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Abstract: The aim of the study is to compare electroencephalographic (EEG) signal feature extraction
methods in the context of the effectiveness of the classification of brain activities. For classification,
electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental
states (relaxation, excitation, and solving logical task). Blind source separation employing independent
component analysis (ICA) was performed on obtained signals. Welch’s method, autoregressive
modeling, and discrete wavelet transform were used for feature extraction. Principal component
analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest
Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for
classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were
shown. The paper also contains code utilized in preprocessing and the main part of experiments.

Keywords: electroencephalography (EEG); brain–computer interface (BCI); feature extraction;
automatic classification; deep learning

1. Introduction

The spontaneous electrical activity of the brain acquired from electrodes placed on the human scalp
in a noninvasive manner is extensively explored in many areas of interest, to name a few: neuroscience,
cognitive science, emotion recognition, gaming experience, etc. [1,2]. Research on the brain–computer
interface (BCI) was primarily motivated by supporting interaction with the environment of disabled
people [3–5]. Moreover, examples such as detecting and classifying epileptic seizures based on EEG
signals [6], controlling driver fatigue [7], sleep disturbance detection [8], recognizing different mental
states [8,9], etc. are of great importance.

The practical implementation of the brain–computer interface (BCI) systems uses
electroencephalographic (EEG) signals [7,10–12]. In BCI systems, the recorded signal is preconditioned
in order to eliminate the artifacts and interferences, among others, resulting from eye blink,
eye movement, muscle activity, or signal drift due to electrode misplacement [1,13–16]. Optionally,
the signal can also be subjected to a blind source separation procedure. Such methods as Independent
Component Analysis (ICA) are used for this purpose [17–26]. Then, extraction of features, i.e.,
reduction of the signal to a vector of parameters of lower dimensionality, is performed [27–29]. Such
a reduction enables to distinguish signals representing different types of mental activity that the
BCI system is to recognize [10,30]. However, in deep learning classification, feature extraction is
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not always applied as signal characteristics may be automatically derived from autoencoders [31,32].
Moreover, Wu et al. proposed an experimental scenario in which the feature selection and classification
were performed simultaneously [33]. The method proposed was applied to the high-dimensional
setting with the number of features larger than the number of samples [33]. Finally, machine learning
methods, including both baseline algorithms such as k-Nearest Neighbors (k-NN), Random Forest [34],
or Support Vector Machine (SVM) [35,36], as well as deep learning methods [37–43] are extensively
employed in discerning mental state or classifying brain activity. Overall, it is evident that a hybrid
approach is needed to classify the mental state regardless of the application area. Therefore, the most
challenging issues related to recognizing mental states based on the recorded EEG signal are the
selection of signal analysis and classification methods. In the most recent survey by Gu et al. [44],
one may find references to BCI contributions to several fields of research and applications. A table
containing an overview of EEG devices with their characteristics is given with adequate references.
This survey presents a comparison between deep learning neural networks and traditional machine
learning methods to prove the recent improvement of current deep learning algorithms in the EEG
analysis. Overall, several topics are addressed by Gu et al., i.e., advances in sensors and sensing
technologies, characteristics of signal enhancement and online processing, recent machine learning
algorithms and the interpretable fuzzy models for BCI applications, state-of-the-art deep learning
algorithms and combined approaches for BCI applications, and the evolution of healthcare systems
and applications in BCIs [44]. Further, artifact removal techniques from the EEG signal are discussed
along with the EEG signal analysis in real-time. Equally valuable, comprehensive, and thorough
is a review prepared by Zhang et al. [35]. The focus of this survey is on advancement in applying
deep learning to BCI as well as showing new frontiers. An important aspect of this review is to
show details concerning EEG signal types under classification, along with the classification methods
employed. Indeed, one should refer to this survey as it comprises a systematic review of brain signals
and deep learning techniques for BCI. The paper discusses the popular deep learning techniques
and state-of-the-art models for BCI signals, reviews the applications and remaining challenges of
deep learning-based BCI, and finally, highlights some promising directions for future research. It is
interesting to read also a survey source from 2010 [45], in which the impact of various events, namely,
sleep, epilepsy, reflexology, drugs/anesthesia, diabetes, meditation, music, and artifacts, on the EEG
signal is given. One of the most important topics contained in both surveys is related to transfer
learning methodologies, which may be crucial in exploiting knowledge acquired to enhance the
classification performance [35,44].

