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Abstract: Vitamin A (VitA) is a micronutrient that is crucial for maintaining vision, promoting growth
and development, and protecting epithelium and mucus integrity in the body. VitA is known as an
anti-inflammation vitamin because of its critical role in enhancing immune function. VitA is involved
in the development of the immune system and plays regulatory roles in cellular immune responses
and humoral immune processes. VitA has demonstrated a therapeutic effect in the treatment of
various infectious diseases. To better understand the relationship between nutrition and the immune
system, the authors review recent literature about VitA in immunity research and briefly introduce
the clinical application of VitA in the treatment of several infectious diseases.
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1. Introduction

Vitamin A (VitA) is a group of unsaturated monohydric alcohols that contain an alicyclic ring.
VitA is insoluble in water but is fat soluble [1]. In 1928, Green and Mellandy reported that VitA
could enhance the anti-inflammatory response of organisms and called VitA the “anti-inflammation
vitamin” [2]. Later, the anti-inflammatory capacity of VitA was widely studied in the 1980s and
1990s [3–5]. VitA exists in the form of retinol, retinal, and retinoic acid (RA), among which RA
shows the most biological activity. RA exists in two significant derivatives: 9-cis-RA and all-trans-RA
(ATRA) [6] (Figure 1). The primary biological functions of VitA include maintenance of vision, growth,
and the integrity of epithelial and mucous tissue [7]. However, the immunoregulatory mechanisms
of VitA are not entirely understood. The authors, here, conduct a detailed review on the most recent
advances of VitA function in immunology. We briefly introduce the clinical application of VitA
in the treatment of several contagious diseases to provide theoretical support for VitA research in
immunology and its therapeutic applications.
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Figure 1. Transformation of retinol into bioactive retinoic acid involves a two-step oxidative reaction. 
To do this, a group of enzymes, divided in three families, will act together to form the final 
compound retinoic acid (RA). Retinol transforms into retinal under the catalytic action of the alcohol 
dehydrogenase (ADH) family; this step can also be regulated by the short-chain 
dehydrogenase/reductase family, which shows a wide affinity for alcohols and aldehydes. The 
aldehyde dehydrogenase (RALDH) family then catalyzes retinal to form retinoic acid. Both of the 
oxidation reactions transmit electrons through the electron acceptor NAD or NADP. 

2. RA Nuclear Receptors 

RA is the ligand of the nuclear retinoic acid receptor (RAR) protein. RAR family has three main 
members (α(isoforms a1-2), β(isoforms b1-4), and γ), which have additional subtypes produced by 
the use and splicing of alternating promoters [8]. The nuclear RAR acts as a ligand-activating 
transcription factor, regulating gene transcription according to cell type and tissue [9]. The ATRA is 
the highest affinity endogenous ligand of RAR [10]. A member of the second protein family, RA-X 
receptor (RXR) heterodimers and RAR, give high affinity to binding DNA. The RXR family also 
contains three members (RXRα, RXRβ, and RXRγ). In addition to targeting RARα, RARβ, and 
RARγ-like ATRA, 9-cis-RA also activates RXRα, RXRβ, and RXRγ [11]. RAR/RXR heterologous two 
dimer-bound DNA is known as the retinoic acid reaction element. The consensus retinoic acid 
reaction element is composed of two direct repeats of PuG (G/T) and TCA that are most often 
separated by 5 bases [12]. RAR acts as an enhancer, and promotes chromatin opening and changes in 
the transcriptional activity of RA target genes when occupied by RA/RAR/RXR complexes [13,14]. 
Binding of RA to RAR leads to release of the corepressor complex and association with coactivator 
proteins, followed by altered transcription of downstream target genes and, ultimately, changes in 
cellular function. RA also undergoes further oxidation by the cytochrome P450 (CYP26) family to 
more polar metabolites. The lipophilic molecule, RA, can act within the same cell in which it is 
synthesized (autocrine), or can act in a paracrine manner in nearby cells [15–17]. 

