20]. The classification and 
regression tree (CART) [21] is an approach which produce 
interpretable models not only providing output informa-
tion about a certain disease but also help to intrinsically 
evaluate the plausibility of the model by examining the 
selected thresholds and branches in comparison to the exist-
ing knowledge [22]. The classification tree modeling, even 
though in practice it might represent slightly lower accuracy 
in comparison to the black-box models [10], provides better 
interpretability and practical usability in clinical application. 
In addition, their simple visualization allows clinicians to 
follow a set of rules and thresholds for selected clinical and 
instrumental features.

The aim of this study was to investigate, by means of 
CART modeling, the predictive power of HRV features 
together with non-invasive clinical parameters to support 
the diagnosis in the early stage of ischemic heart disease and 
dilated cardiomyopathy.

2  Methods

2.1  Study population

In this study, we analyzed clinical data and processed ECG 
signals of 1133 subjects who were consecutively enrolled 

from December 2016 to October 2018 at the Cardiovas-
cular Department of Trieste University Hospital (Trieste, 
Italy). In particular, the study encompassed 263 patients 
affected by IHD (207 males, aged 71 ± 10, and 56 females, 
age 76 ± 10 years), 181 patients suffering from DCM (111 
males, age 59 ± 12 years, and 70 females, age 63 ± 15 years), 
and 689 healthy controls (321 males, age 62 ± 15 y, and 368 
females, age 64 ± 16 years). The assessment of ischemic 
heart disease (IHD) was carried out from clinical and labo-
ratory findings, and it was systematically confirmed by coro-
nary angiography [23]. The IHD patients did not present 
acute coronary syndrome in the 3 months before the Holter 
monitoring. The DCM patients were enrolled after clinical 
assessment based on coronary artery disease sufficient to 
explain the dysfunction or in presence of a left ventricular 
ejection fraction (LVEF) < 50% without evidence of pres-
sure or volume overload [1]. Coronary angiography was 
systematically performed in patients older than 35 years, 
with cardiovascular risk factors and/or without familial his-
tory for DCM. Patients with known trigger factors, such as 
toxic insults from alcohol or drugs, and tachyarrhythmias 
were also excluded. Both groups of patients were on beta-
blocker pharmacological treatment. The exclusion criteria 
for healthy controls (HC) were the presence of peripheral 
artery disease, thyroid disorders, history of myocardial 
revascularization, hypertensive heart disease, pulmonary 
hypertension, or severe valvulopathy. The study was con-
ducted according to the principles of the Declaration of 
Helsinki and was approved by the Trieste Hospital Ethic 
Committee (Project Number: N.O.43/2009, prot.2161). All 
participants released their written informed consent.

2.2  Heart rate total variability acquisition 
and processing

All subjects underwent a 24 h Holter ECG recording using 
the ambulatory electrocardiographic recorder SpiderView 
(Sorin Group, Italy) with a sampling rate of 200 Hz. The 
RR intervals were extracted and labeled by using SyneScope 
analysis software (Sorin Group, Italy). The RR intervals 
were labeled as normal (N), premature ventricular con-
tractions—ectopic beats (V), artifacts (A), and calibration 
(C). The RR interval records were cut into 5 min segments 
without overlap. Each RR 5-min segment was included in 
the analysis only if the longest ectopic beats subsequence 
(labeled with V) or the longest artifact subsequence (labeled 
with A) does not exceed 10 s. The RR marked with a cali-
bration label was ignored. These segments were interpo-
lated with cubic spline and resampled at 2 Hz, producing 
the heart rate total variability (HRV) signal. Subsequently, 
in each segment, linear and non-linear HRV parameters 
were extracted. In particular, the linear parameters MeanRR, 
SDNN, RMSSD, NN50, and pNN50 evaluating the RR 
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variability were calculated directly from RR sequence [24], 
while in the frequency domain, the absolute powers in low 
(LF = 0.04–0.15 Hz) and high (HF = 0.15–0.40 Hz) fre-
quency bands, related to the vagal and sympathetic nerve 
control on the heart rhythm, were estimated from the inter-
polated HRV signal. Moreover, the normalized low and 
high-frequency powers (LFn, HFn) and their ratio (LF/HF) 
were calculated from the latter parameters. The non-linear 
analysis was carried out by calculating Poincaré plot param-
eters (SD1, SD2, SD1/SD2), reflecting the short- and the 
long-term variability [25], estimating the fractal dimension 
(FD) [26] and the power-law beta exponent [27], quantifying 
the complexity of the system generating the signal. Finally, 
the median values of all parameters during 24 h were cal-
culated and used as the input feature vector of the classifier.

