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A B S T R A C T   

Background: Metabolic reprogramming is implicated in cancer progression. However, the impact 
of metabolism-associated genes in stomach adenocarcinomas (STAD) has not been thoroughly 
reviewed. Herein, we characterized metabolic transcription-correlated STAD subtypes and eval
uated a metabolic RiskScore for evaluation survival. 
Method: Genes related to metabolism were gathered from previous study and metabolic subtypes 
were screened using ConsensusClusterPlus in TCGA-STAD and GSE66229 dataset. The ssGSEA, 
MCP-Count, ESTIMATE and CIBERSORT determined the immune infiltration. A RiskScore model 
was established using the WGCNA and LASSO Cox regression in the TCGA-STAD queue and 
verified in the GSE66229 datasets. RT-qPCR was employed to measure the mRNA expressions of 
genes in the model. 
Result: Two metabolism-related subtypes (C1 and C2) of STAD were constructed on account of the 
expression profiles of 113 prognostic metabolism genes with different immune outcomes and 
apparently distinct metabolic characteristic. The overall survival (OS) of C2 subtype was shorter 
than that of C1 subtype. Four metabolism-associated genes in turquoise model, which closely 
associated with C2 subtype, were employed to build the RiskScore (MATN3, OSBPL1A, SER
PINE1, CPNE8) in TCGA-train dataset. Patients developed a poorer prognosis if they had a high 
RiskScore than having a low RiskScore. The promising effect of RiskScore was verified in the 
TCGA-test, TCGA-STAD and GSE66229 datasets. The prediction reliability of the RiskScore was 
validated by time-dependent receiver operating characteristic curve (ROC) and nomogram. 
Moreover, samples with high RiskScore had an enhanced immune status and TIDE score. More
over, MATN3, OSBPL1A, SERPINE1 and CPNE8 mRNA levels were all elevated in SGC7901 cells. 
Inhibition of OSBPL1A decreased SGC7901 cells invasion numbers. 
Conclusion: This work provided a new perspective into heterogeneity in metabolism and its as
sociation with immune escape in STAD. RiskScore was considered to be a strong prognostic label 
that could help individualize the treatment of STAD patients.  
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1. Introduction 

Gastric cancer as a frequent gastrointestinal malignancy showed over 1 million new cases in 2020, accounting for about 5.6%, and 
the number of deaths is about 769,000. Accounting for about 7.7% of the population, it ranks fifth in morbidity and fourth in mortality 
[1–3]. Gastric cancer includes Stomach adenocarcinoma (STAD), hereditary diffuse gastric cancer, gastrointestinal stromal tumor, 
gastric lymphoma, neuroendocrine tumor and other rare variants, among which STAD accounts for 95% of all gastric cancer cases [4]. 
STAD is a malignant tumor originating from the stomach and a heterogeneous disease with various histological features and genotypes, 
and its occurrence and development are influenced by lifestyle and biological factors. High molecular heterogeneity results in vari
ations in relapse and death risks [5]. Therefore, to precisely identify the risk of gastric cancer, novel prognostic factors are critically 
required. 

The metabolic flexibility of cancer cells depends on their ability to reprogram anabolism and catabolism, with metabolic changes 
associated with cancer no longer seen as an indirect response to cell proliferation and survival signals [6,7]. Rapidly proliferating 
cancer cells are reprogrammed by autonomic metabolism to promote growth and survival, and new therapeutic strategies have begun 
to focus on the unique metabolic patterns observed in cancer cells. Cancer cells could promote the expression levels of glycolytic 
enzymes and the activity to promote aerobic glycolysis. One instance is 2DG, which suppresses HK2 by binding to it, reducing 
glycolysis, and leading to ROS-mediated apoptosis in various types of cancer [8,9]. 