3. VitA Is Involved in the Formation of the Epithelial and Mucous Tissues 

The epithelium lines all outer surface and most inner surfaces of organisms, and it functions as 
the “front line” of defense against pathogen invasion. Studies from recent years have shown that 
VitA plays a crucial role in the morphological formation of the epithelium, epithelial keratinization, 
stratification, differentiation, and functional maturation of epithelial cells [18]. As a promotor for 

Figure 1. Transformation of retinol into bioactive retinoic acid involves a two-step oxidative
reaction. To do this, a group of enzymes, divided in three families, will act together to form
the final compound retinoic acid (RA). Retinol transforms into retinal under the catalytic action
of the alcohol dehydrogenase (ADH) family; this step can also be regulated by the short-chain
dehydrogenase/reductase family, which shows a wide affinity for alcohols and aldehydes. The
aldehyde dehydrogenase (RALDH) family then catalyzes retinal to form retinoic acid. Both of the
oxidation reactions transmit electrons through the electron acceptor NAD or NADP.

2. RA Nuclear Receptors

RA is the ligand of the nuclear retinoic acid receptor (RAR) protein. RAR family has three main
members (α(isoforms a1-2), β(isoforms b1-4), and γ), which have additional subtypes produced by the
use and splicing of alternating promoters [8]. The nuclear RAR acts as a ligand-activating transcription
factor, regulating gene transcription according to cell type and tissue [9]. The ATRA is the highest
affinity endogenous ligand of RAR [10]. A member of the second protein family, RA-X receptor
(RXR) heterodimers and RAR, give high affinity to binding DNA. The RXR family also contains three
members (RXRα, RXRβ, and RXRγ). In addition to targeting RARα, RARβ, and RARγ-like ATRA,
9-cis-RA also activates RXRα, RXRβ, and RXRγ [11]. RAR/RXR heterologous two dimer-bound
DNA is known as the retinoic acid reaction element. The consensus retinoic acid reaction element is
composed of two direct repeats of PuG (G/T) and TCA that are most often separated by 5 bases [12].
RAR acts as an enhancer, and promotes chromatin opening and changes in the transcriptional activity
of RA target genes when occupied by RA/RAR/RXR complexes [13,14]. Binding of RA to RAR
leads to release of the corepressor complex and association with coactivator proteins, followed by
altered transcription of downstream target genes and, ultimately, changes in cellular function. RA also
undergoes further oxidation by the cytochrome P450 (CYP26) family to more polar metabolites. The
lipophilic molecule, RA, can act within the same cell in which it is synthesized (autocrine), or can act
in a paracrine manner in nearby cells [15–17].

3. VitA Is Involved in the Formation of the Epithelial and Mucous Tissues

The epithelium lines all outer surface and most inner surfaces of organisms, and it functions as
the “front line” of defense against pathogen invasion. Studies from recent years have shown that
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VitA plays a crucial role in the morphological formation of the epithelium, epithelial keratinization,
stratification, differentiation, and functional maturation of epithelial cells [18]. As a promotor for
morphology and a cell differentiation enhancer, VitA is an integral part of the mucus layer of both
the respiratory tract and the intestine. Since VitA promotes mucin secretion, it improves the antigen
non-specific immunity function of these tissues [18,19]. Research has shown that VitA improves the
mechanistic defense of the oral mucosa, increases the integrity of intestinal mucus, and maintains the
morphology and amount of urothelium cells [18–20].

Even as early as 1925, Wolbach and Howe reported that various epithelia are replaced by stratified
squamous keratinizing epithelium when deprived of VitA [21]. It is now clear that under conditions
of VitA deficiency (VitAD), epithelial cells shrink, and squamous keratinization may occur in skin,
digestive tract, respiratory tract, genitourinary system, cornea, and surrounding soft tissues, leading
to symptoms of dry skin, diarrhea, coughing, keratomalacia, corneal opacity, dry eye, and urinary
lithiasis [22–25]. Simultaneously, the resistance of keratinized epithelial tissues to foreign pathogens
decreases, and it is no longer able to exert its mechanical barrier function, thus reducing innate immune
function and promoting respiratory tract infections, diarrhea, and other diseases in children [26].

4. VitA and Its Impact on the Immune System

Immune organs are organs or tissues that realize immune function, and are places where most
immunocompetent cells proliferate, differentiate, mature, aggregate, and respond to immunity.
Research has shown that crucial immune organs need constant dietary intake to maintain VitA
concentrations, and RA was previously shown both to promote the proliferation and to regulate the
apoptosis of thymocytes [27–29]. In the thymus, endogenous retinoid synthesis and retinoids similar
to glucocorticoids might, indeed, be involved in the regulation of thymic proliferation and selection
processes, by being present in the thymus in functionally effective amounts [28]. In mice, VitAD leads
to a defect in both T cell-mediated and antibody-dependent immune responses [30,31]. VitAD can also
inhibit the normal apoptosis process of bone marrow cells, which leads to an increased number of
myeloid cells in the bone marrow, spleen, and peripheral blood, indicating that VitA is involved in
the regulation of homeostasis of bone marrow [29]. VitA likely regulates the bone marrow population
through binding retinoic acid receptor (RAR) in the bone marrow cell nucleus. This binding alters the
expression level of apoptosis genes, such as Bcl-2, Fas, and others. The specific mechanisms by which
these apoptosis genes regulate bone marrow homeostasis require further investigation.