The survey by Zhang et al. examines 232 literature sources [35], and Gu et al. [44] provides
209 references; Google search returns a plethora of publications related to EEG-based BCI, thus it is not
possible to follow all the threads presented. However, an attempt to recalling some works from the
literature is made herein to include some selected sources to show that there does not exist one way of
dealing with the EEG signals in terms of preprocessing, feature extraction (if any strategy applied),
classification scheme, etc. On the basis of such a recollection, one may easily see the limitations of their
own study and treat it as a starting point for future research directions.

Examples of the EEG-based classification performance obtained for various application tasks are
given in Table 1, including the literature resources recalled in the survey by Zhang et al. [35] and Gu
et al. [44] as well as some retrieved from other publications.



Sensors 2020, 20, 2403 3 of 31

Table 1. Examples of classification performance obtained for various tasks based on selected
literature sources.

EEG-Related Task Literature
Source Algorithm Dataset Classification

Effectiveness

event-related
potential [46] SVM, SWLDA, BLDA,

SBL, SBLaplace
two experimental

datasets
the best approach—

approximately up to 100%

fatigue [7]
spatial-temporal

convolutional neural
network (ESTCNN)

experimental, local
dataset 97.3%

stress [47] DNN and deep CNN experimental, local
dataset 86.62

emotion [48] CNN DEAP [49] 99.72%

emotion [50] dynamical graph CNN
(DGCNN) SEED [51] 90.4%

emotion [52]

RNN with LSTM
(Recurrent Neural

Networks/Long
Short-Term Memory

SSVEP (steady-state
visually

evoked potentials)
93.0%

temporal analysis [50] dynamical graph CNN
(DGCNN) DREAMER [53] 86.23%

sleep disturbance
detection [54] CNN (no feature

extraction) [54]
93.55% to 98.10%

depending on the number
of classess

auditory stimulus
classification [55] RNN experimental, local

dataset 83.2%

automated visual
object

categorization
[56] RNN, CNN-based

regressor
experimental, local

dataset 83%

MI (Motor
Imaginery) EEG [57] CNN, transfer learning [57]

two classes: 86.49%,
three classes: 79.25%,
four classes: 68.51%

epileptic seizure
detection [58] Gated Recurrent Unit

RNN BUD [58] 98%

epileptic seizure
detection [59] Neuro-fuzzy

Local (EEG
database—Bonn
University) [59]

~90%

epileptic seizure
detection [60] CNNs/LSTM

TUH EEG Seizure
Corpus [61]/Duke
University Seizure

Corpus

sensitivity: 0.3083;
specificity: 0.9686

Behavioral
Disorder (RBD) [62] Echo State Networks

(ESNs)
experimental, local

dataset (118 subjects) 85%

Alzheimer disease
detection [63] multiple

convolutional-subsampling
experimental, local

dataset 80%

depression
screening [64] CNN

experimental, local
dataset (patients with

Mild Cognitive
Impairment and

healthy control group)

left hemisphere: 93.5%
right hemisphere: 96%

autism [65]

bispectrum
transform, ST Fourier

Transform (STFT)/STFT at
a bandwidth of total
spectrum (STFT-BW)

experimental, local
dataset (10 autism

patients and 7 control
subjects)

82.4%

For each study carried out, we have chosen in part, a classical approach to classification of the
EEG signals (i.e., feature extraction/learning algorithm), and a deep learning model. To compare both
approaches, the EEG signals acquired at our laboratory were utilized. We are aware that there exists
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a great number of datasets available to the public, examples of which are included in [49,51,53,61,66–78],
and they could be employed, e.g., as test data or in transfer learning applied to deep learning. However,
many of the cited works are also exploratory in their character [7,9,47,55,63], they include a variety
of datasets, signal acquisition methods, data formats, etc., which cannot be directly compared to the
outcome of the study performed by us. Therefore, we have decided to acquire our own locally acquired
data, especially as the experiments also served other purposes.

