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Heparan sulfate: Resilience factor 
and therapeutic target for cocaine 
abuse
Jihuan Chen1, Tomoya Kawamura1, Manveen K. Sethi2, Joseph Zaia2, Vez Repunte-Canonigo1 
& Pietro Paolo Sanna   1

Substance abuse is a pressing problem with few therapeutic options. The identification of 
addiction resilience factors is a potential strategy to identify new mechanisms that can be targeted 
therapeutically. Heparan sulfate (HS) is a linear sulfated polysaccharide that is a component of the 
cell surface and extracellular matrix. Heparan sulfate modulates the activity and distribution of a 
set of negatively charged signaling peptides and proteins — known as the HS interactome — by 
acting as a co-receptor or alternative receptor for growth factors and other signaling peptides and 
sequestering and localizing them, among other actions. Here, we show that stimulants like cocaine 
and methamphetamine greatly increase HS content and sulfation levels in the lateral hypothalamus 
and that HS contributes to the regulation of cocaine seeking and taking. The ability of the HS-
binding neuropeptide glial-cell-line-derived neurotrophic factor (GDNF) to increase cocaine intake 
was potentiated by a deletion that abolished its HS binding. The delivery of heparanase, the endo-
β-D-glucuronidase that degrades HS, accelerated the acquisition of cocaine self-administration and 
promoted persistent responding during extinction. Altogether, these results indicate that HS is a 
resilience factor for cocaine abuse and a novel therapeutic target for the treatment of cocaine addiction.

Substance abuse is a pressing problem with few therapeutic options. The identification of resilience factors for addic-
tion is a potential strategy to identify new mechanisms that can be targeted therapeutically. Heparan sulfate (HS) is a 
linear sulfated polysaccharide that is a ubiquitous component of the cell surface and extracellular matrix1. Heparan 
sulfate is structurally similar to heparin, but heparin is more sulfated and more charged than HS and has a cell- and 
tissue-specific distribution2,3. Heparan sulfate binding modulates the activity and distribution of a set of negatively 
charged signaling peptides and proteins that constitute the HS interactome1,2,4–7. Thus, the dynamic regulation of HS 
and its interacting partners can provide novel therapeutic targets to affect various biological processes.

Through gene expression profiling, we previously found that rats with a history of excessive cocaine 
self-administration exhibited higher expression of the HS proteoglycan syndecan-3 in the lateral hypothalamus 
(LH)8, a brain region that is involved in the motivation for both natural rewards and drugs of abuse9–12. Syndecan-
3-null mice self-administered more cocaine than wildtype mice8. Additionally, glial-cell-line-derived neurotrophic 
factor (GDNF), which binds syndecan-3 and has high affinity for GDNF family receptor α1 (GFR-α1), increased 
cocaine intake in syndecan-3-null mice significantly more than in wildtype mice8. One unresolved issue that was 
raised by these results is whether HS plays a general role in the motivation for cocaine. To test the hypothesis that 
HS contributes to the regulation of drug intake, we explored the regulation of HS by stimulants like cocaine and 
tested the effects of (i) a recombinant GDNF mutant that is defective in HS binding and (ii) overexpression of the HS 
degrading enzyme heparanase13 on the motivation for cocaine. The results showed that the HS content was increased 
in the LH by exposure to cocaine and exerted a considerable modulatory effect on cocaine intake that was distinct 
from and additive to the role that is played by syndecan-3 signaling. Altogether, these results indicate that HS is a 
resilience factor for cocaine abuse and a novel therapeutic target for the treatment of cocaine addiction.

Methods
Mice.  Male C57BL/6 J and syndecan-3 knockout mice on a C57BL/6 J background were housed in a cli-
mate-controlled vivarium on a 12 h/12 h reverse light/dark cycle (lights on 9:00 AM) with food and water available 
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ad libitum throughout the study. The experimental protocols were performed in accordance with US National 
Institutes of Health guidelines on animal care and were approved by The Scripps Research Institute Animal Care 
and Use Committee.

Materials.  Heparin lyase I, II, and III were purchased from New England Biolabs (Andover, MA). Heparan 
sulfate sodium salt from bovine kidney (HSBK), Trizma base, sodium chloride, Triton X-100, and calcium chlo-
ride were purchased from Sigma-Aldrich. Ethylenediaminetetraacetic acid (EDTA) was purchased from Fluka. 
Ammonium acetate and C-18 zip tips (100 µl, Thermo Scientific) and LCMS-grade acetonitrile and water were 
purchased from Fisher Scientific. Complete mini protease inhibitor cocktail tablet (EDTA-free) was purchased 
from Roche Diagnostics.

