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Abstract: Acinetobacter baumannii has become a serious threat to human health due to its extreme
antibiotic resistance, environmental persistence, and capacity to survive within the host. Two
A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-
resistant strains, which are becoming ever more dangerous due to the multiple drugs they can
resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their
response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features
responsible for increasing survival and persistence in the environment and human body. Expression
levels of antibiotic resistance genes were modified differently when examined in different strains.
The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS
depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of
HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of
HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes
were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was
not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While
A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS,
strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin
present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture
medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a
compound intimately associated with quorum sensing. In conclusion, HSA, the main component of
HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.

Keywords: Acinetobacter baumannii; antibiotic resistance; quorum sensing; biofilm; human serum; albumin

1. Introduction

Infections caused by antibiotic-resistant bacteria have increased in frequency, resulting
in significant patient morbidity and mortality [1,2]. Acinetobacter baumannii is a mul-
tidrug resistant (MDR) nosocomial pathogen that causes a variety of infections, many of
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them life-threatening, such as pneumonia, bacteremia, meningitis, and wound infections.
A. baumannii strains resistant to carbapenems (CRAB) have frequently been reported [3],
and this characteristic warranted the acknowledgemnt of CRAB as an “urgent threat” by
the Centers for Disease Control and Prevention (CDC) in the 2019 Antibiotic Resistance
Threats Report [4,5].

Few active antimicrobials are left to treat CRAB infections [6–8]. A laboratory-
and population-based surveillance showed that most of the CRAB isolates also pre-
sented non-susceptibility to antibiotics generally considered “second-line” agents for
treatment [9,10]. For example, ~94% demonstrated resistance against fluoroquinolones,
both for levofloxacin and ciprofloxacin. Around 80% of the isolates possessed extendeded-
spectrum β-lactamases (ESBLs), with 97% resistant to piperacillin/tazobactam and between
84 and 88% resistant to cefepime and ceftazidime. In contrast, tigecycline and colistin
demonstrated resistance rates of approximately 40% and 7%, respectively [9,10]. However,
these agents have significant limitations, such as a narrow therapeutic range (colistin, tigecy-
cline), insufficient levels of free antibiotic in blood (colistin, tigecycline), significant adverse
effects (colistin, tigecycline), and limited or no bactericidal activity (tigecycline) [10–12]. It
is worth noting that there is only one orally administered antibiotic, minocycline, currently
in use to treat CRAB infections. This not only limits treatment options but also complicates
therapy by the need for hospitalization [10,12].

In addition to resistance, A. baumannii possesses intrinsic versatility in response to
changing environments, within and outside the human host, and to acquire or change the
expression of resistance and virulence genes [13–19]. When exposed to different human
fluids or proteins, A. baumannii can modify the expression of a wide variety of genes that are
needed to persist and survive [15,16,19–22]. Also, antibiotics can trigger DNA acquisition
and affect the expression of resistance genes (Le et al., 2021 submitted manuscript [23–25]).

We recently demonstrated that human serum albumin (HSA) increases natural trans-
formation as well as expression of competence associated and carbapenem resistance genes
in both susceptible and resistant strains (Le et al., 2021 submitted manuscript). Cells
exposed to HSA in combination with meropenem increased their capability to uptake
DNA. This mix was also associated to enhanced expression of competence-associated
genes. Similar changes were induced in cells cultured in the presence of human serum (HS)
(Le et al., 2021 submitted manuscript). All these features can contribute to the increase of
antibiotic resistance. To further understand how A. baumannii responds to HSA and human
serum (HS), we focused on non-carbapenem antibiotic resistance genes, quorum sensing,
and biofilm formation.

2. Results and Discussion
2.1. HSA and HS Modulate the Expression of Antibiotic Resistance Genes from Different
Antibiotic Families

To further evaluate the role of HSA and HS in the expression level of antibiotic re-
sistance genes, we performed quantitative RT-PCR (qRT-PCR) assays using total RNA
extracted from two A. baumannii model strains (A118 and AB5075), and three carbapenem-
resistant strains (AB0057, AMA16, and ABUH702). Cells were cultured in LB, LB supple-
mented with 3.5% HSA, or cultured in 100% pooled normal HS.