Comparative studies focusing on tumors and adjacent normal tissues have revealed that dysregulated transcription of metabolic 
genes is widely present. Despite the important insights these studies provide into modified metabolic cellular pathways in carcinoma, 
tumors and healthy tissues often contain diverse cell components that could restrict the clinical applicability of these results to some 
extent [10]. Previous study [11] performed screened a number of metabolic pathways differentially expressed in differentiated 
samples based on clinical outcomes, which revealed considerable metabolic heterogeneity. A prognostic signature on the basis of 
metabolic gene has also been raised in head and neck cancer [12,13] and neuroblastoma [14]. 

This work employed The Cancer Genome Atlas (TCGA)-STAD queue to classify STAD cases on account of metabolism-related genes. 
We then compared prognostic and immune landscapes and pathway enrichment among various subtypes. In addition, we sought to 
construct RiskScore and validate them. To analyze the responses of patients showing different risks to immunotherapy, the correlation 
between clinical immune profiles and RiskScore was further explored. 

2. Material and methods 

2.1. Raw data 

From TCGA database (https://portal.gdc.cancer.gov/), we collected the clinical features and expression profiles of STAD patients 
(including 350 STAD and 32 normal samples). Transcripts per kilobase million (TPM) was transformed by counts fragments (FPKM). 
The GSE66229 dataset [15] containing 300 cancer cases were acquired from Gene Expression Omnibus (GEO) database (https://www. 
ncbi.nlm.nih.gov/geo/). 

2.2. Molecular subtypes of metabolism-correlated genes 

Under criteria |log2fold change (FC)|>1.5 and false discovery rate (FDR) < 0.05, differentially expressed genes (DEGs) between 
STAD samples and healthy samples were screened using limma package [16]. We have 2752 genes involved in metabolism that encode 
all known human transporter proteins and metabolic enzymes from a previous study [17]. For metabolism-related genes, genes 
showing expression >1 in at least half of the TCGA-STAD samples were retained and Univariate cox analysis was used for screening 
metabolic genes associated survival with p-value <0.05. Metabolic-related differentially expressed genes (MRDEGs) were identified by 
intersecting the above DEGs and prognostic metabolic genes. The k-means unsupervised clustering was conducted on MRDEGs by the 
“ConsensusClusterPlus” package [18] with algorithm and measure of distance spearman as well as 500 bootstraps. The k was between 
2 and 10. Optimal number of categories was classified in terms of the consistency matrix and consistency cumulative distribution 
function. 

2.3. Evaluation of immune infiltration and activity of metabolism-related pathways 

SsGSEA [19] was applied on 113 metabolism-related pathways and 28 immune cells in “GSVA” package [19]. The infiltration of 
immune and stromal cells (ImmuneScore, StromalScore, and ESTIMATEScore) was calculated by ESTIMATE algorithm [20]. The 22 
immune cell scores and 10 cell populations were analyzed using CIBERSORT [21] tool and MCP-Count method [22], respectively. 

2.4. Pathway enrichment analyses 

Statistical analysis of KEGG and GO was realized using the “clusterProfiler” package [23]. Moreover, GSEA was conducted based on 
gene set (h.all.v7.5.1.symbols.gmt). 
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2.5. Analysis of mutation characteristics 

Molecular characteristic information (Fraction Altered, TMB, Aneuploidy, Number of Segments) in TCGA-STAD were obtained 
from a published pan-cancer study [24]. In the somatic mutation data processed by mutect2 software, Genes with more than 3 mu
tation frequencies were screened out. Fisher test screened genes showing significantly high frequency mutation in the subtypes with p 
< 0.05. 

2.6. WGCNA 

The “WGCNA” analysis package was introduced to develop a co-expression network for the genes [25]. A soft threshold is 
determined by analyzing the network topology. According to topological overlap matrix (TOM) converted from adjacency, clustering 
the genes was performed applying the average chain hierarchy clustering method. In a gene network module, the minimum gene 
number was 50 on the basis of the criteria of hybrid dynamic shearing tree. The eigengenes were analyzed after defining gene modules 
with dynamic shear method, followed by cluster analysis of the modules. Modules in relatively close distance (height = 0.25, deepSplit 
= 2, and minModuleSize = 50) with each other were combined into a new module. Then module correlation and molecular subtypes 
was analyzed to select the key gene modules for further analysis. 