Tissue lysis of mouse lateral hypothalamus.  Fresh frozen mouse lateral hypothalamus tissue was lysed 
with buffer that contained 200 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM EDTA, protease inhibitor cocktail 
tablet, and 0.5% Triton X-100. Tissues were homogenized and incubated for 30 min on ice, followed by centrif-
ugation (Microfuge 22 R centrifuge, Beckmann Coulter) at 12,000 rotations per minute at 4 °C for 30 min. The 
supernatant was collected into separate tubes, and the protein concentration of each sample was determined 
using the BCA assay. The samples were stored at −20 °C until further use.

Enzyme digestion for heparan sulfate and size exclusion chromatography (SEC).  An equal 
amount of protein for each sample was taken. Five times acetone was added and further incubated at −20 °C 
overnight. The next day, the samples were centrifuged (Microfuge 22 R centrifuge, Beckmann Coulter) at 20,000 
× g at 4 °C for 30 min. This was further washed with equal volumes of acetone:water (6:1) and centrifuged again. 
The supernatant was discarded, and the pellet was air dried. The protein pellet from each sample and three rep-
licates of 10 µg each HS from bovine kidney as apositive control were resuspended in a final volume of 50 μl of 
20 mM Tris-HCl buffer (pH 7.4) in the presence of 5 mM CaCl2 and 5 mU each of heparin lyase I, heparin lyase 
II, and heparin lyase III. The digestion was incubated at 37 °C overnight. The samples were then dried by vacuum 
centrifugation (SPD1010 Speedvac system, Thermo Savant) and resuspended in 2% ACN/water-0.1% TFA and 
passed through a C-18 zip tip (100 µl). This step was repeated three times. The released glycosaminoglycans 
were collected as flow-through for each sample and dried by vacuum centrifugation (SPD1010 Speedvac system, 
Thermo Savant). The HS disaccharide samples were further desalted using an SEC column (Superdex™ peptide 
PC 3.2/30, GE Healthcare) using 25 mM ammonium acetate in 5% ACN (pH 4.4) as the mobile phase at an iso-
cratic flow of 0.04 ml/min for 60 min. The HS disaccharides were eluted between 35 and 45 min at an ultraviolet 
absorbance of 232 nm. The clean HS disaccharide samples were then dried by vacuum centrifugation (SPD1010 
Speedvac system, Thermo Savant) and stored at −20 °C until further use.

Liquid chromatography-mass spectrometry analysis.  Heparan sulfate disaccharides were analyzed 
using negative ionization mode electrospray liquid chromatography-mass spectrometry (LC-MS). Disaccharides 
were separated using 1.9 µm, 0.3 × 150 mm GlycanPac AXH-1 (ThermoScientific) packing material mounted 
on an Agilent 1200 LC system (Agilent Technologies, Santa Clara, CA). A 20 min isocratic method was used 
with 85% B and a flow rate of 7 µl/min. Solvent A was 50 mM ammonium formate (pH 4.4) in 10% ACN, 
and solvent B was 95% ACN and 5% water. Mass spectrometry was performed using an Agilent 6520 Q-TOF 
spectrometer (Agilent Technologies, Santa Clara, CA) with dual electrospray ionization. A 1 pmol quantity of 
ΔHexA2S-GlcNCoEt(6 S) (Iduron) was added to all of the samples as an internal standard before LC-MS analy-
ses. Different concentrations (500 fmol, 1 pmol, 2 pmol, 5 pmol, and 10 pmol) of eight HS standard disaccharides 
(D0A0, D2A0, D0A6, D2A6, D0S0, D2SO, D0S6, and D2S6; Iduron) were also run on LC-MS as triplicates to plot 
a standard curve.

Mouse jugular vein catheterization.  Catheterization surgery and the subsequent intravenous 
self-administration procedures were conducted as previously described8. Briefly, mice were implanted with intra-
venous jugular catheters under anesthesia with ketamine (Ketaset, 80 mg/kg, i.p., Fort Dodge Animal Health) 
and xylazine (16 mg/kg, i.p., Butler Animal Health). During surgery, the catheter tubing was threaded subcuta-
neously with the external port exiting the midscapular region, and a 1 cm length of the tip was inserted into the 
right external jugular vein. The catheter was filled with 25 µl of heparinized saline solution (30 USP U/ml, APP 
Pharmaceuticals) that contained cefazolin (100 mg/ml, Apotex) and flushed daily with the same solution for 3 
additional days and thereafter with the heparinized saline solution without antibiotic. The mice were allowed at 
least 1 week to recover from surgery.