2.3  Classification method, features selection, 
and performance measurements

The CART method [21], used for diagnostic modeling 
because of its easy interpretability in the clinical domain, 
was employed to produce models capable of differentiating 
between three groups (IHD, DCM, and HC). The models 
were at first produced considering HRV features (Table 1) 
together with subjects’ age and sex. Three different models 
were considered: in the first set, all the 17 features were 
taken in consideration  (ModelAll_features), in the second and 
third model, only the selected features were used as input 
of the CART. Stepwise regression algorithm, selecting only 
the most significant explanatory variables, and correlation 
analysis (excluding those variables presenting a regression 
coefficient less than 0.8) were used to operate the selection, 
producing  ModelStw and  ModelCorr, respectively. Stepwise 
regression, which was applied, is the step-by-step iterative 

algorithm for the selection of independent variables by 
adding or removing potential explanatory variables in suc-
cession and testing for statistical significance after each 
iteration.

Subsequently, another non-invasive parameter, the left 
ventricular volume ejection fraction (LVEF) obtained by 
the Simpson biplane method [28] useful to discriminate 
some heart pathologies, was also included. This parameter 
requires the execution of a further ecographic examination, 
which is performed in many cases and was added to under-
stand if it was necessary to make it routine. Thus, further 
three different CART models were produced including all 
the features  (ModelAll_features+LVEF) or, as previously, only 
those selected by stepwise  (ModelStw+LVEF,) or low correla-
tion  (ModelCorr+LVEF).

The CART uses an algorithm to construct the decision 
tree by essentially producing a set of rules represented 
by decisional nodes, branches, and leaves (i.e., terminal 
nodes) which are assigned to a class. The algorithm is 
based on a recursive segmentation (each non-leaf node 
has only two branches) and the generated decision tree 
is a simple structure in which each decision step can be 
divided into yes-or-no questions about each feature. The 
two steps of the CART are binary recursive partitioning 
to construct the complex binary tree and then prune it 
back to find an optimal subtree. In this work, the Gini 
coefficient, representing a variance estimate based on all 
comparisons of possible pairs of values in a subgroup, has 
been used as a loss function. Cross-validation was used as 
a technique to avoid overfitting and to produce a model 
that generalizes better to unseen data. The classification on 
the dataset was estimated using tenfold cross-validation. 
The process was then repeated 10 times, using each of the 
subsamples only once as the validation data. Therefore, the 

Table 1  The set of linear and 
non-linear HRV features

HRV parameter Definition

MeanRR (ms) Mean of RR intervals
SDNN (ms) Standard deviation of RR intervals
RMSSD (ms) Root mean square of the squared differences of successive RR intervals
NN50 Number of differences of successive RR intervals greater than 50 ms
pNN50 Proportion of NN50 divided by the total number of RR intervals
LF  (ms2) Low-frequency power (from 0.04 to 0.15 Hz)
HF  (ms2) High-frequency power (from 0.15 to 0.40 Hz)
LF/HF Low-frequency power/high-frequency power
LFn Low-frequency power/total power
HFn High-frequency power/total power
Beta exp  (ms2/Hz) Beta exponent
SD1 (ms) Short-term variability of the RR sequence—from Poincarè Plot
SD2 (ms) Long-term variability of the RR sequence—from Poincarè Plot
SD1/SD2 Short-term variability/long-term variability of the RR sequence
FD Fractal dimension
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overall cross-validation accuracy was calculated as a mean 
of all 10 validation folds. To evaluate the trade-off between 
model interpretability and classification performance of 
produced decision tree, the obtained classification accu-
racy was compared with classification accuracy of other 
selected machine learning approaches: Logistic regression, 
Naïve Bayes, and support vector machine (SVM). All anal-
yses were performed and implemented in MATLAB using 
the Statistics and Machine Learning toolbox.

3  Results

The demographic and clinical characteristics of subjects 
included in the three considered groups, as well as, the 
mean values of linear and non-linear HRV parameters are 
reported in Table 2.