2.7. Construction of prognosis model 

Firstly, training and test sets of samples from the TCGA-STAD were classified at a ratio of 7:3. Clinical feature differences between 
the training set and the test set groups were analyzed by Chi-square test. Except T.stage, significant differences were found in clinical 
feature groups (p > 0.05), showing a random and reasonable grouping (Table 1). In TCGA-train dataset, gene related to patients’ 
survival of p < 0.01 in WGCNA analysis were identified by performing univariate Cox regression analysis. Then, LASSO was used to 
reduce metabolic genes associated with survival using glmnet package, with optimal parameter λ selected using ten-fold cross- 

Table 1 
clinical features of TCGA-STAD dataset.   

TCGA-STAD   

Characteristics Train (N = 245) Test (N = 105) Total (N = 350) pvalue FDR 
Age 1    0.65 1 
>67 113 (32.29%) 54 (15.43%) 167 (47.71%)   
≤67 130 (37.14%) 50 (14.29%) 180 (51.43%)   
Unknow 2 (0.57%) 1 (0.29%) 3 (0.86%)   
Gender    1 1 
FEMALE 87 (24.86%) 37 (10.57%) 124 (35.43%)   
MALE 158 (45.14%) 68 (19.43%) 226 (64.57%)   
T.stage    4.00E-03 0.03 
T1 12 (3.43%) 4 (1.14%) 16 (4.57%)   
T2 60 (17.14%) 14 (4.00%) 74 (21.14%)   
T3 112 (32.00%) 49 (14.00%) 161 (46.00%)   
T4 61 (17.43%) 34 (9.71%) 95 (27.14%)   
Unknow 0 (0.0e+0%) 4 (1.14%) 4 (1.14%)   
N.stage    0.47 1 
N0 75 (21.43%) 28 (8.00%) 103 (29.43%)   
N1 68 (19.43%) 25 (7.14%) 93 (26.57%)   
N2 51 (14.57%) 21 (6.00%) 72 (20.57%)   
N3 45 (12.86%) 26 (7.43%) 71 (20.29%)   
Unknow 6 (1.71%) 5 (1.43%) 11 (3.14%)   
M.stage    0.35 1 
M0 221 (63.14%) 91 (26.00%) 312 (89.14%)   
M1 16 (4.57%) 7 (2.00%) 23 (6.57%)   
Unknow 8 (2.29%) 7 (2.00%) 15 (4.29%)   
Stage    0.35 1 
I 33 (9.43%) 13 (3.71%) 46 (13.14%)   
II 83 (23.71%) 27 (7.71%) 110 (31.43%)   
III 95 (27.14%) 50 (14.29%) 145 (41.43%)   
IV 26 (7.43%) 9 (2.57%) 35 (10.00%)   
Unknow 8 (2.29%) 6 (1.71%) 14 (4.00%)   
Grade    0.69 1 
G1 5 (1.43%) 4 (1.14%) 9 (2.57%)   
G2 90 (25.71%) 35 (10.00%) 125 (35.71%)   
G3 143 (40.86%) 64 (18.29%) 207 (59.14%)   
Unknow 7 (2.00%) 2 (0.57%) 9 (2.57%)   
Status    1 1 
Alive 146 (41.71%) 62 (17.71%) 208 (59.43%)   
Dead 99 (28.29%) 43 (12.29%) 142 (40.57%)    
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validation. Each patient was assigned with a RiskScore using formula: 

RiskScore=
∑

βi × Expi 

βi and Expi present the cox regression coefficient and the expression level of i gene, respectively. According to the median of 
RiskScore, TCGA-train samples were classified into low and high risk group (low group and high group). Power of RiskScore to predict 
prognosis was assessed by KM survival curve and ROC. TCGA-test queue, entire TCGA queue and GSE66229 queue were used for 
validation. 

