

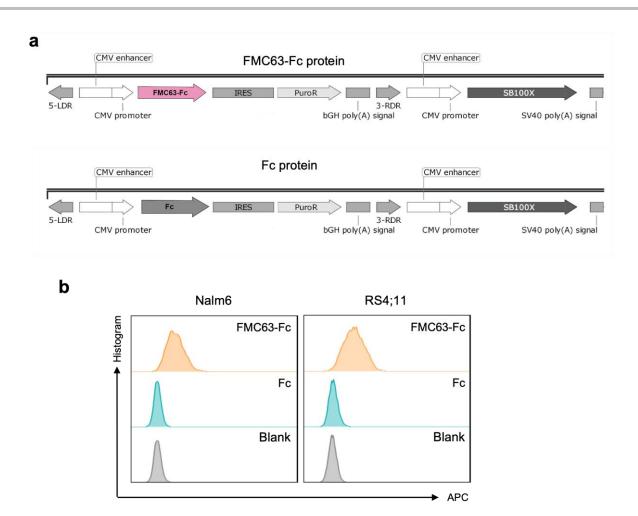
Supporting Information

for Adv. Sci., DOI 10.1002/advs.202305566

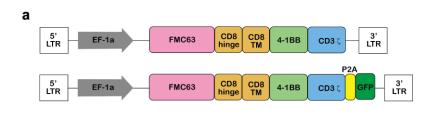
CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape

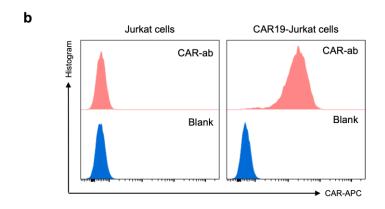
Hang Zhou, Tuersunayi Abudureheman, Wei-Wei Zheng, Li-Ting Yang, Jian-Min Zhu, Ai-Bin Liang, Cai-Wen Duan* and Kaiming Chen*

Supporting Information ©Wiley-VCH 2021 69451 Weinheim, Germany


CAR-aptamers Enable Traceless Enrichment and Monitoring of CAR-positive Cells and Overcome Tumor Immune Escape

Hang Zhou, Tuersunayi Abudureheman, Wei-Wei Zheng, Li-Ting Yang, Jian-Min Zhu, Ai-Bin Liang, Cai-Wen Duan*, Kaiming Chen*


Contents


Supporting Results	1
Table S1. Sequences in this work	. 14
Table S3. Sequences of CRISPR/cas9 sgRNA for CD19 knockout	. 17

Supporting Results

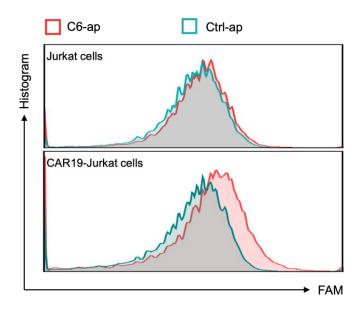


Figure S1. (a) The plasmids for FMC63-Fc and Fc protein expression. (b) Flow cytometry assays to verify binding to BALL cell lines of the expressed proteins.

