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Predicting the bed occupancy of an intensive care unit (ICU) is a daunting task. The uncertainty associated with the prognosis of
critically ill patients and the random arrival of new patients can lead to capacity problems and the need for reactive measures. In
this paper, we work towards a predictive model based on Random Survival Forests which can assist physicians in estimating the
bed occupancy. As input data, wemake use of the Sequential Organ Failure Assessment (SOFA) score collected and calculated from
4098 patients at two ICU units of Ghent University Hospital over a time period of four years. We compare the performance of our
systemwith a baseline performance and a standard Random Forest regression approach. Our results indicate that Random Survival
Forests can effectively be used to assist in the occupancy prediction problem. Furthermore, we show that a group based approach,
such as Random Survival Forests, performs better compared to a setting in which the length of stay of a patient is individually
assessed.

1. Introduction

In recent years, there is an increasing trend to automatically
monitor, collect, process, and store clinical parameters of
patients during their hospital visit. These automated systems
have led to the creation of a vast array of heterogeneous and
often incomplete data collections which are hypothesized to
contain a wealth of hidden knowledge. However, these data
compendia, often dubbed “big data goldmines” in popular
media, have mainly been left untouched due to the inherent
difficulty they present to (manually) extract information. In
this paper, we present our work to create a system which can
assist physicians to predict the bed occupancy of an intensive
care unit (ICU) based on automatically monitored clinical
parameters.

Predicting the amount of free beds in an ICU is a difficult
task as there is a substantial amount of uncertainty associated
with the prognosis of critically ill patients. This prediction
is further complicated by the fact that there is constant

arrival of new patients that unexpectedly require intensive
care [1]. Nowadays, ICU physicians generally plan only a
single day ahead based on clinical judgement whether or not
a patient will leave the ICU. This can lead to situations in
which capacity problems arise and planned surgeries have
to be postponed. The development of an automated system
which can assist physicians in these matters would clearly be
beneficial to plan better and further ahead.This in turn could
help reduce the financial cost associated with an intensive
care unit. The latter impact should not be underestimated,
as it was reported that the cost of care in 2005 for critically
ill patients accounts for about 0.66% of the gross domestic
product in the United States [2].

In this work, we use machine learning techniques that are
trained with recorded Sequential Organ Failure Assessment
(SOFA) scores [3] in order to estimate bed occupancy given
the current population of ICU patients.The SOFA score is an
established ICU scoring system which assesses the individual
degree of organ failure in six organ systems on a daily
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basis. ICU scoring systems are often automatically gathered
and presented at a regular interval to provide physicians a
condensed overview of the status and evolution of a patient.
Other frequently used scoring systems include, amongst
others, APACHE II [4] and SAPS II [5]. A strong connection
has been reported between the evolution of the SOFA score
and the mortality of patients in ICU wards [6].

In related work, significant efforts have been made to
create computational models which predict either the precise
length of stay (regression models) or the risk of a pro-
longed stay (classification algorithms) of patients in the ICU
using various clinical parameters. Kramer and Zimmerman
[7] have developed methods to identify patients with an
increased risk for a prolonged stay at the ICU based on data
collected during the first five days of admission. Meyfroidt
et al. [8] applied Gaussian processes to predict the length of
stay of 960 patients undergoing cardiac surgery using data
monitored during the first four hours of admission. Similarly,
several studies have used Artificial Neural Networks to
predict the length of stay of cardiac patients in different
settings [9–11].

Houthooft et al. [12] appliedmachine learning techniques
on SOFA score data to predict individual patient mortality,
length of stay, and prolonged stay in the ICU. They conclude
that the individual length of stay of a patient is hard to
predict and propose a split of patients in a two-by-two grid,
based on the mortality risk of the patient and the probability
of a prolonged stay. Verburg et al. [13] performed a large
comparison of regression models to predict the length of
stay of unplanned ICU admissions; they also conclude that
it is difficult to predict using only patient characteristics at
admission time.

In contrast to these studies, we will not focus on pre-
dicting the individual length of stay of a patient but develop
a system that predicts the evolution over time of the bed
occupancy of an entire ICU given its current population.
By opting to model and predict a group of patients instead
of predicting at the individual level, we aim to reduce the
variability and improve the total accuracy prediction of bed
occupancy predictive models. For this, we link the bed
occupancy problem to the domain of survival analysis and
propose a predictive model using Random Survival Forests
[14]. We compare our approach to a standard regression
approach in which Random Forests [15] are used to predict
the length of stay of each patient.