2.8. Nomogram 

Univariate and multivariate Cox regression analysis on clinicopathological features were conducted to further evaluate whether the 
RiskScore was an independent prediction factor. All independently occurring prognostic indicators were utilized to create a nomo
gram, which predicts OS at 1, 3, and 5 year(s) in the “rms” package. The discriminative ability of the nomogram was evaluated using 
calibration analysis. 

Sangerbox provided assistance with this article [26]. 

2.9. Cell culture and transfection 

DMEM containing 10% FBS (Gibco, Thermo Fisher, USA) was used to culture SGC7901 (human GC cell line) and GES-1 (human 
gastric mucosal epithelial cells, COBIOER, Nanjing, China) in a humid environment with at 37 ◦C with 5% CO2.OSBPL1A and its 

Fig. 1. 2 clusters were identified based on metabolism related genes. (A) 47 metabolic-related differentially expressed genes were screened. (B) 
Heatmap of clustering the samples in TCGA-STAD dataset when k = 2. (C) Heatmap of sample clustering in GSE66229 dataset when k = 2. (D) KM 
survival curve of 2 clusters in TCGA-STAD dataset. (E) KM survival curve of 2 clusters in GSE66229 dataset. 
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negative control (sh-NC, 1 μg) were synthesized by Genesee Biotechnology Co., Ltd. The OSBPL1A construct was generated using the 
pcDNA plasmid from Thermo Fisher Scientific. Lipofectamine 3000 (Invitrogen) was used for cell transfection following the protocol. 
The transfected cells were then cultured for 48 h prior to conducting the experiment. RT-qPCR. 

Extraction of total RNA was realized using TRIzol reagent (Thermo Fisher, USA). RT-qPCR with the use of FastStart Universal SYBR 
Green Master (Roche, Switzerland) was performed on each sample (2 μg) on a LightCycler 480 PCR System (Roche, USA). The reaction 
volume of cDNA consisting of 20 μl (appropriate amount of water, 0.5 μl of forward and reverse primers, 10 μl of PCR mixture, 2 μl of 
cDNA template) served as a template. The PCR cycling was operated with DNA denaturation at 95 ◦C for 30 s (s), 45 cycles at 94 ◦C for 
15 s, at 56 ◦C for 30 s, and at 72 ◦C for 20 s. The threshold cycle (CT) data were standardized to GAPDH by 2− ΔΔCT. Table 1 listed the 
sequences of primer pairs for targeted genes. 

Fig. 2. The expression differences of 47 metabolic-related differentially expressed genes and distribution differences of clinical features between 
2 clusters. 
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2.10. Transwell assays 

Briefly, SGC7901 cells (5 × 104) were seeded on Matrigel-coated (BD Biosciences, USA) chambers. Complete DMEM medium and 
serum-free medium were respectively supplemented to the lower and upper layers. 4% paraformaldehyde was applied for cell fixation 
after incubation for 24 h and then the cells were dyed by crystalline violet (0.1%). 

2.11. Statistical analysis 

All statistics were analyzed in R software (version 3.6.0). The Wilcoxon test was applied to analyze the variances in variables 
between the two risk categories. Survival data were examined according to the Kaplan-Meier curve. Notably, a P < 0.05 was defined as 
a statistically significant difference. 

Fig. 3. 113 metabolic pathways scores differences between 2 clusters.  
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3. Results 

3.1. Two metabolic-related molecular subtypes were identified in STAD 

First, we screened DEGs between STAD and paracancerous in TCGA-STAD dataset using limma package and found 7373 DEGs. 
Next, 113 prognostic related metabolic genes also identified using univariate cox analysis. We obtained 47 metabolic-related differ
entially expressed genes (MRDEGs) in the intersection of the two types of genes (Fig. 1A) were obtained. The optimal cluster was 
represented by referring to cumulative density function (CDF) (fig. S1). Based on 47 MRDEGs, 2 clusters (C1 and C2) when k = 2 
(Fig. 1B and C) were defined for all the samples in GSE66229 dataset and TCGA-STAD dataset. KM survival curve showed samples in C1 
had a longer survival time than that in C2 both in TCGA-STAD dataset and GSE66229 dataset (Fig. 1D and E). In the distribution status 
of the 2 clusters among diverse clinical characteristics (Fig. 2), remarkable diversity was observed in Grade, Status, M stage, N stage in 
TCGA-STAD cohort study. Moreover, the difference of 47 MRDEGs expressions showed that protective genes and Risk genes were 
respectively higher expression in C1 and C2 (Fig. 2). 