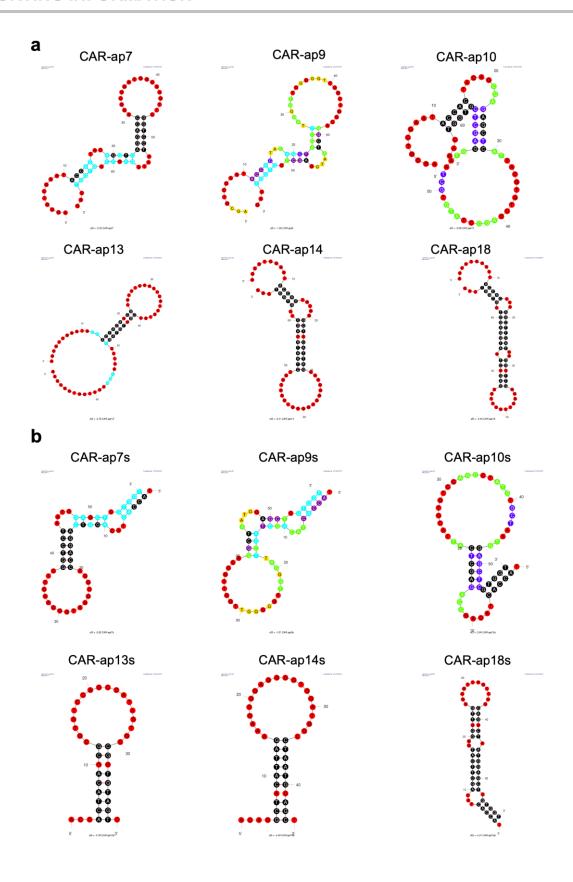
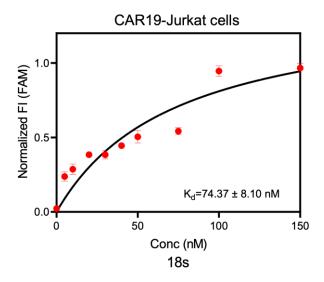
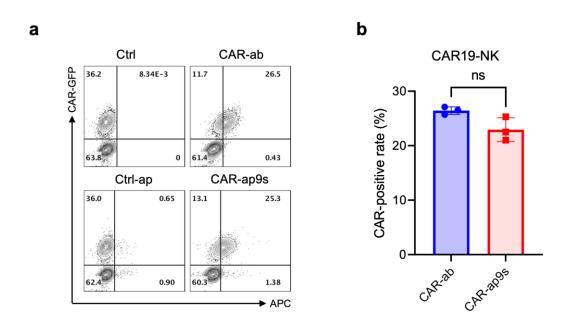
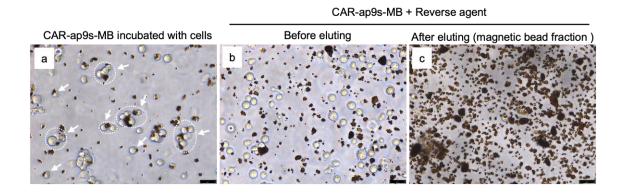
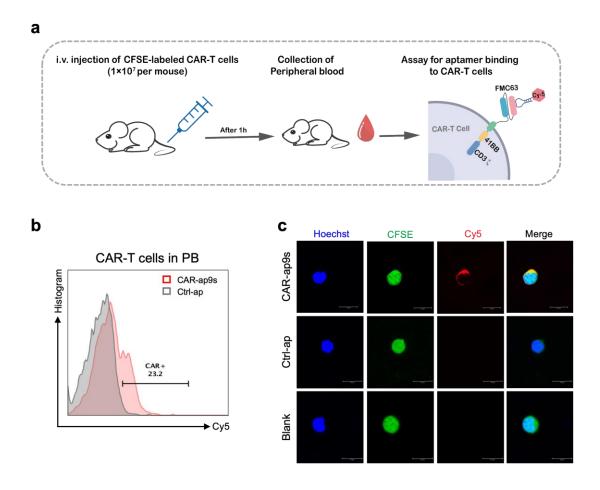


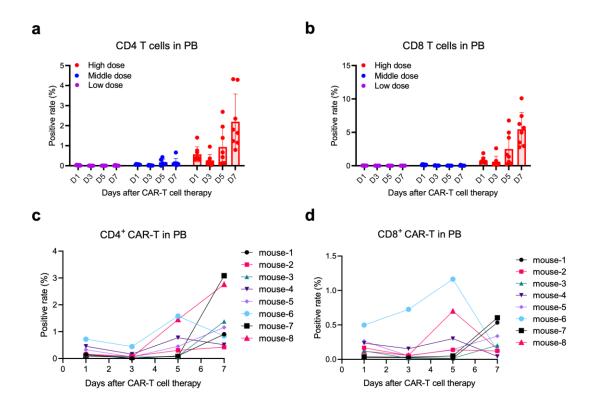
Figure S2. (a) The plasmids for CAR19 and CAR19-GFP. (b) Flow cytometry assays to validate the successful construction of CAR19-Jurkat cells.