Intravenous cocaine self-administration in the mouse.  Following the recovery period, the mice 
were trained to press a lever in an operant chamber (Med Associates) for intravenous injections of cocaine 
(0.6 mg/kg per injection) under a fixed-ratio 1 timeout 20-s schedule (FR1TO20) during 1 h daily sessions, 
5 days per week. The criterion for the acquisition of cocaine self-administration was a stable level of cocaine 
self-administration behavior: (i) a minimum of 10 reinforcers earned per session and (ii) at least 70% of the 
total responses on the active lever (iii) over two consecutive sessions (±20%). After the successful acquisition 
of cocaine self-administration, a full dose-effect study was performed using an FR5 schedule, in which the 
response requirement was gradually increased to FR5 at the training dose (0.6 mg/kg per injection). Once sta-
bilized self-administration behavior was reached, each of the unit doses (1.2, 0.6, 0.3, 0.15, 0.075, and 0.038 mg/
kg per injection) was tested in descending order in 1-h daily sessions with at least two sessions for each dose. A 
progressive-ratio (PR) schedule of reinforcement was subsequently used to assess reinforcement strength with 
the training dose of 0.6 mg/kg/injection. The PR formula was the following: 5 × exp(reinforcer number × 0.2) − 5, 
which yields values of 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 62, 77, 95, 118, 145, etc. Sessions were terminated after 30 min 
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elapsed without a reinforcer earned or 6 h, whichever came first. The breakpoint was defined as the step value 
associated with the last completed ratio prior to terminating the sessions. The number of reinforcers earned, total 
cocaine intake, and breakpoints from the mean of consecutive sessions at each dose were analyzed by two-way 
repeated-measures analysis of variance (ANOVA). At the end of experiment, catheter patency was verified with a 
solution of 0.25 mg ketamine and 0.0125 midazolam (in 50 µl). Mice with a defective catheter were excluded from 
the statistical analysis. All of the criteria were pre-established.

Adeno-associated virus (AAV) vectors.  GDNF-AAV and the mutant ΔN2-GDNF-AAV were engi-
neered as previously described8 in a self-complementary AAV viral backbone, scaav2-cmv-gfp, obtained from 
the National Gene Vector Biorepository (NGVB, Indiana University). These recombinant AAV viral vectors con-
tain the expression cassette of either mouse GDNF or ΔN2-GDNF, which were synthesized by polymerase chain 
reaction (PCR) based on accession no. BC119031 with amino acids 24–29 (ENSRGKGRRGQRGKNR) deleted 
in the ΔN2-GDNF. Recombinant AAV-heparanase in a conventional AAV backbone was constructed based on 
mouse heparanase accession no. BC138784.

Microinfusion of AAV.  The animals were anesthetized as described previously for intra-LH virus injections8. 
Briefly, the mice were immobilized in a stereotaxic frame in the flat-skull position (Kopf Instruments), and a bilat-
eral stainless steel injector (33 gauge, extending 1 cm below the tip of 26-gauge sleeve tubing) was slowly lowered 
into the LH (coordinates: −0.94 mm anterior to bregma, ±1.2 mm lateral, and −5.4 mm ventral to skull surface 
at bregma). The AAV solution (0.5 µl) was delivered slowly through the injector by a syringe pump (KD Scientific) 
at a flow rate of 0.05 µl/min. The injector remained in place for at least 10 min and then was withdrawn slowly to 
avoid backflow of the virus. AAV expression could be detected, and the locations of injection sites were verified at 
the end of the experiments. The animals were randomly assigned to AAV treatment groups.

Statistical analysis.  The data were analyzed using GraphPad Prism 7 (La Jolla, CA, USA). Variances were 
compared using the Bartlett test. The LC-MS/MS data were analyzed using one-way ANOVA followed by Fisher’s 
least significant difference (LSD) test. All of the behavioral data were analyzed using two-way repeated-measures 
ANOVA, with group as the between-subjects factor and dose and test session as the within-subjects factors, fol-
lowed by Fisher’s LSD test.