When LVEF was not considered, the features selected 
by using the stepwise regression method were MeanRR, 
SDNN, LFn, FD, sex, and age  (ModelStw), while the 
outcome of correlation analysis yielded in the selection 
of MeanRR, SDNN, LF, LF/HF, Beta exp, sex, and age 
 (ModelCorr). On the other hand, when LVEF was added 
to the other parameters, the features selected by using the 
stepwise regression method were MeanRR, pNN50, LF/
HF, FD, sex, age, and LVEF  (ModelStw+LVEF) and those 
identified by the correlation analysis were MeanRR, 
SDNN, LF, LF/HF, Beta exp, sex, age, and LVEF 
 (ModelCorr+LVEF). The selected features were used as input 
vector to produce six different decision tree models, as 
described in the methods section.

Table 3 reports the features selected by CART approach 
(in bold) together with the performance metrics of pro-
duced models. In general, models which included LVEF 
showed a higher accuracy (about 10%) compared to 
those based only on HRV and demographic parameters. 
The highest accuracy on the test set was observed for the 
CART  ModelStw+LVEF (Fig. 1) while among the models 
based only on HRV and demographic parameters without 
LVEF the best classification performance was observed for 
the CART  ModelCorr (Fig. 2). In addition, in Table 4 are 
reported AUC values for each group and model.

The comparison of classification accuracies obtained 
by different machine learning approaches is reported in 
Table 5. The classification accuracies obtained with mod-
els produced with Logistic regression, Naïve Bayes, and 
support vector machine (SVM) methods were similar to 
those obtained with CART.

Table 2  Mean and standard deviation values of the features sets

IHD DCM HC

Age 72 ± 11 61 ± 13 63 ± 15
Sex (M/F) 207/56 111/70 321/378
LVEF (%) 53 ± 13 44 ± 12 59 ± 6
HRV

  MeanRR (ms) 942 ± 145 880 ± 130 877 ± 138
  SDNN (ms) 87 ± 68 85 ± 61 71 ± 53
  RMSSD (ms) 71 ± 115 61 ± 111 38 ± 91
  NN50 70 ± 90 65 ± 85 50 ± 73
  pNN50 0.21 ± 0.27 0.19 ± 0.23 0.15 ± 0.21
  LF  (ms2) 350 ± 2400 521 ± 1500 460 ± 2200
  HF  (ms2) 640 ± 8100 626 ± 6005 276 ± 5800
  LF/HF 0.97 ± 1.05 1.22 ± 1.30 2.06 ± 1.90
  LFn 0.40 ± 0.20 0.44 ± 0.21 0.59 ± 0.22
  HFn 0.60 ± 0.20 0.58 ± 0.21 0.44 ± 0.22
  Beta exp  (ms2/Hz) 0.67 ± 0.55 0.75 ± 0.58 1.06 ± 0.57
  SD1 (ms) 46.4 ± 42.4 45.5 ± 40.9 34.8 ± 34.1
  SD2 (ms) 95.5 ± 70.1 92.8 ± 57.3 83.1 ± 54.2
  SD1/SD2 0.44 ± 0.15 0.44 ± 0.16 0.37 ± 0.14
  FD 1.63 ± 0.15 1.63 ± 0.16 1.53 ± 0.16

Table 3  Feature sets used as an input vector to produce the six models (in bold the features selected by CART algorithm) and their classification 
performance measures

Model Features CA F1 Precision Recall

ModelStw MeanRR, SDNN, LFn, FD, sex, age 60.2% 58.6% 57.7% 60.1%
ModelCorr MeanRR, SDNN, LF, LF/HF, Beta exp, sex, age 61.4% 59.1% 58.1% 61.4%
ModelAll_features MeanRR, SDNN, RMSSD, NN50, pNN50, LF, HF, LF/HF, 

LFn, HFn, Beta exp, SD1, SD2, SD1/SD2, FD, sex, age
60.3% 58.2% 57.2% 60.3%

ModelStw+LVEF MeanRR, pNN50, LF/HF, FD, sex,age, LVEF 73.3% 71.3% 70.8% 72.9%
ModelCorr+LVEF MeanRR, SDNN, LF, LF/HF, Beta exp, sex, age, LVEF 72.8% 71.3% 70.8% 72.7%
ModelAll_features+LVEF MeanRR, SDNN, RMSSD, NN50, pNN50, LF, HF, LF/HF, 