5. VitA Affects Cell Differentiation, Maturity, and Immunological Function in Innate Immunity

Retinoid acid plays crucial roles in the regulation of the differentiation, maturation, and function
of cells of the innate immune system. Innate immune cells are comprised of macrophages and
neutrophils, which initiate immediate responses to pathogen invasion through phagocytosis and
activation of natural killer T cells which perform immunoregulatory functions through cytotoxic
activity [32,33]. There is a report that shows that VitA is essential for the proper development and
differentiation of colonic CD169+ macrophages [34]. Macrophages mainly include M1 macrophages
secreting proinflammatory cytokines and M2 macrophages expressing anti-inflammatory factors.
ATRA inhibits inflammatory reactions by inducing monocyte differentiation toward the macrophage
lineage while inhibiting the release of an inflammatory factors from macrophages, thus inducing M1
macrophages in the bone marrow to transform into M2 macrophages [35,36]. ATRA acts on RAR in
the nucleus of neutrophils, inducing neutrophil differentiation and heterogeneity through activation of
the mTOR signaling pathway. This pathway enhances neutrophil extracellular traps and cytotoxicity,
allowing for efficient killing of multiple tumor cells [37]. By downregulating the expression level of
IFN-γ and upregulating the secretion of IL-5, RA plays a regulatory role in the early differentiation
stage of natural killer T cells [32].

Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and they are specialized
sentinels of our immune system capable of orchestrating the innate and adaptive immune response [38].
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ATRA can regulate the differentiation of DC precursors [39–41]. Bone marrow resident pre-DCs have
the potential to differentiate into pre-mucosal DCs (pre-µDCs), characterized by the expression of
gut-homing receptors. ATRA acts cell-intrinsically in developing gut-tropic pre-µDCs to effect the
differentiation and drive the specialization of intestinal CD103+ DCs [42]. Pre-DCs can migrate to the
spleen, where they may sense ATRA skewing the differentiation toward CD11b+CD8− DCs instead of
CD11b−CD8α+ DCs [40]. The general consensus on the effect of ATRA on DC function is to promote an
anti-inflammatory phenotype characteristic of intestinal DCs [43,44]. However, in the presence of IL-15,
ATRA was shown to act as an adjuvant in promoting the secretion of the pro-inflammatory cytokines
IL-12 and IL-23 by DCs [45], and has unforeseen co-adjuvant properties that induce Th1 immunity to
fed antigens. This suggests that under infectious conditions associated with induction of IL-15 and
IL-6 in the intestinal mucosa, ATRA will also promote Th17 immunity [46]. These observations caution
against the use of VitA and ATRA for the treatment of autoimmunity and inflammatory intestinal
disorders associated with high levels of IL-15.

Innate lymphoid cells (ILC) are a subset of lymphocytes different from T and B cells. Located
on the surface of intestinal mucosa, ILCs enhance immune response, maintain mucosal integrity, and
promote lymphoid organ formation. ILC can be divided into three groups: ILC1, ILC2, and ILC3.
ILC3 are characterized by the expression of the transcription factor RORγt and the cytokines IL-22
and IL-17 [47]. In the fetal period, secondary lymphoid organs formation depends on a subset of ILC3
named lymphoid tissue inducer (LTi) cells [48,49]. Fetal ILC3s are controlled by cell-autonomous RA
signaling in utero, which pre-sets the immune fitness in adulthood. Embryonic lymphoid organs
contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi was controlled by
maternal retinoid intake and fetal RA signaling acting in a hematopoietic cell-autonomous manner.
RA controlled LTi cell maturation upstream of the transcription factor RORγt [50]. Both IL-22 and
IL-17 mediate antibacterial immune responses and prevent bacterial translocation across barriers.
Aberrant regulation of ILC3 and, in particular, the expression of IL-17 is a potential driver of chronic
gastrointestinal inflammation [51,52]. Animals deficient in VitA display reduced numbers of ILC3 in
contrast to mice fed VitA. This reduction in ILC3 has functional consequences for intestinal immunity,
as these mice are more susceptible to infection with the bacterial pathogen Citrobacter rodentium than
are VitA competent animals [53]. This is primarily due to a lack of ILC3-mediated IL-22 [51–53]. RA
significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23.
In vivo RA shapes early intestinal immune responses by promoting IL-22 synthesis by γδ T cells and
ILC [54].