Data Availability.  All data generated or analyzed during this study are included in this published article.

Results
Stimulants like cocaine and methamphetamine increase brain heparan sulfate abundance and 
sulfation level.  The action of the HS proteoglycan syndecan-3 in the LH as a resilience factor for cocaine 
abuse8 raises the fundamental issue of whether HS plays a general role in the motivation for drugs of abuse. To test 
this hypothesis, we initially explored whether brain HS content is altered by drugs of abuse, such as cocaine and 
methamphetamine. To this end, we exposed mice to either cocaine (20 mg/kg once per day) or methamphetamine 
(2.5 mg/kg twice per day) intraperitoneally for 13 days. The HS content in the LH was then analyzed using a novel 
ultra high-performance LC-MS/MS approach14. As shown in Fig. 1, both the HS content and its level of sulfation 
were significantly increased in the LH by a history of cocaine or methamphetamine exposure. Heparan sulfate 
regulates biological processes through interactions between sulfate groups and negatively charged polypeptides 
that have motivational significance, such as GDNF8. These results support the hypothesis that HS plays a general 
role in the effects of drugs of abuse, such as cocaine and methamphetamine. To further test this hypothesis, we 
investigated the effects of modulating the ability of GDNF to interact with HS and the effects of HS content on 
voluntary cocaine intake.

Effects of GDNF on cocaine intake depend on GDNF interaction with heparan sulfate.  To 
test the hypothesis that HS regulates cocaine intake, we first investigated the effects of GDNF binding to HS on 
cocaine self-administration. Evidence suggests that GDNF binding to HS requires a stretch of basic amino acids 
in the N-terminal region that encompasses residues 24–39 in the mature peptide15. Importantly, this HS-binding 
region of GDNF is distinct from the binding site for the high-affinity GDNF receptor GFR-α1; thus, GDNF binds 
both HS and GFR-α1 simultaneously15. In fact, the removal of residues 24–39 (ΔN2 GDNF mutant) substantially 
abolishes HS binding without affecting the binding or activation of its conventional receptor GFR-α115.

We constructed an AAV vector that expresses the ΔN2 GDNF mutant to interfere with GDNF HS to probe 
the role of HS in the actions of GDNF on the motivation for cocaine self-administration. The delivery of an AAV 
vector that expressed unmodified GDNF in the LH in syndecan-3-null mice increased the motivation for cocaine 
self-administration, reflected by a vertical shift of the unit dose-response curve16 (Fig. 2). This effect was not 
observed in wildtype mice, in which syndecan-3 acts as a resilience factor that reduces cocaine intake, as previ-
ously reported8. Interestingly, the AAV delivery of HS binding-deficient ΔN2 GDNF produced an even greater 
increase in cocaine self-administration in syndecan-3 knockout mice than the unmodified GDNF (Fig. 2c,d). 
This result indicates that, in addition to syndecan-3, other HS proteoglycans in the LH contribute to the reduction 
of cocaine intake through binding to the HS-interacting domain of GDNF, and their actions are unmasked by 
the removal of endogenous syndecan-3 in syndecan-3 knockout mice. These results support the hypothesis that 
overall HS tissue content regulates cocaine intake.

Heparan sulfate content regulates cocaine taking and seeking.  To test the hypothesis that overall 
HS tissue content regulates cocaine intake, we evaluated the effects of reducing HS content in the LH through 
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the AAV-mediated delivery of heparanase, the endoglycosidase that is responsible for degrading HS at glucu-
ronidic bonds17 at the cell-surface and in the extracellular matrix, resulting in remodeling of the extracellular 
matrix and the modulation of HS-dependent signaling13. As shown in Fig. 3, the AAV-mediated delivery of hep-
aranase in the LH accelerated the acquisition of cocaine self-administration in both syndecan-3 knockout and 

Figure 1.  Stimulants increase heparan sulfate abundance and sulfation. (a) Cocaine and methamphetamine 
increase HS content. Total HS abundance was significantly increased by cocaine (Coc, n = 6) and 
methamphetamine (Meth, n = 5) in the LH, a brain region where the HS proteoglycan syndecan-3 was 
previously found to regulate cocaine intake8. (b) Cocaine and methamphetamine significantly increase HS 
sulfation. *P < 0.05, ****P < 0.0001, significant difference from saline (Sal) control (n = 6; one-way ANOVA 
followed by Fisher’s LSD test). The data are expressed as mean + SEM.