A. baumannii A118 showed an increase in expression of the chloramphenicol resistance
clmA gene [26] when LB was supplemented with 3.5% HSA. Conversely, HS did not
produce changes in the expression level of this gene (Figure 1A). In the case of A. baumannii
AB5075 (Figure 1B) and AB0057 (Supplementary Figure S1), levels of expression of clmA
were significantly down-regulated in LB plus 3.5% HSA and HS conditions. In contrast,
in the A. baumannii AMA16 and ABUH702 strains, clmA was up-regulated when growing
under these conditions (Figure S1).
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 Figure 1. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on the expression of antibiotic
resistance genes of A. baumannii A118 and AB5075 strains. qRT-PCR of A118 (A) and AB5075 (B) strains genes associated
with antibiotic resistance expressed in LB, LB supplemented with 3.5% HSA, or in HS. Fold changes were calculated using
double ∆∆Ct analysis. At least three independent samples were used. LB was used as the reference condition. Statistical
significance (p < 0.05) was determined by ANOVA followed by Tukey’s multiple-comparison test, one asterisks: * p < 0.05;
two asterisks: ** p < 0.01, and three asterisks: *** p < 0.001.

We previously observed that the expression levels of carbapenem-resistance genes
were affected when LB was supplemented with 3.5% HSA or HS (Le et al., 2021 submitted).
Further examination of the effect of these supplements on other genes related to β-lactam
resistance, showed that the expression levels of pbp1 and pbp3, coding for penicillin-binding
proteins [27,28], were up-regulated in LB supplemented with 3.5% HSA in A. baumannii
A118, AB5075 (Figure 1A,B), and ABUH702 (Figure S1). All strains but A118 underwent
an increase in levels of expression of pbp1 and pbp3 when cultured in HS (Figures 1, 2 and
Figure S1). The blaPER-7 gene, present only in strain AMA16, was also up-regulated in the
presence of 3.5% HSA or HS (Figure 2A).

A. baumannii AB5075 strain is resistant to most aminoglycoside antibiotics (gen-
tamicin, amikacin and tobramycin (Table 1) and posseses the aac(6a)-Ib and ant(2n)-Ia
(aadB), which encode an aminoglycoside 6′-N-acetyltransferase and an aminoglycoside
O-nucleotydyltransferase, respectively [29]. qRT-PCR revealed a significant reduction in
the expression of both genes in the presence of 3.5% HSA or HS (Figure 1B). In contrast,
ant(2n)-Ia, also present in A. baumannii ABUH702, was expressed at significantly higher
levels in cells cultured in LB supplemented with 3.5% HSA or HS (Figure 2C). The armA
gene present in A. baumannii AMA16, which encodes a 16S rRNA methylase that con-
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fers resistance to amikacin, plazomicin, gentamicin and tobramycin [30], did not exhibit
any significant changes in the tested conditions (Figure S1). The expression of aphA6, a
gene present in A. baumannii AB0057 and ABUH702 that codes for an aminoglycoside
O-phosphotransferase [29], was significantly down-regulated in the presence of 3.5% HSA
or HS (Figure 2B,C). This effect could be related to an increase observed in the susceptibility
of A. baumannii AB0057 to tobramycin (Figure 3 and Table S1). However, we did not
observe any decrease in the MIC values of amikacin, tobramycin, and gentamicin in the
AB5075, AB0057 and ABUH702 strains (Figure 3 and Figures S2 and S3).
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Figure 2. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on the
expression of antibiotic resistance genes of A. baumannii strains. qRT-PCR of AMA16: (A) AB0057
(B) and ABUH702 (C) strains genes associated with antibiotic resistance expressed in LB, LB supple-
mented with 3.5% HSA, or in HS. Fold changes were calculated using double ∆∆Ct analysis. At least
three independent samples were used. LB was used as the reference condition. Statistical significance
(p < 0.05) was determined by ANOVA followed by Tukey’s multiple-comparison test, one asterisks:
* p < 0.05; two asterisks: ** p < 0.01; and three asterisks: *** p < 0.001.
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Table 1. MICs of A118 or AB5075 grew in LB, LB plus 3.5 % HSA, or HS.