6. Effects of VitA on T Cells

6.1. RA Induces T Cell Migration

T cells originate from pluripotent stem cells in the bone marrow. These T cells migrate to the
thymus where they develop into mature T cells and move to targeted peripheral lymphoid tissues.
The entire T cell developmental process is based on the interaction of T cell homing receptors with
endothelial adhesion molecules [55]. T cell homing is under the regulation of various adhesion
molecules that interact with the homing receptor [55–57]. Research has shown that under inflammatory
conditions, integrin α4β7 and the T cell chemokine receptor, CCR9, are crucial for T cell migration to the
intestine [55,58]. After receiving a RA signal, RARα binds to the RA response element in the integrin
α4 gene and regulates the expression of α4β7. Simultaneously, the heterodimer of RARα with the RXR
binds to the RAR response element in the promoter region of the CCR9 gene, thus playing an additional
regulatory role [59–61]. In the intestinal lamina propria, RA is an essential regulator for intestinal
homing of CD4+ and CD8+ T cells. VitAD caused a reduction in α4β7(+) memory/activated T cells in
lymphoid organs, and a lack of T cells from the intestinal lamina propria [56,57]. Based on this, the
provision of ATRA during vaccination can augment the ability of T cell-based viral vaccines to promote
the gut/mucosal homing of CD8+ T cells, in order to provide increased protection from mucosal viral
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challenge, and it also resulted in the formation of more vaccine-specific central memory-like CD8+
T cells in systemic sites [62,63]. Further research shows that RA signaling is required for CD8+ T
cells survival and expansion in vivo, and the essential requirement is RARα, but not RARβ or RARγ,
for CD8+ T cell survival [64,65]. Whole body imaging using a mouse model of rheumatoid arthritis
demonstrated that RA signaling is initiated during the development of inflammation. Furthermore, RA
signaling is restricted to the site of inflammation both temporally and spatially. Conditional ablation
of RA signaling in T cells significantly interferes with CD4+ T cell effector function, migration, and
polarity, indicating RA involvement in T cell migration toward the area of inflammation [66].

6.2. RA Is a Control Factor for Regulatory T Cells and Maintains Its Homeostasis

Regulatory T cells (Treg) are a subpopulation of T cells that maintain immune tolerance and
regulate the autoimmune response [67–70]. Foxp3 is a transcription factor that is essential for
the differentiation and effector function of Tregs [71,72]. In vivo, ATRA is produced mainly from
CD103+ DC in the gut [73]. The cytokine-transforming growth factor-β (TGF-β) converts naïve T cells
into Tregs that prevent autoimmunity. However, in the presence of interleukin-6 (IL-6), TGF-β has
also been found to promote the differentiation of naïve T lymphocytes into proinflammatory IL-17
cytokine-producing Th17 cells, which promote autoimmunity and inflammation. ATRA, as a key
regulator of TGF-β-dependent immune responses, is capable of inhibiting the IL-6-driven induction
of proinflammatory Th17 cells and promoting anti-inflammatory Treg cell differentiation [74]. ATRA
enhances the expression of Foxp3 in the presence of TGF-β, thus inducing the differentiation of naïve
T cells into Tregs and inhibiting the expression of IL-17 [44,71,72,75]. ATRA acts on the nuclear RAR by
interacting with TGF-β to activate the ERK1/2 signaling pathway and enhance histone modification of
the Foxp3 promotor region and conserved non-coding DNA region. Therefore, ATRA helps maintain
Foxp3 gene expression, and regulates Treg differentiation and function [75,76]. Apart from inducing the
differentiation of Tregs, ATRA has also been reported to maintain both the stability of Tregs and their
immunoregulatory function [45,73,77,78]. In vitro experiments have shown that in pro-inflammatory
environments, Tregs are unstable, and can be transformed into other inflammatory cells, such as Th17
cells, by cytokines like IL-6 and IL-21, thus advancing the development of inflammation. Conversely,
the addition of ATRA inhibits the transformation of Tregs into Th17 or other Th cells, even in the
presence of IL-6, thus maintaining the expression of Foxp3 [73,77]. Local injection of Tregs failed to
prevent development in a collagen-induced arthritis model, whereas the injection of ATRA-pretreated
Tregs successfully inhibited the development of arthritis [77,78]. ATRA also enhanced the stability and
functionality of human natural Treg cells under the inflammatory conditions [79]. ATRA prevented
the transformation of Tregs to Th17 cells and other inflammatory cells by inhibiting the expression
of IL-6R on the cell surface of peripherally induced Tregs. Therefore, ATRA enhanced IL-2 function,
an important immunomodulator, and promoted naïve T cell transformation into natural Tregs while
inhibiting the IL-6-induced transformation of naïve T cells into Th17 cells [45,73,78]. Additionally,
ATRA also has the ability to induce and promote the development and function of human-induced
Treg cells [80].