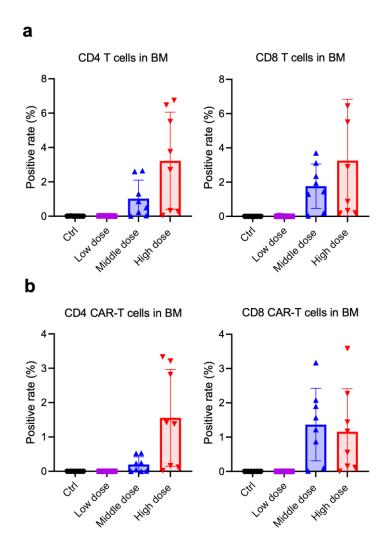
Figure S3. Flow cytometry assay to detect the binding of ssDNA pools (Ctrl-ap and c6-ap) to CAR19-Jurkat cells.

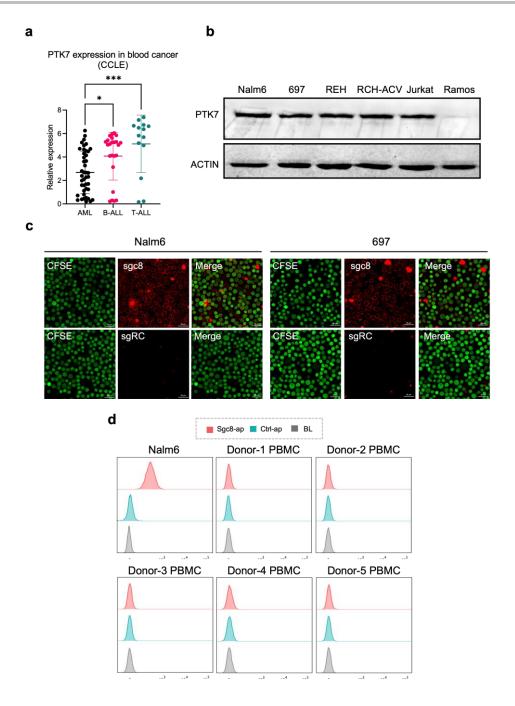
Figure S4. The predicted secondary structures of full-length CAR-ap (7, 9, 10, 13, 14, and 18) (a) and optimized CAR-ap (7s, 9s, 10s, 13s, 14s, and 18s) (b) aptamers by Mfold.