Strain A118 AB5075

Antibiotic (µg/mL) LB 3.5% HSA HS LB 3.5% HSA HS

AK 2 (S) 2 (S) 2 (S) 32 (I) 32 (I) 32 (I)
CN 1 (S) 1 (S) 0.75 (S) 64 (R) 512 (R) 96 (R)
TOB 0.75 (S) 0.75 (S) 0.75 (S) 32 (R) 512 (R) 32 (R)
RIF 2 (S) 1.5 (S) 2 (S) 64 (R) 0.38 (S) 3 (S)

CLO >256 (R) >256 (R) >256 (R) >256 (R) >256 (R) >256 (R)
AK: amikacin; CN: gentamicin; TOB: tobramycin, RIF: rifampicin, CLO: chloramphenicol. R: resistant; I: interme-
diate; S: susceptible.
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Figure 3. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on the
antimicrobial susceptibility of A. baumannii strains. AMA16, AB0057, and ABUH702 strains grew in
LB broth, LB broth plus 3.5 % HSA, or in HS were used to performed rifampicin (RIF) and tobramycin
(TOB) susceptibility. Minimum inhibitory concentration (MIC) was performed by E-test (Liofilchem,
Italy) following CLSI recommendations.

Modifications in levels of resistance to rifampicin, a drug that alone or in combination
with colistin has been used for severe infections due to MDR A. baumannii [31], were also
evaluated. An increase in the susceptibility to rifampicin was observed in the case of
A. baumannii AB5075 in the presence of 3.5% HSA or HS, while changes were not observed
in strain A118 (Table 1). In the case of A. baumannii AMA16, which posseses the arr2 gene,
related to rifampicin resistance, a significant increase in the expression level of arr2 and a
concomitant increase in MIC were observed when growing in HS (Figures 2A and 3).
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The sulfonamine resistance gene sul1 [32], present in A. baumannii A118, AB5075,
AMA16, and AB0057, responded differently to the additions. It was down-regulated when
growing in medium supplemented with 3.5% as determined using qRT-PCR analysis in
A. baumannii A118, AMA16, and AB0057 (Figure 1A and Figure S1). Conversely, this gene
was expressed at higher levels in A. baumannii AB5075 exposed to 3.5% HSA or HS, and in
A. baumannii AB0057 cultured in HS (Figure S1).

The impact of human fluids and/or human proteins on the expression of antibiotic
resistance genes and the concomitant levels of resistance are largely unknown [18,22,33].
Previous work showed that 0.2% HSA and 4% Human Pleural Fluid altered the expression
of genes related to antibiotic resistance [17,21]. Moreover, Huang et al. demostrated the
ability of mucin to bind antibiotics, such as colistin, which leads to a reduction in the
efficacy of antibiotics used to treat A. baumannii infections [34]. The results described in this
analysis indicate that in five different strains, the expression levels of resistance genes are
affected by HSA and HS. Resistant and susceptible strains behaved identically with respect
to the β-lactam and sulfonamide resistance-associated genes, which were upregulated
in the presence of 3.5% HSA. However, while the addition of 3.5% HSA to A. baumannii
A118 cultures produced an increase in expression levels of a chloramphenicol resistance
gene, the opposite effect was observed in carbapenem-resistant strains. For some genes or
groups of genes encoding resistance to an antibiotic class, the effect in the expression levels
varied depending on the strain and/or the condition. In the case of β-lactam resistance-
associated genes, an increase in the expression was observed for most of the genes in all
the strains in both conditions (Figures 1 and 2). The aminoglycoside resistance genes were
mostly down-regulated in all strains and conditions, with the only exception of ant(2n)-Ia
in the ABUH702 strains exposed to 3.5% HSA or HS (Figures 1B and 2C). Future studies
will increase the understanding of how the processes used by bacteria to respond to the
presence of human fluids and/or human proteins contribute to antibiotic treatment failure.