6.3. RA May Promote the Ongoing Immune Response

Although most evidence shows that, at pharmacological levels, RA inhibits the development
of inflammatory cells and induces or expands Tregs, recent work has suggested that RA may also
promote T cell activation and T helper cell responses at minimal levels.

As mentioned above, RA is mainly produced by DC from the gut. Some reports show that RA
may also be produced at other sites during an ongoing immune response [66,81,82]. We have discussed
that RA signaling is initiated during the development of inflammation. Similarly, there is evidence
demonstrating that the RA–RARα signaling axis is essential for adaptive CD4+ T cell immunity as
RARα-deficient CD4+ T cells were less efficient than wild-type counterparts in polyclonal activation.
Also, in RARα-deficient T cells, the phosphorylation of PLCγ and ERK1/2 was reduced, and manifests
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impaired Ca2+ mobilization and mTOR/AKT activation upon T cell stimulation. Together, RARα may
regulate the signaling pathways downstream of T cell receptor engagement [83].

At pharmacological or high doses (10 nM or higher), RA has been proven to inhibit the reaction
of Th17 cells and to induce the generation of Tregs [74,84], and high doses of RA can impair the
differentiation of human Th17 and Th1 cells in vitro [85]. However, contrary to reports of RA
inhibiting Th1 and Th17 responses, some groups reported that RA was beneficial to Th1 and Th17
cell differentiation at low doses. In physiological doses (1 nM), RA promotes Th17 cell differentiation
in vitro [86,87]. In addition, under Th1 or Th17 polarization conditions, the RARα-deficient T
cells cultured in vitro did not differentiate into Th1 or Th17 cells, supporting the role of RA in the
differentiation of Th1 and Th17 cells, and VitAD mice exhibit significant Th1 and Th17 responses
in vivo [53,87,88]. All these results have suggested that RA may have a dose differential effect on the
differentiation of Th17 cells and Th1 cells [89]. The role of VitA/RA on Tr1 and Tfh cells is unclear, so
far, and warrants further study to allow for clarification.

7. Effects of VitA on B Cell Function

7.1. Effects of VitA on Immunoglobulin Production

Antibody production by B cells is central to humoral homeostatic maintenance. Antibodies
represent a specific class of immunoglobulins. Animal experiments have demonstrated that the
addition of carotenoid-rich foods to rabbit diets can increase their serum levels of IgG, IgM, and
IgA, thereby enhancing humoral immunity [90]. Further studies in rat have revealed the association
between a paucity of VitA in the diet and increased number of DCs, in addition to the significantly
upregulated expression of IL-12, Toll-like receptor 2, and myeloid differentiation factor MyD88 in the
intestinal mucosa. When the levels of secretory IgA decrease, rats display a decreased immune function,
suggesting that VitA is involved in the synthesis of immunoglobulins, and has an important influence
on humoral immunity [91]. A report shows that RA potently synergized with gut-associated lymphoid
tissues DC-derived IL-6 or IL-5 to induce IgA secretion [92]. A knockout study demonstrated that
the ablation of RARα reduces IgA expression by B cells expressed in vivo and in vitro. This indicates
that RA acts on B cells directly through RARα, which affects the synthesis and secretion of IgA [93].
It is also likely that RA affects Tregs first, and then indirectly modulates B cells, since Tregs have an
important role in regulating B cell responses [94].