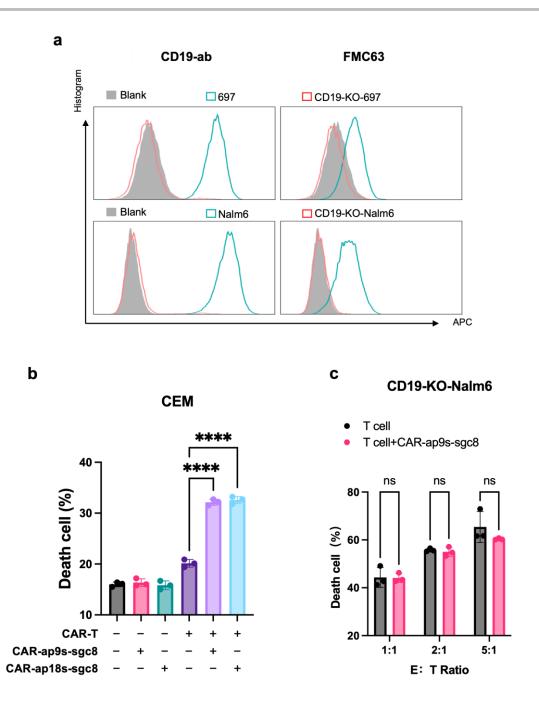




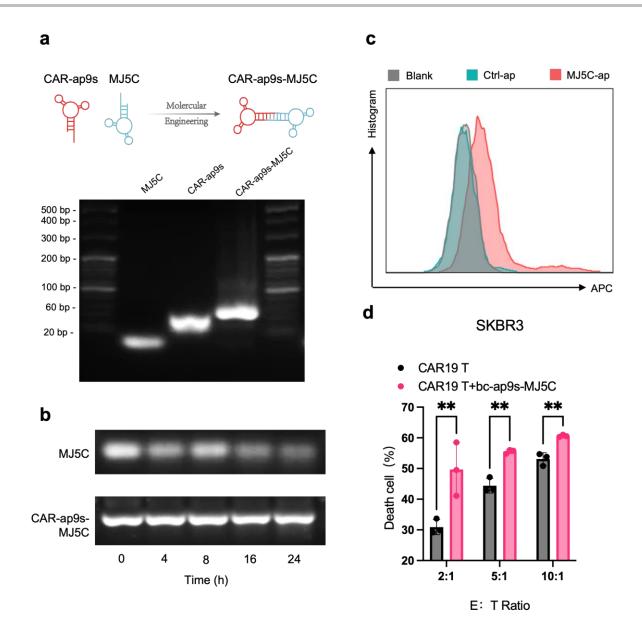

Figure S5. The binding affinity of CAR-ap18s to CAR19-Jurkat cells.


Figure S6. Flow cytometry assay of CAR-ab and CAR-ap9s aptamer binding to CAR19-NK92 cells. Left, flow cytometry plots representing three replicates (a). Right, the percentage of GFP⁺ NK92 cells that were also positive for CAR-ab or CAR-ap9s aptamer binding (b).


Figure S7. Microscopic observation of CAR19-T cell binding to the magnetic beads during cell sorting. (a) Magnetic beads loaded with aptamers bind to CAR-positive T cells and form cell clusters (white circles and arrows). (b) CAR-positive T cells are released from magnetic beads after adding the reverse agent and the cell clusters disappear. (c) CAR-positive T cells are eluted and completely separated from the magnetic bead fraction.


Figure S8. (a) Schematic of CAR-ap9s aptamer binding to CFSE-labeled CAR19-T cells in peripheral blood (PB). (b) Flow cytometry assay to detect CAR-ap9s aptamer and Ctrl aptamer binding to CFSE+ CAR19-T cells in PB. (c) Fluorescence confocal microscopy of PB cells from CFSE-labeled CAR19-T cells injected into a mouse stained with CAR-ap9s-cy5 aptamer or Ctrl-ap-cy5 aptamer.


Figure S9. (a-b) Flow cytometry assay of the percentage of CD4⁺ T cells (a) and CD8⁺ T cells (b) in the PB of Nalm6-modeled mice treated with low-doses (purple), middle-doses (blue), and high-doses (red) of CAR19-T cells. (c-d) Flow cytometry detection of the expansion of CD4⁺CAR⁺ T cells (c) and CD8⁺CAR⁺ T cells (d) in the PB of each mouse in the high-dose group at different time points.


Figure S10. Flow cytometry assay of the percentage of CD4⁺ T cells, CD8⁺ T cells (a), CD4⁺CAR⁺ T cells, and CD8⁺CAR⁺ T cells (b) in the bone marrow of Nalm6-modeled mice on the eighth day after treatment with low-dose (purple), middle-dose (blue), and high-dose (red) CAR19-T cells.