Figure 2.  Effect of lateral hypothalamus delivery of GDNF-AAV and ΔN2-GDNF-AAV on cocaine self-
administration in wildtype and syndecan-3 knockout mice. A unit dose-response paradigm was used to probe 
the effects of GDNF heparin binding in syndecan-3 knockout and wildtype mice under an FR5 schedule of 
reinforcement8. (a) GDNF-AAV or ΔN2-GDNF-AAV was injected in the LH in wildtype and syndecan-3 
KO mice. (b) No significant effect of GDNF-AAV or ΔN2-GDNF viruses was observed in wildtype (WT) 
mice compared with the GFP control group (F2,228 = 1.48, P > 0.05, two-way repeated-measures ANOVA). 
GFP, n = 12; GDNF, n = 15; ΔND2-GDNF, n = 14. (c) In syndecan-3 knockout mice, both the GDNF-AAV 
and ΔN2-GDNF-AAV viruses caused an upward shift of the cocaine unit dose-response curve compared 
with the GFP control group. The two-way repeated-measures ANOVA revealed a significant main effect of 
virus infusion (F2,180 = 4.26, P = 0.024). GFP, n = 10; GDNF, n = 12; ΔND2-GDNF, n = 11. The post hoc test 
revealed a significant group difference between the ΔN2-GDNF-AAV group and GFP group at the doses of 
0.075, 0.15, and 0.3 mg/kg/injection. (d) ΔN2-GDNF-AAV delivery increased cocaine intake compared with 
the GFP control group. The two-way repeated-measures ANOVA revealed a significant main effect of viral 
infusion (F2,30 = 2.828, P = 0.075). GFP, n = 10; GDNF, n = 12; ΔND2-GDNF, n = 11. The post hoc test revealed 
a significant group difference between the ΔN2-GDNF-AAV group and GFP group at the doses of 0.6 and 
1.2 mg/kg/injection. The data are expressed as mean ± SEM.
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wildtype mice (Fig. 3a). Notably, the effects of heparanase were distinct from the effects of syndecan-3 deficiency, 
in which heparanase accelerated the acquisition of cocaine self-administration behavior but did not significantly 
increase cocaine intake after acquisition (Fig. 3b,c). Heparanase-AAV delivery also prevented the extinction of 
cocaine-seeking behavior in syndecan-3 knockout mice (Fig. 3d).

Discussion
Heparan sulfate affects various biological processes through diverse mechanisms, including acting as a 
co-receptor or alternative receptor for growth factors and other signaling peptides, as well as sequestering and 
localizing them, among other actions1–7. The present study demonstrated that drugs of abuse like cocaine and 
methamphetamine alter HS abundance and sulfate content in the LH, and HS affects cocaine seeking and taking 
in mice.

We first analyzed the effect of chronic stimulant administration on HS abundance and sulfation in the LH, a 
region that is involved in the motivation for both natural rewards and drugs of abuse9–12 and where the proteogly-
can syndecan-3 was previously shown to act as a cocaine resilience factor8. The results indicated that stimulants 
like cocaine and methamphetamine increase both HS abundance and sulfate content, and this effect was more 
pronounced for cocaine than for methamphetamine. Sulfate groups confer to HS a negatively charged character 
and provide docking sites for numerous protein ligands that are involved in diverse biological processes1,2,4–7. 
As we previously found that GDNF modulates cocaine intake in a syndecan-3-dependent manner8, we tested 
the role of HS in this action. Using an AAV vector that expressed a GDNF mutant that was defective in HS 
binding (ΔN2 GDNF), we observed that the ability of GDNF to increase cocaine intake is generally modulated 
by HS. The results indicated that, in addition to syndecan-3, other HS proteoglycans in the LH contribute to 
resilience to cocaine abuse. To further explore this finding, we tested the effect of overexpressing heparanase, the 
endo-β-D-glucuronidase that catalyzes the depolymerization of HS chains and plays a central role in the intracel-
lular and extracellular degradation of HS13. Heparanase has been implicated in several normal and pathological 
processes, including cancer metastasis and angiogenesis, the regulation of food intake, and metabolism13,18–20. The 