7.2. VitA Regulation of B Cell Activity

Antigen stimulation of immune cells through specific IgE antibodies results in a rapid, specific
hypersensitivity response that is involved in most autoimmune conditions [95]. Evidence shows RA
has an IgE-repressive activity in vivo. The inhibitory effect of ATRA on IgE mainly downregulates
synthesis and secretion of IgE through RARα, and this inhibitory effect depends on IL-10 [96–99].
Another report shows that exogenous 9-cis-RA in the context of an allergic sensitization profoundly
modulates an established humoral IgE response, resulting in reduced specific IgE responses and
increased specific IgA responses in mice, indicating that RXR-activating retinoids play a major role in
the physiological regulation of IgE due to the endogenous synthesis of 9-cis-RA [95]. These make VitA
a very promising therapy for the treatment of IgE-mediated hypersensitivity disease.

Regulatory B cells (Breg) are a class of B cell subsets with immunomodulatory functions that
are involved in the maintenance of immune homeostasis, and play an essential regulatory role in
various immunopathological processes [100,101]. RA can induce the differentiation of naïve B cells into
Bregs, and stimulate Breg synthesis and the secretion of IL-10 through RARα [102–105]. By secreting
IL-10, Bregs have ameliorative effects on experimental colitis, arthritis, and lupus [98,102–105]. The
mechanism by which VitA regulates Bregs activity and how it improves its immunomodulating
function is not yet understood. Further research will be required to elucidate this question, and to
determine whether the effects of VitA on Bregs are stable.
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8. Application of VitA in the Treatment of Infectious Diseases

8.1. Tuberculosis

Tuberculosis, which is a chronic infectious disease caused by the bacterium Mycobacterium
tuberculosis, is a global health concern. In recent years, the therapeutic outcomes of drugs traditionally
used for tuberculosis treatment have worsened because of the development of drug resistance.
Therefore, different treatment strategies are required.

Epidemiological studies have shown that the healthy population has a significantly higher serum
level of VitA than tuberculosis patients [106–108]. A longitudinal cohort study of tuberculosis showed
that VitA deficiency is dose-dependently correlated to the occurrence of tuberculosis [109]. An in vitro
study demonstrated that RA inhibits the growth of M. tuberculosis and reduces its survival rate when
engulfed by macrophages [110]. For the mechanism of bacteriocidic activity of VitA, Wheelwright et
al. found that VitA can induce the expression of NPC2. In NPC2 gene knockout cells, the stimulation
of VitA showed no bacteriocidic activity on infected cells. However, the NPC2 gene is commonly
known as a regulator of cholesterol transport rather than an immunological regulatory factor. This
result can be explained as follows: cholesterol is the nutritional source for tuberculosis bacterial cell
walls, whereas NPC2 facilitates the transportation of cholesterol out of lysosomes, therefore depriving
tuberculosis bacteria of their nutritional needs. Without the ability of M. tuberculosis to generate
protective cell walls, lysozyme can then effectively kill this pathogen [111]. This was demonstrated
in a mouse model of tuberculosis in which the addition of ATRA significantly improved the efficacy
of traditional anti-tuberculosis drugs [112]. However, more research will be required to elucidate the
positive effects ofVitA supplements on the treatment of tuberculosis.

8.2. Acquired Immune Deficiency Syndrome (AIDS)

AIDS patients are known, in general, to be deficient in many vitamins [113]. Since various
vitamins have the potential to enhance the immunity of the organism and because AIDS arises from
human immunodeficiency virus infection, oxidative stress is thought to have an important effect on
the infection process of HIV virus [114,115]. VitA, VitC, and VitE are all-natural antioxidants, and by
inhibiting the oxidative stress of the organism, it is postulated that these vitamins can ameliorate the
progression of AIDS.

A previous study has shown that HIV infection reduces an organism′s regulation of oxidative
stress. However, an external antioxidant, such as VitA, does not have any compensatory effect on
regulating the oxidative stress response [116]. Furthermore, although HIV-infected individuals are
deficient in many different vitamins, vitamin supplementation showed no clinically important benefits
in people living with HIV [117]. Consistently, VitA does not influence the vertical transmission of
HIV from mother to child [118]. Therefore, VitA supplementation does not appear to affect HIV per
se, but that does not mean that HIV patients or carriers should reject the supplementation of VitA or
any other vitamins. HIV lowers the immune function of the body, making the patients susceptible
to infectious diseases, including tuberculosis, malaria, herpes, and others [119,120]. As mentioned
above, VitA enhances the immunity of organisms, and it has been reported to reduce the incidence
of tuberculosis in HIV patients [119]. Moreover, pregnancy and postpartum supplementation with
a multivitamin significantly improved hematologic status among HIV-infected women and their
children, and reduced the risk of anemia [120]. Antiretroviral therapy is the most effective treatment
regimen for HIV; however, antiretroviral therapy alone is not sufficient to improve micronutrient
deficiency. Therefore, it is essential to supplement VitA, other vitamins, and micronutrients during
HIV treatment [121].