3.2. Characteristics of metabolism in C1 and C2 

GSVA method was used to calculate 113 metabolic related pathways scores, and there were 74 specific metabolic characteristics in 
C1 and 15 specific metabolic characteristics in C2 (Fig. 3). The analysis indicated that C1 and C2 had significant differences in 
metabolic characteristics. 

Fig. 4. Immunoinfiltration analysis between 2 clusters. (A) C2 subtype had higher StromalScore. (B) C2 subtype had enhanced ImmuneScore. (C) 22 
kind immune cells score differences between 2 clusters calculated by CIBERSORT. (D) Heat map of MCP-count and ssGSEA for calculating immunity 
scores between 2 clusters. (E) TIDE score differences between 2 clusters. (F) GSEA analysis in 2 clusters in TCGA-STAD dataset. (ns, no significant; 
*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001). 
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3.3. Characteristics of immune in C1 and C2 

In order to elucidate the immune microenvironment between C1 and C2, we first used ESTIMATE to calculate ImmuneScore and 
StromalScore, and the two all higher in C2 than that in C1 (Fig. 4A and B). CIBERSORT analysis on 22 kind immune cells showed that 4 
immune cells (including T cells follicular helper, macrophages M0, NK cells resting, T cells CD4 memory activated) scores were higher 
in C1 (Fig. 4C). Heatmap of immune infiltration scores calculated by MCP-Count and ssGSEA analysis implied that most immune cells 
(B lineage, activated B cell, plasmacytoid dendritic cell, and so on) scores were enhanced in C2 (Fig. 4D, fig. S2). Next, the clinical 
effects of immune therapy on the two subtypes were evaluated using the TIDE software. TIDE score had higher in C2 in comparison to 
C1 indicated that a higher likelihood of escape immune and limited immunotherapy benefit in C2 (Fig. 4E). GSEA analysis demon
strated that 8 pathways and 24 pathways were enriched in C1 and C2, respectively (Fig. 4F). 

Fig. 5. Analysis of somatic mutations. (A) Comparisons on the number of Segments, Fraction Altered, TMB, and Aneuploidy Score, Homologous 
Recombination Defects in 2 clusters were compared. (B) Top15 gene mutation in 2 clusters. 
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3.4. Characteristic of mutation in C1 and C2 

Immune infiltration could reflect DNA damage, including tumor mutation burden (TBM), copy number variation (CNV) burden 
(fraction altered and number of segments), aneuploidy, homologous recombination deficiency (HRD) [27,28]. A higher of TBM, 
number of segments, aneuploidy score, fraction altered were observed in C1 (Fig. 5A). A total of 1126 mutated genes showing mutation 
frequency greater than 3 were obtained by mutect2. Top15 genes in C1 and C2 showed that C1 had a higher percentage of the samples 
mutated (91.35%) than that in C2 (80.98%). Moreover, gene mutation, such as TTN (59%vs44%), MUC16 (36%vs23%), CSMD3 (30% 
vs18%), were much in C1 in comparison to C2 (Fig. 5B). 