Note that, in order to predict the exact bed occupancy at
time 𝑡, the arrival of new patients should also be forecasted.
However, without actions by physicians (e.g., postpone surg-
eries), the arrival rate at the ICU is not affected by the number
of occupied beds. An estimation of the evolution of available
beds based on the current population of patients is required
to anticipate problems and act to control new admissions
by either reserving additional capacity or moving patients to
other hospitals or other wards. These actions are triggered by
the ability to detect capacity problems early given the number
of planned surgeries, the average interarrival time of critically
ill patients, and the forecasted number of occupied beds by
the current patients. The approach described in this article
aims to deliver a better estimate of the latter aspect.

The article is organised as follows: Section 2 discusses
the collection of the data, the scoring system (SOFA), and
the applied methods from machine learning. In Section 3,
these methods are compared and the results are further
analysed.

2. Materials and Methods

In this section, we first discuss the properties of the dataset:
how it was collected and how the data was further pro-
cessed. Next, we proceed by introducing the algorithms
we use in our work. Finally, we discuss the evaluation
metric.

2.1. Data Extraction. The data concerns all adult patients
admitted between 1 January 2009 and 17 September 2013 at
two ICU units of Ghent University Hospital. In total 14,480
patient records were extracted including both monitored
values and patient information as well as lab results. ICU
stays of over 16 days were rare and did not occur often in
our data; hence these patients were excluded as they are more
the focus for models that attempt to predict prolonged stays.
Furthermore, a large group of patients stays in the ICU for
a very short time span. Such patients, with a length of stay
of less than 3 days, were also omitted for two reasons. The
first reason is that these patients are often recovering from
uneventful surgeries and are in good condition, allowing
the physician to make an accurate prediction for a short
length of stay. The second reason is that the computational
model we describe further will use data gathered from
the previous three days to make a prediction; therefore
the model would need to operate with insufficient data.
In addition, ICU planning is mostly concerned with the
remaining length of stay for patients with a longer stay. Note
that our choice to predict based on 3 days of admission
data is short in comparison to other studies (Kramer and
Zimmerman [7] and Houthooft et al. [12]). Finally, only
the clinical parameters related to the SOFA scoring system
were retained. In total, this leads to 4098 unique patient
records.

2.2. Dataset Processing: SOFA Score Calculations. The SOFA
score (Sequential Organ Failure Assessment score) [3] is one
of several ICU scoring systems and tries to capture the status
of a patient’s organ function. The score is in general used
to determine the patient’s status and evolution throughout
his ICU stay and is calculated at a daily interval. The total
SOFA score is the sum of six SOFA subscores which are
indicators of the coagulation, renal function, cardiovascular
system function, respiratory function, liver function, and
central nervous system function. For each of the subsystems,
a score between 0 and 4 is awarded, with a high score being
indicative for organ failure. SOFA scores were automatically
calculated by an automated system at the hospital each day at
5 AM using all available clinical parameters up to 24 hours
upfront.

The coagulation subscore is calculated by measuring the
minimum number of thrombocytes (number of platelets
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×103/𝜇L) in the blood of the patient (𝛼coag) which is then
mapped to a SOFA subscore:

SOFAcoag =

{{{{{{{{{{
{{{{{{{{{{
{

4 𝛼coag ≤ 20
3 𝛼coag ≤ 50
2 𝛼coag ≤ 100
1 𝛼coag ≤ 150
0 𝛼coag > 150.

(1)

The renal function SOFA score is based on two input values:
the maximum amount of plasma creatine measured [mg/dL]
(𝛼ren) and the sum of the urine volume [mL] (𝛽ren):

SOFArenal =

{{{{{{{{{{
{{{{{{{{{{
{

0 𝛼ren < 1.2
1 𝛼ren < 1.9
2 𝛼ren < 3.4
3 𝛼ren < 4.9 ∨ 𝛽ren < 500
4 𝛼ren ≥ 4.9 ∨ 𝛽ren < 200.

(2)

The liver subscore is calculated by measuring the maximum
bilirubin serum value [mg/dL] (𝛼liver) within the 24 h win-
dow:

SOFAliver =

{{{{{{{{{{
{{{{{{{{{{
{

4 𝛼liver ≥ 12
3 𝛼liver ≥ 6
2 𝛼liver ≥ 2
1 𝛼liver ≥ 1.2
0 𝛼liver < 1.2.

(3)

To calculate the nervous system subscore, theminimumvalue
of the Glasgow coma score (𝛼cns) is used. In case the patient
was sedated in the last 24 hours, the last known value of the
Glasgow coma scale is used:

SOFAcns =

{{{{{{{{{{
{{{{{{{{{{
{

4 𝛼cns ≤ 6
3 𝛼cns ≤ 9
2 𝛼cns ≤ 12
1 𝛼cns ≤ 14
0 𝛼cns > 14.