8.3. Infectious Diseases in Children

Infectious diseases in children were once a global threat [122]. Recent research has suggested a
close correlation between a deficiency of micronutrients (particularly VitA) and infectious diseases
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spread through the respiratory and digestive systems in children [26,123,124]. Meanwhile, many
infections result in a decrease in systemic VitA levels as a result of infection-induced anorexia and
decreased VitA absorption from the intestine [125,126]. VitA may also be lost in substantial amounts in
the urine during infection [127]. As mentioned above, VitA plays a crucial role in the establishment and
maintenance of the human immune system. More importantly, VitA has demonstrated a therapeutic
effect, to some extent, (see Table 1) in diseases transmitted through the respiratory system, such as
pneumonia and measles in children, or in contagious digestive diseases in children, such as infantile
diarrhea and hand, foot, and mouth disease [128–130]. The World Health Organization has suggested
that, in less developed countries, a child between 6 months and 5-years-old should be supplemented
with high doses of VitA to prevent and cure VitA deficiency-related diseases, and reduce the incidence
and mortality rate of these diseases in children [131].

The recommended daily intake of VitA for children is 1665 IU [132]. VitA, as retinol, exceeds 20,000
IU/d in short periods, leading to intoxication and, occasionally, death. VitA intoxication is a generalized
syndrome, the signs and symptoms of which include desquamative and edematous dermatitis, bone
pain and tenderness, edema of the extremities and face, irritability, hepatocellular dysfunction, and
hypercalcemia [133–136]. Furthermore, inflammation affects retinoid metabolism. Serum retinol may
be sequestered in tissues, leading to a reduction in serum retinol levels, which implies that assessing
VitA status with the use of serum retinol during inflammation may be problematic [137].

Table 1. The therapeutic effect of VitA on several infantile infectious diseases.

Diseases Role of VitA Method Setting Model [Reference]

Measles Reduce mortality Meta-analysis Human [138]

Measles Reduce morbidity and mortality Systematic review and
meta-analysis Human [129]

Measles Reduce mortality Meta-analysis Human [139]

Measles Reduce morbidity
Randomized

double-blind controlled
trial

Human [140]

Acute pneumonia Promoting the production of specific
antibodies

Randomized controlled
trial Mice [141]

Acute pneumonia Relieving clinical symptoms and signs Meta-analysis Human [128]

Infantile diarrhea Reduce morbidity and mortality Systematic review and
meta-analysis Human [129]

Infantile diarrhea
Promote the production of IgA in the

intestinal tract and enhance the mucosal
immune function

Randomized controlled
trial Mice [142]

Infantile diarrhea Reduce morbidity
Randomized

double-blind controlled
trial

Human [140]

Enteric infection Reduce morbidity and mortality Randomized controlled
trial Mice [143]

Malaria Reduce morbidity
Randomized

double-blind controlled
trial

Human [144]

Malaria Reduce morbidity Randomized controlled
trial Human [145]

Malaria Reduce morbidity
Randomized

double-blind controlled
trial

Human [146]

Hand foot and mouth
disease

Promote production of immunoglobulin
and enhance antiviral function

Cross-sectional
observation and study Human [130]

Mumps Up-regulation of type 1 interferon and
inhibition of viral replication

In vitro controlled
experiment Cells [147]
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9. Summary

As the interdisciplinary approach continues to develop in research, people have been paying
increasing attention to the relationship between nutrition and immunity. Furthermore, the influence
of micronutrients on the immune function of the organism has been widely studied. VitA has both
promoting and regulatory roles in both the innate immune system and adaptive immunity; therefore,
it can enhance the organism’s immune function and provide an enhanced defense against multiple
infectious diseases. Currently, the VitA’s effect on immune function has been studied at the molecular
level, and more research is ongoing about the therapeutic effects of VitA on preventing and curing
various infectious diseases. As increasing evidence appears with time, VitA will likely play more
critical roles in modern therapeutics.
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