Figure 3.  Delivery of recombinant AAV-heparanase in the LH facilitates the acquisition of cocaine self-
administration in syndecan-3 knockout (KO) and wildtype (WT) mice and induces greater resistance to 
extinction in syndecan-3 KO mice. (a) Intra-LH heparanase-AAV virus facilitated the acquisition of cocaine 
self-administration in both wildtype (left) and syndecan-3 knockout (right) mice. The two-way repeated-
measures ANOVA revealed significant main effects of repeated training (F16,288 = 26.51, p < 0.0001) and 
heparanase-AAV administration (F1,288 = 4.613, p = 0.046) and a significant interaction between these two 
factors (F16,288 = 2.316, p = 0.003) in wildtype mice. Similarly, in knockout mice, there were significant main 
effects of repeated training (F16,336 = 15.43, p < 0.0001) and heparanase-AAV administration (F1,336 = 4.982, 
p = 0.037). The post hoc tests revealed significant differences on several training days between the corresponding 
groups (*P < 0.05, WT-GFP, n = 10; WT-Heparanase, n = 10; KO-GFP, n = 12; KO-Heparanase, n = 11). (b,c) 
The maintenance of cocaine self-administration was tested under a fixed-ratio 5 schedule of reinforcement 
(b), followed by a progressive-ratio schedule (c). Intra-LH heparanase-AAV did not significantly alter 
cocaine self-administration under either the FR or PR schedule. No significant main effects of heparanase-
AAV administration were observed in either wildtype or knockout mice (P > 0.05). (d) The mice were then 
tested in daily extinction training. There was no significant main effect of heparanase-AAV in wildtype mice 
(F1,450 = 0.398, p > 0.05). However, heparanase-AAV increased resistance to the extinction of cocaine seeking 
in syndecan-3 knockout mice, reflected by a significant main effect of heparanase-AAV treatment (F1,450 = 5.33, 
p = 0.033; two-way repeated-measures ANOVA). The data are expressed as mean ± SEM.
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effects of HS disruption by exogenous heparanase expression and deletion of syndecan-3 were distinguishable 
and additive. In particular, we found that heparanase overexpression in the mouse LH accelerated the acquisition 
of cocaine self-administration in both syndecan-3 knockout and wildtype mice. Additionally, the persistence 
of cocaine seeking during extinction was increased by the simultaneous delivery of heparanase and syndecan-3 
deficiency.

Mounting evidence indicates that complex carbohydrates play key roles in the regulation of specific biological 
functions. The extensive functional repertoire of heparin and HS and their ability to interact with a large num-
ber of proteins suggest that novel therapeutic targets may be identified to affect pathological processes through 
the modulation of sulfated glycosaminoglycan compositions and interactions. Carbohydrate-related therapeutic 
targets are being pursued in infectious diseases, cancer, and inflammation21–26. Evidence also suggests that HS 
may play significant roles in neurological disease. For example, HS has been reported to be involved in amyloid-β 
peptide and tau fibrillization in Alzheimer’s disease27 and the pathogenesis of autism28,29. However, glycosamino-
glycans remain an area of untapped potential for the identification of novel therapeutics for drug addiction. The 
present study begins to unravel the effects of stimulants like cocaine and methamphetamine on HS abundance 
and sulfate content and the potential to target the biochemical properties of HS for the treatment of drug abuse.

The present findings also underscore the pivotal role for the hypothalamus in motivation and addictive behav-
iors. The LH has substantial connections with the extended amygdala and mesocorticolimbic regions30. The LH 
supports intracranial self-stimulation31–33, which is acutely augmented by such drugs as cocaine and is decreased 
during withdrawal34–39. Connections between the LH, nucleus accumbens, and ventral tegmental area are key 
for both drug and alcohol seeking40,41. Together with the paraventricular nucleus of the hypothalamus, the LH 
contributes to emotional arousal and interfacing the central stress and autonomic systems42. Gene expression 
profiling provided evidence that transition to escalated cocaine intake is characterized by substantial structural 
plasticity of the LH12, which was found to involve genes that are related to proteoglycan signaling8. Lastly, we 
showed herein that cocaine and methamphetamine increased HS content and sulfation in the LH.

Altogether, the present results demonstrate that HS proteoglycans, including syndecan-3 and others, contrib-
ute to the regulation of cocaine seeking and taking and indicate that therapeutic targets that modulate cocaine 
taking and seeking can be identified through the manipulation of HS synthesis, degradation, and composition 
and the modulation of HS interactions with peptides whose actions are regulated by HS.
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