(4)

The respiratory function SOFA score is calculated bymeasur-
ing the minimum PaO2/FiO2 ratio (PF) [mmHg] (𝛼resp) and
by checking whether or not the patient was ventilated (𝑉) in
the last 24 h period:

SOFAresp =

{{{{{{{{{{
{{{{{{{{{{
{

4 𝛼resp ≤ 100 ∧ 𝑉
3 𝛼resp ≤ 200 ∧ 𝑉
2 𝛼resp ≤ 300
1 𝛼resp ≤ 400
0 𝛼resp > 400.

(5)

To calculate the cardiovascular system function SOFA score,
first the mean arterial pressure (map) (𝛼cardio) is calculated.
Also, the maximum amount of administered doses of the
following drugs is extracted in [𝜇g/kg/min]: dopamine (dop),
dobutamine (dobu), epinephrine (epi), and norepinephrine
(nor):

SOFAcardio

=

{{{{{{{{{{
{{{{{{{{{{
{

4 dop > 15 ∨ epi > 0.1 ∨ nor > 0.1
3 dop ∈ ]5, 15] ∨ epi ∈ ]0, 0.1] ∨ nor ∈ ]0, 0.1]
2 dop ∈ ]0, 5] ∨ dobu > 0
1 map < 70
0 otherwise.

(6)

2.3. Dataset Definition. A dataset was created using the pro-
cessed data, in which the remaining length of stay of a patient
at day 𝑑 of his or her stay, measured in days, is defined as the
target variable. Each patient in the processed data is split into
one or more dataset entries. The predictor values of a single
entry are as follows:

(i) The SOFA values of the patient during the previous 3
days (6 × 3 features)

(ii) The amount of days the patient has been admitted to
the ICU (1 feature)

For each patient a dataset entry is created at the start of day
4 and at the start of each following day until the morning of
discharge.This approach can be regarded as a sliding window
over the stay of each patient, creating an entry for each step
of the window. The additional parameters summarizing the
amount of days the patient has already been admitted encode
important information on the status of the patient together
with the SOFA scores.

The final dataset contains 19 predictor variables and
11662 entries, generated from 4023 patients. Missing values
were imputed as zero because this indicates that according
to the doctor’s judgement the organ was healthy and no
monitoring was necessary.

2.4. Random Forests. The Random Forests (RF) is an ensem-
ble learning technique used frequently for supervised learn-
ing problems (regression and classification). It consists of an
ensemble of decision trees trained on a training set of labeled
data points. After training a Random Forest, an unseen data
point is predicted as the mode of the output values of the
trees (classification) or themean of the predictions of the trees
(regression).

The algorithm constructs the forest as follows: training is
initiated by drawing 𝐵 bootstrap samples from the original
dataset: for each bootstrap the excluded data is referred to
as Out-of-Bag (OOB) data. Next, a decision tree for each
bootstrap sample is grown: the root node is split into two
daughter nodes. These daughter nodes are recursively split
until no new daughter nodes can be formed because those
would no longer hold more than a predefined minimum
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number of data points orwhen the tree exceeds themaximum
depth specified. These extreme nodes which can no longer
be split are referred to as terminal nodes. The terminal nodes
of a decision tree 𝑏 are denoted by the set 𝑇(𝑏). To split a
node, a random set of the candidate variables 𝑝 is chosen,
and an optimal split value 𝑐 is calculated by optimizing an
information metric. Popular metrics are the Gini impurity,
the information gain, variance reduction, or the residual sum
of squares. The latter metric is used for the experiments in
this work. A more in-depth overview is given in [16].

For regression, each terminal node ℎ of a tree 𝑏 has an
associated value𝐹(ℎ). In case ℎ contains only a single training
data point, the value corresponds to the value of the training
point. If several training points are associated with the node,
the average is taken. To predict an unseen data point x with
tree 𝑏, the point is first dropped through the tree until it ends
in a terminal node ℎ. The prediction of a tree node can be
written as

𝐻𝑏,ℎ (x𝑖) =
{
{
{

𝐹 (ℎ) x𝑖 ∈ ℎ
0 otherwise;

(7)

the predicted output of the RF ensemble of trees can then be
written as

𝐻𝑒 (𝑡, x𝑖) =
1
𝐵
𝐵

∑
𝑏=1

∑
ℎ∈𝑇(𝑏)

𝐻𝑏,ℎ (x𝑖) . (8)

Note that dropping x𝑖 through a decision tree ends in a single
terminal node due to its binary nature.