2.2. HSA and HS Negatively Affects Biofilm Formation

Since biofilm formation has a direct impact in antibiotic resistance [33,35–37], leading
in some cases to treatment failure, we investigated the effect of 3.5% HSA and HS in
the expression of genes involved in biofilm formation and the corresponding impact
on phenotype.

qRT-PCR analysis of csuA/B, csuB, and csuE genes belonging to CsuA/BABCDE
chaperone-usher secretion system [38] was carried out in A118 and AB5075 cells grown in
LB, LB supplemented with 3.5% HSA, and HS (Figure 4). The transcriptional level of A118
and AB5075 csuA/B, csuB, and csuE showed a significant down-regulation under 3.5% HSA
and HS conditions, with the exception of csuB for the A118 strain (Figure 4A,B). Moreover,
analysis of mRNA extracted from A. baumannii AMA16, AB0057, and ABUH702 strains
cultured in medium containing 3.5% HSA or in HS showed that the expression of csuA/B
was significantly reduced in the presence of both conditions, with the exception of AB0057
strain grown in LB plus 3.5% HSA (Figure S4). In addition, the outer membrane protein A
(OmpA) of A. baumannii is reported as playing a role in the development of robust biofilms
on plastic [39]. The transcriptional analysis of ompA was also investigated and we observed
a down-regulation in the presence of 3.5% HSA or HS with respect to LB condition for all
strains with the exception of ABUH702 strain (Figure 4 and Figure S4).

These results were in agreement with biofilm formation in tubes, since a reduction or
absence of biofilm was observed (Figure 5). To further examine the inhibitory effect of 3.5%
HSA and HS on other A. baumannii strains, AMA16, AB0057, and ABUH702 strains were
grown in LB, LB plus 3.5% HSA, or HS. Less biofilm production was observed supporting
the previous observation (Figure S4). Our results showed a strong negative effect of HSA
and HS in biofilm formation in all the included strains, leading us to conclude that this
inhibitory effect occurs in the different A. baumannii strains.
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condition. Statistical significance (p < 0.05) was determined by ANOVA followed by Tukey’s multiple-comparison test, one
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Figure 5. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on biofilm formation in A. buamannii.
Biofilm assays performed in A118 (A) and AB5075 (B) strains grown in LB, LB supplemented with 3.5% HSA, or in HS.
Tubes were stained with 1% crystal violet.

A previous work analysing the biofilm formation of different A. baumannii isolates that
recovered from blood or sputum, showed that blood isolates formed less biofilm compared
to respiratory isolates [40]. Our results are in agreement with this observation [40]. Another
human molecule that also exhibited biofilm formation inhibition in A. baumannii strains was
L-Adrenaline [41]. In addition, a recent study reported that lactoferrin has antimicrobial
and antibiofilm activities against A. baumannii clinical strains that were isolated from
wounds, blood, urine, and sputum/bronchial wash [42]. Lactoferrin is an innate immune
glycoprotein produced in high concentrations in both human and bovine milk, and is
considered one of the most effective iron chelators. Lactoferrin’s binding affinity for iron
is 300 times higher than that of transferrin. These observations provide evidence that
indicates the complex interplay between this pathogen’s and both human and bovine
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isoforms of host products [42]. Together, these observations demonstrate how human
proteins can have an important and significant impact on biofilm formation.

2.3. Quorum Network Is Altered by HSA and HS

Many bacteria communicate with each other and respond collectively to a changing
environment through quorum sensing (QS) [43]. QS permits bacteria to monitor one
another’s presence and to modulate gene expression in response to changes in population
density, controlling survival and virulence [43,44].