Fig. 6. Turquoise module was a hub module. (A) A cluster tree for TCGA-STAD sample. Various soft-thresholding powers calculated by analyzing 
the scale-free fit index (β); The mean connectivity to determine different soft-thresholding powers. (B) Based on 1-TOM, differentially expressed 
genes were clustered and visualized in dendrogram. (C) Correlation between 9 modules and two clusters. (D) Number of genes in 9 modules. (E) 
Scatter diagram was plotted based on module membership vs. gene significance for C2 in the turquoise module. 
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Fig. 7. Signature development using the 4 genes. (A) The RiskScore prediction in TCGA training dataset was assess by the KM and ROC curves. (B) 
The RiskScore prediction in TCGA test dataset was assess by the KM and ROC curves. (C) The RiskScore prediction in entire TCGA dataset was assess 
by the KM and ROC curves. (D) The RiskScore prediction in GSE66229 dataset was assess by the KM and ROC curves. (E) Multivariate forest map of 
genes in prognosis model. (F) Univariate cox analysis on the RiskScore and clinical parameters. (G) Multivariate cox analysis on the RiskScore and 
clinical parameters. (H) A nomogram developed by clinical parameters of independent prognosis and RiskScore. (I) 1-, 3-, 5- year calibration curve 
of nomogram. (J) The decision curve for the nomogram, RiskScore and independent prognostic clinical features. 
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3.5. Turquoise model was significantly associated with 2 clusters 

Next, molecular subtype related gene model was determined by R package WGCNA. A scale-free network was developed under the 
soft threshold of 10 (R 2 = 0.98) (Fig. 6A). A total of 9 modules were obtained by average hierarchical clustering and dynamic tree 
cutting (Fig. 6B). Analysis on the correlation between model and C1/C2 showed that turquoise model was significantly negatively and 
positively related to C1 (r = − 0.6) and C2 (r = 0.6), respectively (Fig. 6C). Number of genes in 9 model was showed in Fig. 6D. 
Modulemembership (MM) of genes was highly positively correlated with genesignificance (GS) in turquoise model (r = 0.81, p < 1e- 
200) (Fig. 6E). R package clusterProfiler analysis on genes in turquoise model demonstrated that those genes were enriched to cancer- 
correlated pathways, for instance, PI3K-Akt signaling pathway (fig. S3). Thus, turquoise model was used for next analysis. 

3.6. Development and verification of prognosis model 

To establish a robust risk signature for clinical practice, 30 prognostic genes (p < 0.01) from TCGA-train dataset were screened by 
univariate Cox regression analysis from genes turquoise model. Finally, we identified 4 genes analyzed by LASSO analysis. The 
RiskScore was follow: 

RiskScore = 0.151*MATN3 expression +0.225*OSBPL1A expression +0.138*SERPINE1 expression +0.215*CPNE8 expression. 
According to median of RiskScore, low group and high group of samples in TCGA train, test, entire TCGA dataset and GSE66229 

dataset were divided, with the prognosis of the later group showing a worse OS than those in low group both in above datasets. In 
TCGA-train dataset, 1-, 2-, 3-, 4- and 5- years AUC was respectively 0.65, 0.67, 0.71, 0.71 and 0.73 (Fig. 7A). In TCGA-test dataset, 1-, 
2-, and 3- years AUC was respectively 0.61, 0.7 and 0.63 (Fig. 7B). In entire TCGA dataset, 1-, 2-, 3-, and 4- AUC was respectively 0.64, 
0.67, 0.7 and 0.71 (Fig. 7C). To better verify the model robustness, in GSE66229 dataset, 1-, 2-, 3-, 4- and 5- years AUC was respectively 
0.7, 0.65, 0.67, 0.68 and 0.66 (Fig. 7D). 

We found that the four genes were risk factors (Fig. 7E). Stage, Riskscore, and age were validated as the significant factors for 
prognostic prediction by T univariate and multivariate Cox regression analysis (Fig. 7F and G) and combined together to create a 
nomogram for assessing the risk of STAD and its prognosis. The impact of Riskscore on predicting STAD survival was the greatest 
(Fig. 7H). The calibration curves of predicted 1-, 3- and 5- year were close to the standard curves, suggesting an accurate prediction 
result by the nomogram (Fig. 7I). Decision curve (DCA) showed obviously higher efficacy of using Riskscore and Nomogram over the 