LFn, HFn, Beta exp, SD1, SD2, SD1/SD2, FD, sex, age, 
LVEF

72.6% 70.8% 70.3% 72.6%
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Fig. 1  Decision tree model 
based on pNN50, FD, sex, 
age,and LVEF features. HC, 
healthy control; DCM, dilated 
cardiomyopathy; IHD, ischemic 
heart disease

Fig. 2  Decision tree model 
based on MeanRR, SDNN, 
LF, LF/HF, Beta exp, sex, age 
features. HC, healthy control; 
DCM, dilated cardiomyopathy; 
IHD, ischemic heart disease

Table 4  AUC values for each group and model

AUC 

HC DCM IHD

ModelStw 69.5% 62.7% 75.3%
ModelCorr 70.8% 65.0% 73.8%
ModelAll_features 69.9% 63.0% 72.5%
ModelStw+LVEF 84.1% 83.0% 73.6%
ModelCorr+LVEF 83.2% 83.5% 74.9%
ModelAll_features+LVEF 83.6% 84.3% 74.9%

Table 5  Classification accuracies obtained by different machine 
learning algorithms

CART Logistic 
regression

Naive Bayes SVM

ModelStw 60.2% 64.7% 63.3% 54%
ModelStw + LVEF 73.3% 72.1% 74.2% 60.3%
ModelCorr 61.4% 64% 61.6% 49.8%
ModelCorr + LVEF 72.8% 72.9% 71.7% 63.7%
ModelAllFeatures 60.3% 65.4% 58% 50.4%
ModelAllFeatures + LVEF 72.6% 71.9% 62% 63.7%
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4  Discussion

Diagnosis of etiology in early-stage IHD and DCM 
patients may be challenging. IHD patients are generally 
asymptomatic or exhibit no typical signs and symptoms 
until the disease manifests as angina, myocardial infarc-
tion, or sudden cardiac death. Similarly, DCM represents 
a particular etiology of heart failure with reduced ejection 
fraction, frequently carrying a genetic background, which 
usually affects young patients with few co-morbidities, 
remaining asymptomatic for a long time. For this reason, 
there is research interest in the identification of novel, 
preferably non-invasive, biomarkers.

The main finding of this study is that the models includ-
ing parameters extracted from the heart rate total vari-
ability signal are capable to differentiate three groups with 
accuracy, which is clinically relevant in first steps of the 
IHD and DCM diagnostic process. These findings support 
the hypothesis that HRV analysis emerges as an important, 
accessible, reproducible, supplementary tool for the IHD 
and DCM diagnosis.

Nowadays, different mathematical approaches for deci-
sion support systems have been proposed for the auto-
matic classification of heartbeats and machine learning 
techniques have become a useful research diagnostic 
tool for physicians in the analysis of cardiovascular dis-
ease [29–32]. A recent study used artificial neural net-
works considering age, sex, and HRV features to classify 
ischemic heart disease patients and healthy subjects with 
an accuracy of 71.8% [29]. Moreover, considering also 
the left ventricular ejection fraction as a feature, even 
higher classification accuracy was obtained. Other authors 
identified only RR segments of DCM patients using HRV 
parameters as input of complex classifiers in which the 
CART was combined with other machine learning tech-
niques [31, 32]. In particular, Thirugnaman et al. used dif-
ferent machine learning techniques applied to HRV param-
eters for identifying DCM and healthy ECG segments with 
an accuracy of 99.93% considering 22 ECG samples, 16 
belonging to DCM and 6 to healthy subjects [32]. Moreo-
ver, Mahesh et al. used classification trees with logistic 
regression on a combination of linear and non-linear HRV 
parameters to identify ECG segments of DCM subjects 
with an accuracy of 95.61% (13 cardiomyopathy RR seg-
ments). Both studies took the data from a diagnostic ECG 
database [31]. Only Dua et al. used the classification and 
regression tree analysis to distinguish IHD patients from 
healthy subjects [30]. They analyzed the HRV signals of 
20 subjects obtaining an accuracy of 81.1% applying prin-
cipal component analysis to non-linear HRV parameters.