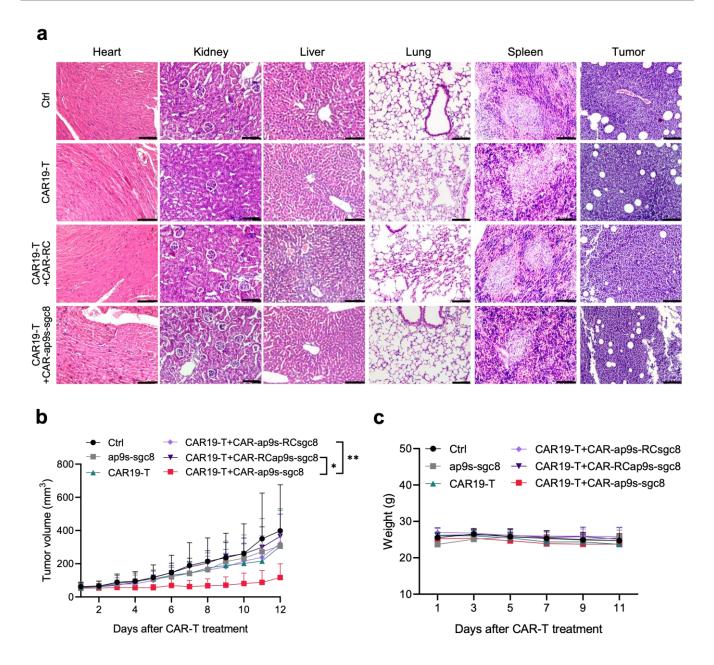

Figure S11. (a) Expression of PTK7 in AML, B-ALL, and T-ALL tumor cell lines and data from the Cancer Cell Line Encyclopedia (CCLE). (b) PTK7 expression in B-ALL cell lines was detected by Western blot. Jurkat cells and Ramos cells were used as positive and negative control, respectively. (c) Fluorescence confocal microscopy of Sgc8-cy5 aptamer binding to Nalm6 cells and 697 cells. (d) Flow cytometry assay of sgc8 aptamer (sgc8-ap) binding to Nalm6 cells and healthy donors' PBMCs.

Figure S12. (a) The binding of commercial antibody CD19-ab or self-prepared FMC63 protein to CD19-KO-697 or CD19-KO-Nalm6 cells was determined by flow cytometry. (b) Evaluation of CAR19-T cell killing against CEM cells mediated by CAR-ap9s-sgc8 and CAR-ap18s-sgc8. (c) Detection of basal nonspecific killing of CD19-KO-Nalm6 cells by T cells.

Figures S13. (a) Schematic illustrating the construction of bispecific circular aptamer, CAR-ap-MJ5C. Agarose gel electrophoresis of ssDNA CAR-ap9s, ssDNA MJ5C, and CAR-ap9s-MJ5C. (b) The stability of ssDNA MJ5C and CAR-ap9s-MJ5C in FBS was determined by agarose gel electrophoresis at 37 °C for the different incubation times. (c) Flow cytometry assay of the MJ5C aptamer (MJ5C-ap) binding to SKBR3 cells. (d) *In vitro* antitumor cytotoxicity of CAR19-T cells to SKBR3 cells at different E: T ratios in the presence or absence of CAR-ap-MJ5C.

Figure S14. (a) H&E staining of tissue sections from CEM tumor xenografts after treatment. Scale bar: 100 μm. (b) Average tumor growth kinetics of mice under different treatments. Tumor volume (mm³) was monitored daily using the caliper method. Data are presented as means \pm s.d. (n=5). Statistical analyses were performed using two-tailed paired Student's t-tests (*p <0.05, **p<0.01, ***p <0.001, n.s., not significant). NSG mice (n=5 per group) were inoculated in the flank with CD19-KO-Nalm6 tumor cells (1×10^7) on day 14. After two weeks of tumor establishment, CAR19-T cells (1×10^7) were administered intravenously (i.v.) to tumor-bearing NSG mice on day 0. Different groups of mice received different intratumoral (i.t.) treatments on day 1 to day 5 (50μ L of PBS for CTRL and CAR19-T groups, bc-RCap9s-sgc8, ap9s-RCsgc8, or bc-ap9s-sgc8). (c) Body weight was monitored and recorded. Data are presented as means \pm s.d. (n=5).