Fig. 8. Genes in model was validated. (A–D) MATN3, OSBPL1A, SERPINE1 and CPNE8 mRNA levels were elevated in SGC7901 cells than normal 
GSE-1 cells. (E) Inhibition of OSBPL1A decreased SGC7901 cells invasion numbers. (**p < 0.01; ***p < 0.001; and ****p < 0.0001). 
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Fig. 9. Correlation analysis between RiskScore and clinical features. (A) The RiskScore differences among StageI-IV. (B) The RiskScore differences 
among Grade 1-3. (C) The RiskScore differences between C1 and C2. (D) the expressions of 4 genes in RiskScore and clinical feature in high- and 
low-group. (ns, no significant; ****p < 0.0001). 
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extreme curves, showing the strongest survival prediction ability (Fig. 7J). 
RT-qPCR results showed that MATN3, OSBPL1A, SERPINE1 and CPNE8 mRNA levels were all elevated in SGC7901 cells 

(Fig. 8A–D). Of the four key genes associated with prognosis in this study, OSBPL1A was chosen for further study because it showed the 
largest HR value in multivariate analysis. The effect of OSBPL1A on STAD cells was confirmed to test the reliability of the prognostic 
genes, and inhibition of OSBPL1A was observe to be able to reduce the number of invaded SGC7901 cells (Fig. 8E). 

3.7. Association between the RiskScore and clinical characteristics 

Distribution of RiskScore in relation to clinical variables was investigated. Patients in advanced Stage, Grade and C2 showed higher 
RiskScore (Fig. 9A–C). Whether there the high- and low-RiskScore groups had different distribution of clinical features was explored. 
Only T stage and Status distribution had difference between two risk groups. The high group showed higher levels of the four genes 
(Fig. 9D). 

Fig. 10. Correlation analysis between RiskScore and immune cells. (A) Differences in TIDE scores between the two groups. (B) Differences in 
StromalScore, ImmuneScore and EstmateScore between the two groups. (C) ESTIMATE, MCP-Count and ssGSEA analysis were used to perform 
correlation analysis between immune cells and RiskScore. (**p < 0.01; ****p < 0.0001). 
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3.8. Association between the RiskScore and immune characteristics 

The high group had significantly higher TIDE score, which suggested a probability of occurring immune escape and less immu
notherapy benefit (Fig. 10A). Moreover, StromalScore, ImmuneScore, and ESTIMATEScore were also more enhanced in high group 
than low group (Fig. 10B). Subsequently, the results from the ESTIMATE, MCP-counter, and ssGSEA methods demonstrated that 
infiltration of immune cells such as effector memory CD8 T cells, mast cells, activated B cell, central memory CD4 T cell, macrophages, 
regulatory T cells was relatively high in the high group (Fig. 10C, fig. S4A). Moreover, we confirmed that high group had a high 
infiltration of Monocytic lineage, CD8 T cells, fibroblasts, B lineage, NK cells, Neutrophils, Cytotoxic lymphocytes, T cells, Myeloid 
dendritic cells, Endothelial cells (Fig. 10C, fig. S4B). Therefore, the study of genes involved in cellular energy metabolism can provide 
particular insights into immunotherapeutic strategies for STAD patients. 

4. Discussion 

The availability of high-quality data sets and the availability of sequencing techniques and tools to analyze the data sets, metabolic 
phenotype experiments contributes to the study of cancer metabolic complexity. Changes in cellular energy metabolisms, including 
glutamine metabolism, glycolysis, fatty acid metabolism, plays a critical role in the cancer initiation and development, which provide 
cancer cells with a growth advantage and enhance the formation of an aggressive phenotype [29]. In this study, two new metabolic 
classifiers were established for the STAD cohort based on metabolism-related genes. Specific differences in clinical features, metab
olomics, immune features, and genomics between the two subtypes suggested the significance of metabolic heterogeneity to be taken 
into consideration in developing personalized treatments. Further, WGCNA and LASSO analysis was employed to establish a 4-gene 
prognosis system, and the results showed RiskScore and clinical features, differences in immune microenvironment that will 
improve the current knowledge of the metabolic heterogeneity of STAD, providing novel understanding for targeted therapies. 