To explore the QS network in A. baumannii A118 and AB5075 strains growing in LB
plus 3.5% HSA or in HS, qRT-PCR analysis of important genes of QS/quorum quenching
(abaI, aidA, and abaM) were carried out [45–47]. The results showed that aidA expression
was up-regulated and abaI expression was down-regulated under both treatments in both
strains (Figure 6). Differences were not observed in the expression levels of abaM between
LB, LB plus 3.5% HSA, and HS in A. baumannii A118 (Figure 6A). In contrast, in A. baumannii
AB5075, the levels of expression of abaM were significantly reduced under both treatments
(Figure 6B). These results suggest that when A. baumannii is exposed to HSA, the cells
modulate the expression of QS network genes to reduce AHL synthesis or increase its
degradation. We confirmed these findings by using A. tumefaciens as a bacterial biosensor.
Supernatants from A. baumannii A118 and AB5075 cultures in LB showed the highest AHL
production, suggesting down-regulation of QS and/or up-regulation of quorum quenching
in the presence of HSA molecules or HS components (Figure 7). These results are consistent
with a previous observation that A. baumannii AB5075 cultured in human pleural fluid
produced reduced levels of AHLs [16].
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Figure 6. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on the expression of quorum
sensing genes in A. baumannii. qRT-PCR of A118 (A) and AB5075 (B) strains of the aidA, abaI, and abaM genes associated
with quorum sensing and quorum quenching expressed in LB, LB supplemented with 3.5% HSA, or in HS. Fold changes
were calculated using double ∆∆Ct analysis. At least three independent samples were used. LB was employed as the
reference condition. Statistical significance (p < 0.05) was determined by ANOVA followed by Tukey’s multiple-comparison
test, two asterisks: ** p < 0.01 and three asterisks: *** p < 0.001.
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Figure 7. Effect of human serum albumin (HSA) and pooled normal human serum (HS) on quorum sensing in A. baumannii.
(A) N-Acyl Homoserine Lactone (AHL) detection in A. baumannii A118 and AB5075 supernatants of bacterial cultured
in LB, LB supplemented with 3.5% HSA, or HS, using Agrobacterium tumefaciens as reported strain. The presence of
AHL was determined by the development of the blue color. (B) Quantification of 5,5′-dibromo-4,4′-dichloro-indigo was
estimated as the percentage relative to C10-AHL standard, measured with ImageJ (NIH). As negative control, HS was
used. The mean ± SD is informed. Statistical significance (p < 0.05) was determined by ANOVA followed by Tukey’s
multiple-comparison test. one asterisks: * p < 0.05; two asterisks: ** p < 0.01 and three asterisks: *** p < 0.001.

In addition, considering the role of the AHL molecules in the upregulation of bfmS and
bfmR genes involved in robust biofilm formation on abiotic surfaces in A. baumannii [48],
and the evidence that abaI mutants are impaired in biofilm development [49], our results
agreed with reduced biofilm formation observed when the cells were exposed to 3.5% HSA
and HS.

Taken together, the results described herein indicate that both strains coordinate and
modulate the activity of many genes that regulate the response to a variety of environ-
ments and conditions. These responses likely play a major role in persistence, virulence,
and colonization.

3. Materials and Methods
3.1. Bacterial Strains

The model A. baumannii strains A118 and AB5075, which show a different degree of
susceptibility and virulence, were used [16,21,50,51]. Additional strains containing metallo
β-lactamases, such as New Delhi metallo- β-lactamase (NDM) or oxacilinases (OXA) were
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used. The used strains were AMA 16 strain (NDM-1 positive strains) [52], ABUH702
(carbapenem resistance due to increase expression of blaOXA-66 by ISAba1) [53], and AB0057
(blaOXA-23) [52].

3.2. RNA Extraction and Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Overnight cultures of A. baumannii strains were diluted 1:10 in fresh LB medium;
3.5% HSA containing LB medium or pooled normal human serum (HS) and incubated
with agitation for 5 h at 37 ◦C. Pure HSA (Sigma-Aldrich, St. Louis, MO, USA) and pooled
normal human serum from a certified vendor (Innovative Research Inc, Novi, MI, USA)
were used in the cultures.

RNA was extracted from each strain using the Direct-zol RNA Kit (Zymo Research,
Irvine, CA, USA) following manufacturer’s instructions. Total RNA extractions were
performed in three biological replicates for each condition. The extracted and DNase-
treated RNA was used to synthesize cDNA using the manufacturer’s protocol provided
within the iScriptTM Reverse Transcription Supermix for qPCR (Bio-Rad, Hercules, CA,
USA). The cDNA concentrations were adjusted to 50 ng/µL and qPCR was conducted
using the qPCRBIO SyGreen Blue Mix Lo-ROX following manufacturer’s protocol (PCR
Biosystems, Wayne, PA, USA). At least three biological replicates of cDNA were used in
triplets and were run using the CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA).

Transcriptional levels of each sample were normalized to the transcriptional level of
rpoB. The relative quantification of gene expression was performed using the comparative
threshold method 2−∆∆Ct. The ratios obtained after normalization were expressed as
folds of change compared with cDNA samples isolated from bacteria cultures on LB.
Asterisks indicate significant differences as determined by ANOVA followed by Tukey’s
multiple comparison test (p < 0.05), using GraphPad Prism (GraphPad software, San Diego,
CA, USA).