The aim of the study presented is to create a practical framework for the automatic classification
of mental states. It comprises both signal analysis and several selected classification algorithms.
The classification schemes are compared as to their overall effectiveness of the automatic classification
of mental states. For this purpose, EEG signals from 17 people in three different mental states—relaxation
(called meditation), excitation (called music video), and solving logical task (called logic game)—are
collected using an Emotiv EPOC+ helmet [79]. These raw signals were acquired from a set of standard
positions: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, according to the 10–20 (10%)
extended electrode configuration on the scalp [80–82]. The acquired signals are separated by means
of independent component analysis (ICA). For the extraction of features from the signals, the Welch
method (for estimation of power spectral density (PSD) of a given time sequence), autoregressive
modeling (Burg algorithm), and discrete wavelet transform (DWT) are selected. Such an approach is
seen in many other literature sources [35,44,45,83]. The obtained feature vectors are reduced by Principal
Component Analysis (PCA). For completing the EEG signal processing framework for classifying
mental states, three classification methods are used: k-Nearest Neighbors (k-NN), Support Vector
Machine (SVM), and Neural Network (NN), belonging to the category of deep learning. As pointed
out in the survey of Zhang et al. [35], the recent advances in frontiers of deep learning-based BCI refer
mostly to deep learning techniques, which is why in the classifiers employed in the carried out study,
an NN was also included. However, it should be noted that this a simple model with three hidden
layers and the LeakyReLU activation function is adapted in our study.

The organization of this work is as follows. The following Section describes the dataset building
and preprocessing to which the signals are subjected. Section 3 contains a thorough presentation of
experiments, which consists of the EEG-based signal classification. Details regarding the technique
used to reduce the dimensionality of feature vectors, given classifier settings and results obtained,
are discussed. For performance evaluation, two schemes are executed: In the first one, an 80/20% split of
the dataset into training/test sets is produced for k-NN and SVM, and a 70% training set, 10% validation
set, and 20% test set for the NN algorithm. Moreover, 10-fold cross-validation for a more reliable
assessment of classification performance is carried out on the best and the worst outcomes of the first
validation scheme. This allowed us to check that the model can be trained repetitively with a similar
result regardless of the choice of examples for training [84]. For each classifier performance, precision,
recall, and F1 score are shown. Moreover, statistical analysis is performed for the experiments, resulting
in appropriate metrics as well as indicating whether the differences obtained for two validation schemes
are statistically significant. The paper also contains observations on limitations of the investigation
carried out and possible ways to overcome them, as well as conclusions resulting from the conducted
research. The prepared code snippets are contained in Appendix A and an attached zip file.

2. Materials and Methods

EEG signals of 17 subjects participating in the experiment were acquired. In the first stage of
the research, the participants were instructed to relax. In the second phase, subjects watched the
music video. In the last stage, subjects played a game involving logical thinking. For a given subject,
durations of all stages were equal but varied between subjects. An Emotiv EPOC+ device equipped
with 14 measuring electrodes was used to acquire the signals [79]. The sampling frequency was set to
128 Hz.