Cancer cells exhibit metabolic heterogenous dependencies and preferences [7,30,31]. Knowledge on metabolic variability and 
flexibility has important significance as it affects the way we make use of metabolic reprogramming in cancer treatment. Previously, 
Jin-Jia Chang et al. carried out broad energy-metabolism profiling and classified two subtypes based on 86 energy-metabolism-related 
genes. Among them, they found that subtypes with a higher number of younger patients exhibited more and immune and mesenchymal 
cell components, and showed that early-stage subtypes also had better progression-free survival [32]. Chunhua Liu et al. stratified 
STAD into two distinct tumor subtypes based on 13 genes involved in fatty acid metabolism [33]. In addition, 4 subgroups of 
pancreatic cancer were categorized based on the glycolysis-cholesterol synthesis axis [34]. The current study showed significant 
differences in its findings in comparison with recently published papers. Firstly, an integrative analysis on multiomics data (metab
olomics, genomics, transcriptomics) were performed. Then, we proposed that unique metabolic dependencies could be tackled by 
focusing on metabolic-related genes. Finally, the difference of metabolic subtypes further constructed the prognostic model. 

A Phase II randomized clinical trial [35] study showed an objective response rate of 11.6% and a median survival time of 5.5 
months of using the PD-L1 inhibitor Pembrolizumab as advanced gastric cancer treatment. PD-L1 positive patients had 11.6% higher 
rates than PD-L1 negative patients (15.5% vs. 6.4%), indicating that a greater benefit from Pembrolizumab for PD-L1 positive patients. 
Links between immune infiltration and metabolism have been reported [36]. Reprogramming of glucose metabolism is one of the main 
features of TME. Tumor cells up-regulate the glycolytic pathway, carry out tumor escape, and suppress the function of immune effector 
cells until failure occurs [37]. C2 has a higher immunoinfiltration and a higher TIDE score, suggesting that immunotherapy in this 
cluster may have a smaller clinical benefit. 

The present work developed a metabolism-related prognostic model with 4 genes (MATN3, OSBPL1A, SERPINE1 and CPNE8). 
MATN3 was reported that it was upregulated in gastric adenocarcinoma, and overexpression of MATN3 maybe be acted as an inde
pendent predictor to indicate the survival outcome of gastric adenocarcinoma [38]. In the process of reverse cholesterol transport, the 
first step could be influenced by the loss-of-function mutation of OSBPL1A, an intracellular lipid receptor related to a low HDL-C 
phenotype, indicating that mutations in OSBPL1A may lead to dyslipidemia [39].Obviously expressed SERPINE1 is significantly 
correlated with an unfavorable prognostic outcome of gastric adenocarcinoma patients [40]. Feng et al. indicated by immunoassay 
that SERPINE1 may promote an inhibitory immune microenvironment in gastric cancer and it was positively related to the infiltration 
of various immune cells (e.g., neutrophils, resting macrophages M2, activated mast cells, NK cells) [41]. In breast cancer, glucose 
metabolism levels could be promoted by stabilizing p53-induced SERPINE1 in the miR-1185-2-3p-GOLPH3L pathway [42]. Enhanced 
CPNE8 expression samples was related to clinical characteristics and was predictive of unfavorable survival of patients with gastric 
cancer [43]. Those data supported the reliability of the current prognostic model developed using the four genes. However, we should 
note some limitations. In this study, research data were extracted based on public databases that were analyzed only by bioinformatics. 
Further in vivo validation experiments are necessary. However, further verification is required to probe into the molecular mechanisms 
underlying energy metabolism in STAD using cell experiments. 

Cancer metabolism is a metabolic pathways consisting of intricate networks, and targeting cancer metabolism could selectively 
suppress cancer progression as cancer metabolisms are realized under different metabolic stress responses between normal cells and 
cancer cells. Therapies targeting cancer metabolism requires comprehensive explorations before clinical administration. In a sum, we 
identified two metabolically related molecular subtypes and constructed a 4 gene prognosis model for STAD, which provided a 
classifier for STAD patients and predicting prognosis. 
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