Table S1. Sequences in this work

Name	Sequence(5'-3')		
ssDNA pool	AGCGTCGAATACCACTACAGNNNNNNNNNNNNNNNNNNNN		
Primer- F	AGCGTCGAATACCACTACAG		
Primer- R	Biotin-CTGACCACGAGCTCCATTAG		
CAR- ap7	AGCGTCGAATACCACTACAGGTCAGGACCAGGCGGATGGCAAGTTCGGTCCT AATGGAGCTCGTGGTCAG		
CAR- ap9	AGCGTCGAATACCACTACAGCTAGCTTAGGGTTGGGGGGTTGGTT		
CAR- ap10	AGCGTCGAATACCACTACAGCCAGAGCTCATTACGTGTCCAGCCTATGTGCTA ATGGAGCTCGTGGTCAG		
CAR- ap13	AGCGTCGAATACCACTACAGCGCGTGTCCAGCCATAGTGCCGGTGTAGTCCT AATGGAGCTCGTGGTCAG		
CAR- ap14	AGCGTCGAATACCACTACAGGCTACATTAGAAAGGGGAGGGGTGGATGGCCT AATGGAGCTCGTGGTCAG		
CAR- ap18	AGCGTCGAATACCACTACAGCTTCATGAGGGTTGGGGGGTTGGCAGGCT AATGGAGCTCGTGGTCAG		
CAR- ap7s	TACCACTACAGGTCAGGACCAGGCGGATGGCAAGTTCGGTCCTAATGGAGCT CGTGGT		
CAR- ap9s	TACCACTACAGCTAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCT CGTGGT		
CAR- ap10s	TACCACTACAGCCAGAGCTCATTACGTGTCCAGCCTATGTGCTAATGGAGCTC GTGGT		
CAR- ap13s	ACCACTACAG CGCGTGTCCAGCCATAGTGCCGGTGTAGTC		
CAR- ap14s	ACAG GCTACATTAGAAAGGGGAGGGGTGGATGGCCTAATGGAGCT		
CAR- ap18s	TACCACTACAGCTTCATGAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCT CGTGGT		

```
GTCTAACTGCTGCGCCGCGGGAAAATACTGTACGGTTAGAC
 Sgc8
Ctrl-ap
       GTCTAACCGTACAGTATTTTCCCGGCGCGCGCAGCAGTTAGAC
 (sgRC
  )
 CAR-
       FAM/Cy5-
       TACCACTACAGCTAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCT
 ap9s-
FAM/Cy CGTGGT
  5
 CAR-
       FAM/Cy5-
ap18s-
       TACCACTACAGCTTCATGAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCT
FAM/Cy CGTGGT
  5
 Sgc8-
       FAM/Cy5-GTCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGAC
FAM/Cy
  5
Ctrl-ap- FAM/Cy5-GTCTAACCGTACAGTATTTTCCCGGCGGCGCAGCAGTTAGAC
FAM/Cy
  5
(sgRC-
FAM/Cy
 5)
       Phosphate-
 sgc8-
13L-2-
       TGACTGAT/iBiodT/TACG
 5P-
INBIO
       GTCTAACTGCTGCGCCGCGGGAAAATACTGTACGGTTAGAC
 CAR-
       Phosphate-
 ap9s-
       CGTAAATCAGTCA
13L-1-
  5P
       ACCACTACAGCTAGCTTAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCTC
       GTGGT
MJ5C-
       Phosphate-
13L-1-
       CGTAAATCAGTCA
  5P
       ACAGGTTCTGGGGGGGGGGGGGAACCTGT
```

sgc8-	Phosphate-		
13L-1- 5P	CGTAAATCAGTCA		
	GTCTAACTGCTGCGCCGCGGGAAAATACTGTACGGTTAGAC		
CAR-	Phosphate-		
ap9S- 13L-2- 5P	TGACTGATTTACG		
	ACCACTACAGCTAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCTC GTGGT		
RC9S- 13L-2- 5P RCsgc8- 13L-1- 5P	Phosphate-		
	TGACTGATTTACG		
	ACCACGAGCTCCATTAGCCTGCCAACCAACCCCAACCCTAAGCTAGCT		
	Phosphate-		
	CGTAAATCAGTCA		
	GTCTAACCGTACAGTATTTTCCCGGCGGCGCAGCAGTTAGAC		

Table S2. Sequences of aptamers and reversal agent (RA) used in the cell sorting experiments

Name	Sequence(5'-3')
CAR-	Biotin-
ap9s-	TACCACTACAGCTAGCTTAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCTCG
biotin	TGGT
CAR-	Biotin-
ap18s	TACCACTACAGCTTCATGAGGGTTGGGGGGTTGGTTGGCAGGCTAATGGAGCTCG
- biotin	TGGT
DIOUII	
RA-	ACCACGAGCTCCATTAGCCTGCCAACCAACCCCAACCCTAAGCTAGCT
01111	GGTA
ap9s	

RA- ACCACGAGCTCCATTAGCCTGCCAACCCAACCCCCAACCCTCATGAAGCTGTAGT
CAR- GGTA
ap18s

Table S3. Sequences of CRISPR/cas9 sgRNA for CD19 knockout

Name	Sequence
sgRNA-CD19-Oligo 1	CACCGTTCCTCGGGCCTGACTTCCA
sgRNA-CD19-Oligo 2	CTGGAAGTCAGGCCCGAGGAACAAA