The article contains snippets of Python [85] code to illustrate performed operations. They are
simplified versions of the code used for calculations. These snippets are contained in Appendix A;
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the code is also available to interested parties (see Supplementary Materials for the online address).
The flowchart of the study performed is shown in Figure 1.
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2.1. Building the Dataset

For each subject, the last 50 s of recorded signals, as well as 50 s of signals recorded between
successive stages, were discarded. The remaining signals were divided into 1 s frames with a 0.5 s
overlap. Thus, a single frame has the form of a matrix with dimensions (12,814). Each frame is assigned
the corresponding category: meditation, music video, or logic game. The final number of frames was
24,795, i.e., 8265 for each category.
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Overlap means that, for a given subject, the l last samples of ith frame of a given category from
a given channel have the same values as the l first samples of i + 1 frame of that category and from that
channel. The purpose of using overlap is dataset augmentation.

2.2. Data Preprocessing

For each frame, mean values and variances of each of 14 channels were calculated, giving 28 values
per frame. They were saved for later use. Afterward, each channel of every frame was detrended
using the scipy.signal.detrend function. Then, every frame was whitened and subjected to independent
component analysis (ICA [17]) using the FastICA algorithm (see Appendix A).

Subsequently, for each channel in each frame, features were computed using feature extraction
schemes described further on. Then, the feature vectors corresponding to subsequent channels were
concatenated into one feature vector. Finally, previously computed mean values and variances were
attached to the feature vector.

• ar16: for each channel of every frame, 16th order autoregressive models were computed using
the Burg algorithm. The arburg function from the spectrum library was used for that. Only the
real values of computed model coefficients were utilized (imaginary values were all equal to 0).
After concatenating model coefficients from all channels with previously computed mean values
and variances, final feature vectors of 252 elements were obtained. The code employed for the
aforementioned calculations is contained in Appendix A.

• ar24: like ar16, but autoregressive models were of the 24th order. The final feature vectors
contained 364 elements.

• welch16: for every channel in every frame, an estimate of power spectral density (PSD) was
computed using the Welch method. Function welch from the scipy library was used for that.
Samples from each channel in every frame were divided into eight nonoverlapping subframes of
16 samples each. Subsequently, nine coefficients were obtained per every channel. Final feature
vectors (with pre-computed mean values and variances) contained 154 elements. Calculations
were conducted with the use of the code shown in Appendix A.

• welch32: like welch16, but frames were divided into four nonoverlapping subframes of 32 samples
each. Final feature vectors consisted of 266 elements.

• welch64: like welch16 and welch32, but frames were divided into two nonoverlapping subframes,
each of 64 samples per channel. Final feature vectors consisted of 490 elements.

• dwt: each channel of every frame was decomposed using the 4th level discrete wavelet transform
with db4 wavelet using the wavedec function from pywt library. The resulted vectors contained
14, 14, 22, 37, and 67 coefficients, respectively. After concatenating coefficient vectors with
pre-computed mean values and variances, final feature vectors of 2184 elements were obtained.
The transcription of this algorithm is provided in a listing contained in Appendix A.

• dwt_stat: each channel of every frame was decomposed with the discrete wavelet transform as in
the dwt scheme. Subsequently, for each of five wavelet coefficient-based vectors, the following
descriptive parameters are computed; mean value, mean value of absolute values, variance,
skewness, kurtosis, zero-crossing rate, and the sum of squares (see Appendix A for the code used).

Dimensionalities of feature vectors obtained with the aforementioned schemes were reduced via
principal component analysis (PCA). For each set of features derived from the training dataset, PCA
was performed, retaining 95% of the variance in training data set features. Then, validation and test
data were projected to PCA, which was written in Python (see Appendix A).

3. Experiments, Results, and Discussion

Experiments were carried out in order to compare the accuracy of test data classification using
selected methods of feature extraction and classification. All computations were performed with the
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Python 3.5 programming language. The most important libraries used are scikit-learn, TensorFlow, and
Keras [86–88].

First, the obtained dataset was randomly divided into training data, validation data, and test data
in proportions of 70%, 10%, and 20%, respectively. The code snippet is shown in Appendix A.