In our study, we aimed to discriminate not so much 
a specific pathologic or normal ECG segment belonging 

to subjects affected or not by cardiac pathology as rather 
to differentiate subjects belonging to the three groups 
(IHD, DCM, and HC) mainly by exploiting non-invasive 
HRV features. Among HRV parameters, MeanRR, SDNN, 
pNN50, LF, LF/HF, LFn, FD, and Beta exp were identi-
fied as the most informative. The produced interpretable 
decision tree models based only on HRV and demographic 
features, as well as including also LVEF, showed similar 
classification accuracies to those produced with logistic 
regression, Naïve Bayes, and support vector machine 
(SVM) methods. Even though in general the decision 
tree modeling might present a slightly lower accuracy in 
comparison to other commonly applied methods, we used 
CART algorithm because of its better interpretability and 
practical usability in clinical application. Models based 
only on HRV features and demographic parameters pre-
sented an accuracy of about 62%. From a clinical per-
spective, even the results obtained without LVEF (61.4%) 
is relevant, especially in the early differential diagnosis 
phase, as it allows to avoid invasive coronary angiog-
raphy in selected patients. In the CART model without 
LVEF  ModelCorr, the most important feature is the LF/HF, 
which reflects sympatho-vagal balance that can be altered 
in the patients affected by cardiomyopathies [33]. In fact, 
it can be observed a denser grouping of the pathologies, 
and exclusive existence of DCM, in the upper subtree. We 
also observed that in the bottom subtree the final deci-
sion of IHD classification is based again on LF/HF and 
LF parameters, which confirm their high discriminatory 
power. The second most important feature observed in 
the CART  ModelCorr is sex, which in the upper subtree is 
strictly related to patient age. It has been already reported 
that DCM affects men more commonly than women [34], 
which is also observable in our CART  ModelCorr. Regard-
ing the age, the identified threshold of 54 years for men, 
is in line with previous findings, as most of DCM male 
patients become symptomatic between 20 and 60 years 
[35]. Finally, the SDNN is an additional parameter that 
allows fine classification between DCM and HC, as it 
reflects all the long-term HRV components and it is sen-
sitive to low frequencies heart rate alteration present 
in DCM. Regarding IHD, in the CART  ModelCorr was 
observed that it is more likely to be affected by the disease 
if the subject is older independently of sex. Furthermore, 
for beta exponent, a non-linear parameter related to the 
complexity of the signal generators is more likely to be 
altered in the patients affected with IHD [36], which can 
be also observed in produced decision tree.

The inclusion of LVEF parameter beside the HRV ones 
made it possible to improve the performance by about 10%. 
In particular, we observed the highest accuracy (73.3%) for 
the model based on pNN50, FD, sex, age, and LVEF fea-
tures (Fig. 1). Concerning CART  ModelStw+LVEF, the most 
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important feature is LVEF. Our tree confirms that the cut-
off for the diagnosis of DCM is around 50%. Indeed, in the 
subtree where the LVEF is higher than 53%, there are no 
branches to DCM identification. Moreover, we also observed 
the high relation of LVEF with patient age. In particular, the 
CART  ModelStw+LVEF showed that if the subject has high 
LVEF and it is older than 64 years old, it is more probable 
that it belongs to HC group. In the cases of LVEF below 
the 54% cut-off, the sex differences plays important role. 
Indeed, in our model it can be observed that females and 
males have different age thresholds to be classified as DCM 
or IHD (male age < 67, female age < 73).

LVEF showed that the model mainly based on HRV 
parameters classifies better IHD subjects than DCM and 
vice versa the model which takes into account also LVEF 
classifies better DCM subjects than IHD. This fact clearly 
indicates the contribution of the LVEF parameter, as dis-
criminatory feature to identify the DCM but confounding 
to discriminate IHD patients. In order to further improve 
the classification performance, future studies could also 
take into account the circadian rhythm related physiologi-
cal parameters variation [37–39].

5  Conclusions

In conclusion, the proposed approach based on HRV param-
eters, age, sex, and LVEF features highlighted the possibility 
to produce clinically interpretable models capable to dif-
ferentiate IHD, DCM, and healthy subjects with accuracy 
which is clinically relevant in first steps of the IHD and 
DCM diagnostic process. These results support the hypoth-
esis that HRV analysis emerges as an important, accessible, 
reproducible, complementary tool for the IHD and DCM 
diagnosis, potentially avoiding invasive and toxic exams 
especially in healthy subject cases.
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