3.3. Antimicrobial Susceptibility Testing

Antibiotic susceptibility assays were performed following the procedures recom-
mended by the Clinical and Laboratory Standards Institute (CLSI) [51]. After OD adjust-
ment, 100 µL of cells grown in fresh LB medium, 3.5% HSA containing LB medium or HS,
were inoculated on Mueller-Hinton agar plates as previously described [17,21]. Antimicro-
bial commercial E-strips (Liofilchem S.r.l., Roseto degli Abruzzi, Italy) for rifampicin (RIF),
tobramycin (TOB), amikacin (AK), and gentamicin (CN) were used. Mueller-Hinton agar
plates were incubated at 37 ◦C for 18 h. CLSI breakpoints were used for interpretation.

3.4. Biofilm Assays

Biofilms assays were performed as previously described [21]. A. baumannii A118
and AB5075 cells were cultured in fresh LB medium, 3.5% HSA containing LB medium
or HS, with agitation for 18 h at 37 ◦C. Tubes were emptied, washed three times with
1× phosphate-buffered saline (PBS) and stained with 1% crystal violet (CV) for 15 m.
Excess CV was removed by washing three more with 1× PBS. Experiments were performed
in triplicate, with at least three technical replicates per biological replicate.

3.5. N-Acyl Homoserine Lactone (AHL) Detection

Agrobacterium tumefaciens-based solid plate assays were carried out to detect AHL
production [54] as previously described [55]. Briefly, 500 µL of the homogenate were
loaded in a central well of 0.7% LB agar plates supplemented with 40 µg of 5-bromo-3-
indolyl-β-D-galactopyranoside (X-Gal) per mL and 250 µL (OD = 2.5) of overnight cultures
of Agrobacterium tumefaciens biosensor. The presence of AHL was determined by the
development of the blue color [56]. As a positive control, 100 µL of N-Decanoyl-DL-
homoserine lactone (C10-AHL) 12.5 mg/mL, and as negative control, 100 µL of pooled
normal HS was utilized. Quantification of 5,5′-dibromo-4,4′-dichloro-indigo production
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in different conditions was determined by measuring the intensity of each complete plate
and substracting the intensity measured in the negative control, using ImageJ software
(NIH). The values were normalized to the positive control, which received the arbitrary
value of 100.

3.6. Statistical Analysis

All experiments were performed at least in three technical and biological replicates.
Data were expressed as means ± standard deviation. Statistical analysis using one way-
ANOVA followed by Tukey’s multiple comparison test were performed using GraphPad
Prism (GraphPad software, San Diego, CA, USA), and a p value < 0.05 was considered
statistically significant.

4. Conclusions

Our results reveal that in A. baumannii a variety of proteins present in human fluids
that are encountered during infection significantly modulate a transcriptional response
resulting in opportunities for increasing survival. Changes at the transcriptional level
affecting genes involved in antimicrobial resistance were observed in the five different
A. baumannii strains used, despite a differential behavior depending on the studied gene
and strain. Results of biofilm formation were in accordance with previous observations
obtained with other human fluids [16], where a reduced expression of genes involved in
biofilm formation, supported by a substantial decrease in biofilm formation, was observed
in all the strains. The transcriptional level of quorum sensing network genes, known
to control different virulence factors, was also affected. A reduction in quorum sensing
molecules was observed, suggesting a switch towards a commensal state facilitating its
persistence. The inhibition of the quorum sensing network is in agreement with the reduced
biofilm formation, allowing A. baumannii to survive in the bloodstream, where HSA, the
main component of HS, is the predominant protein.

Together, the results presented provide important clues that a clear adaptative re-
sponse of A. baumannii is induced by HSA, opening a new venue to explore alternative
therapeutic approaches [15–17,21,57].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10070833/s1, Figure S1: Effect of human serum albumin (HSA) and pooled
normal human serum (HS) on the expression of antibiotic resistance genes of A. baumannii AMA16,
AB0057 and ABUH702 strains, Figure S2: Effect of human serum albumin (HSA) and pooled normal
human serum (HS) on the antimicrobial susceptibility of A. baumannii AB5075 strain, Figure S3.
Effect of human serum albumin (HSA) and pooled normal human serum (HS) on the antimicrobial
susceptibility of A. baumannii AB0057 and ABUH702 strains, and Figure S4: Effect of human serum
albumin (HSA) and pooled normal human serum (HS) on biofilm formation in A. baumannii AMA16,
AB0057 and ABUH702 strains.
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