2.5. Baseline Approach. A second method to predict the LOS
of a patient is also included in Results and Discussion. In this
baselinemethod, the predicted LOS for a patient x is obtained
by sampling a random patient from the data and selecting
their LOS value. As the random numbers are drawn from
the data distribution rather than a different distribution, this
provides a competitive baseline which acts as a reference for
the results obtained with RSF and RF.

2.6. Survival Analysis and Random Survival Forests. Survival
analysis concerns a class of statistical methods for analysing
“time to event” data which occurs in a number of research
fields such as medicine, biology, and engineering. An event
can, for example, be a failure of a component in engineering
or, in the case of treatment of ill patients, death. A typical
feature of this type of data is that it often contains censored
or truncated data observations. For example, right censored
data points are observations, where all available information
is that the event did not occur yet at a given time. Random
Survival Forests (RSF) were introduced by [14] as a forest
ensemble learner for the analysis of right censored data. The
length of stay of a patient at the ICU can be considered as an
unusual instance of censoring, in which entering the ICU is
considered to be a “birth” event, leaving the ICU a “death”
event and the death of an individual is considered to be right
censoring.

The RSF algorithm initiates similar to RF by drawing 𝐵
bootstrap samples from the original dataset. For each boot-
strap sample, a survival tree is grown: nodes are recursively
split until no new daughter nodes can be formed because
those would no longer hold more than 𝑑0 > 0 unique death
events. Good splits maximize the survival difference between
the daughters nodes; in the experiments this was determined
using the log-rank splitting rule [17]. The values in the
terminal nodes are given by a Cumulative Hazard Function
and are time-dependent. For a terminal node ℎ of a survival
tree 𝑏 at time 𝑡, this is given by the Nelson-Aalen estimator:

𝑁𝑏,ℎ (𝑡) = ∑
𝑡𝑙,ℎ≤𝑡

𝑑𝑙,ℎ
𝐼𝑙,ℎ

, (9)

which sums the ratio of the number of deaths 𝑑𝑙,ℎ and the
individuals at risk 𝐼𝑙,ℎ over all distinct time events 𝑡𝑙,ℎ prior
or equal to 𝑡. All cases of ℎ are assigned the same CHF. To
compute the ensemble CHF of the survival forest with 𝐵 trees
for a given d-dimensional case x𝑖,

𝐻𝑠𝑒 (𝑡, x𝑖) =
1
𝐵
𝐵

∑
𝑏=1

∑
ℎ∈𝑇(𝑏)

𝐻𝑠𝑏,ℎ (𝑡, x𝑖) , (10)

with 𝐻𝑠𝑏,ℎ(𝑡, x𝑖) being equal to the Nelson-Aalen estimator if
x𝑖 ends in ℎ when dropped through the survival tree:

𝐻𝑠𝑏,ℎ (𝑡, x𝑖) =
{
{
{

𝑁𝑏,ℎ (𝑡) x𝑖 ∈ ℎ
0 otherwise.

(11)

It can be observed that the main points of difference with the
traditional RF are the values associated with each terminal
node. These are given by the Nelson-Aalen estimator and
depend on the time 𝑡.

2.7. Using Random Survival Forests to Predict the ICU Bed
Occupancy Over Time. In order to predict the bed occupancy
of the ICU over time, we use the following approach: define
the survival function 𝑆(𝑡) as the probability that a patient will
still be admitted at the ICU:

𝑆 (𝑡) = 𝑃 ({𝑇 < 𝑡}) . (12)

Note that this survival function is reflected by the Nelson-
Aalen estimator as used by RSF. We now approach the bed
occupancy problem as follows:

(1) Grow a Random Survival Forest using training data.
(2) For a test set of patients currently admitted at the ICU,

drop each patient down the forest.
(3) Extract the individual predicted survival functions for

each patient by evaluating the obtained CHFs (see
(10)) over a time interval.

(4) Sum these survival functions at each time point and
consider the obtained vector, loadpred, as the expected
amount of patients at each time point.

Figure 1 illustrates how loadpred is obtained from a set of
patient data, using a trained Random Survival Forest (steps
(3) and (4)).
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Figure 1: Schematic illustration of the computation of loadpred, given a set of patient data.

2.8. Goal and Error Definition. Ultimately, our goal is to
develop and assess a computational model which can predict
the occupancy of the ICU for the next several days. This
model will use the predictor variables corresponding to the
patients currently admitted to the ICU. As described in the
previous section, these are the SOFA scores of the previous
three days and the amount of days the patient has been
admitted. As output, the predicted occupancy of the ICU at
each day is to be returned, as if no new patients would be
admitted.

To assess the accuracy of such a method, standard 10-
fold cross validation was used, including a modification to
calculate a more intuitive measure, error measure 𝐸, for
practical use. For each test fold, a set of 25 dataset entries is
sampled without replacement, of which loadpred is predicted
using the trained forest. This set can be considered as a
random occupation of the ICU with a group of patients with
varying length of stay and days admitted. Next, the mean
absolute error between loadpred and the actual loadreal is
calculated. As a final step, loadpred and loadreal are truncated
at day 10, as in practice the prediction accuracy of the
models after this time period is less important. Note that the
truncation occurs after calculating loadpred and loadreal; hence
it does not influence the models to predict beyond day 10 if
desired. This process is repeated 100 times and averaged to
obtain 𝐸. Using this scheme, 𝐸 can be interpreted intuitively
as the average error of the occupancy over time in an average
sized ICU of 25 available beds in the first 10 days.

3. Results and Discussion

In this section, we first evaluate our approach using the error
measure described in the previous section. In addition, we
further investigate which clinical parameters the algorithms
indicate as important to make the prediction.

3.1. Performance Evaluation. We compare our proposed RSF
approach with both a standard Random Forest regression
(RF) model trained to predict the individual length of stay
of a single patient and the baseline approach.

Figure 2 plots the error measure 𝐸 for all algorithms
in a boxplot overview. Each individual dot in the boxplot
represents a single result of𝐸 in one of the 10 folds. To support
the observations in the remainder of this section, we verified

their statistical significance by means of the Wilcoxon rank-
sum test with continuity correction (cut-off 𝑝 value ≤ 0.05).

A first observation is that the Random Forest regression
approach performs worse than the baseline approach. We
believe that this is due to the fact that the RF method is not
able to accurately model and predict the individual length of
stay of a patientwith the given data. Instead, themodel resorts
to predicting the average length of a stay of a patient in many
cases to minimize the prediction error for every individual,
which leads to inaccurate predictions at the group level. By
focusing on a group based approach that produces a day-by-
day estimate by summing individual predictions this problem
could be avoided. The RSF method does this, as probabilities
are predicted on the individual level for each point in time by
the survival functions.

A second observation is that the RSF approach performs
significantly better than the baseline approach.This indicates
that it is possible to construct machine learning models that
use SOFA scores to better predict the bed occupancy. In our
opinion, this is a strong result as two random groups of 25
patients in the average case in the same ward should not lead
to big differences in bed occupancy over time.Therefore, any
method that can significantly improve on the latter is a useful
tool in practice.

3.2. Contribution of the Variables to the Predictive Power of the
Model. Both Random Forest and Survival Random Forests
can provide further insight in which variables, in this case,
SOFA scores, are informative to make predictions. In the
setting of both Regression Random Forests and Random
Survival Forests, the Breiman-Cutler permutation variable
importance measure [15] has been proposed. Briefly, this
measure is obtained by comparing the normal OOB pre-
diction error to the OOB prediction error when a certain
feature 𝑥 is randomly permuted for each tree and this further
averaged over all trees. These measures were calculated for
both algorithms and were further normalized to obtain
relative scores as plotted in Figure 3. A first observation
which can be made is that SOFAresp measure at day 3 is
especially informative in both algorithms. Furthermore, both
algorithms also indicate SOFAcns at day three as a major
second contributor. Both algorithms also indicate that the
amount of days the patient has already been admitted is a
major predictor for the remaining length of stay. Further
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Figure 3: The relative variable importance measure for the Random Forest and Random Survival Forest.

down the ranking, the relative importance is more spread
across all features.This difference is more pronounced in RSF
with some variables, for example, SOFAcoag not contributing
to the predictive power of the model. Next, a clear trend
is that the information available at day 3 is generally more
informative than the scores at days 2 and 1. This is to be
expected, as the latest recorded scores provide the most up

to date information on the condition and evolution of the
patient.

4. Conclusion

Previous studies have concluded that modelling the indi-
vidual length of stay of patients admitted in the ICU is
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a nontrivial task. In this work, we have explored and proposed
a group based approach to the problem by constructing
a novel data-driven algorithm to predict the overall bed
occupancy of an ICU. Our approach uses Random Survival
Forests to create individual survival functions which are then
summed over time to obtain the overall bed occupancy pre-
diction at each day.We have shown that this approach is to be
preferred over a standard regression approach and performs
significantly better than a baseline approach. Finally, we have
also shown that the respiratory and nervous system SOFA
scores together with the number of days the patient has
already been admitted are the most important measures and
that the information of day 3 is the most influential.
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