It should be noted that for each feature extraction scenario, two different schemes were computed.
In the case of k-NN and SVM classifiers, the validation step was omitted, and validation data were
used for training. Thus, PCA was performed on a total of 80% of available data for the k-NN and SVM
classifiers, and 70% of available data for neural networks. After dimensionality reduction, the lengths
of feature vectors for each scheme amounted to

• ar16: 38 in both cases,
• ar24: 61 in both cases,
• welch16: 61 in both cases,
• welch32: 110 in both cases,
• welch64: 204 in both cases,
• dwt: 1019 for k-NN and SVM, 1016 for neural networks, and
• dwt_stat: 136 in both cases.

Moreover, 10-fold cross-validation was executed to estimate further how the model is expected to
perform on unseen data. These results are shown for comparison with the training data/validation/test
scheme, but only for the best/worst feature extraction method/classifier variants.

3.1. Experiment 1: k-Nearest Neighbors

In the first experiment, k-NN classifiers were trained for chosen values of k using 80% of available
data. The remaining 20% of data was used for testing. Accuracy was used as an effectiveness measure.
Precision, recall, F1 score, and confusion matrices were used as auxiliary score measures. Code snippets
for training classifiers, test data classification, and computing score measures are shown in Appendix A.

The results obtained in this experiment are presented as a summary in Table 2, and a discussion
carried out through this Section. The best individual scores for the given feature extraction scheme
and best mean score from all feature extraction schemes for a given k value are highlighted in bold.

Table 2. Accuracy of test data classification with k-NN classifiers for chosen values of k.

Feature Extraction Scheme

k ar16 ar24 dwt dwt stat welch16 welch32 welch64 mean
5 0.4742 0.4605 0.3529 0.4192 0.5999 0.6304 0.6052 0.5060
7 0.4891 0.4756 0.3559 0.4327 0.6084 0.6338 0.6145 0.5010

11 0.4941 0.4875 0.3535 0.4403 0.6163 0.6386 0.6245 0.5157
14 0.5030 0.4927 0.3533 0.4456 0.6141 0.6370 0.6358 0.5259
17 0.5066 0.4998 0.3563 0.4569 0.6129 0.6362 0.6322 0.5287

mean 0.4934 0.4832 0.3544 0.4389 0.6103 0.6352 0.6224

In the conducted experiment, the highest classification accuracy of 63.86% was achieved for
the welch32 scheme combined with the value of k = 11. Likewise, mean classification accuracy was
also highest for the welch32 scheme. In general, schemes based on Welch’s method proved to be
most effective. Although welch32 and welch64 schemes led to slightly better results than welch16,
considering both average and individual scores, all three of them achieved the mean value of accuracy
over 60%. Feature extraction schemes based on other used methods failed to get close to that score.

Autoregressive modeling-based schemes ar16 and ar24 achieved classification accuracy at the
level of 50%. Interestingly, using the ar24 scheme resulted in slightly lower classification accuracy than
using ar16. This shows that increasing the number of features may not provide higher accuracy.
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Surprisingly, poor results were achieved using wavelet-based feature extraction schemes. The dwt
scheme proved to be the least effective one in this experiment. Slightly better results, though still weak,
were achieved with the dwt_stat scheme. A possible explanation for the poor performance of the
dwt scheme may be overly high dimensionality of feature vectors, as dimensionality is thought to be
particularly problematic in k-NN classifiers [89,90].

In the case of autoregressive modeling-based and wavelet transform-based feature extraction
schemes, the best results were achieved with k = 17, the highest of used values. Welch method-based
schemes were more effective with k = 11 and k = 14. It must be noted that the impact of the value of k on
classification accuracy turned out to be small in comparison to the impact of the feature extraction scheme.

To find out the statistical significance of results presented in Table 2, a series of statistical tests was
conducted. The approach employed for this purpose is a mixed linear model (MLM) [91]. Statistical
testing with the use of MLMs allows testing of observations that are statistically dependent. In the case
of data from Table 2, we test the difference of means obtained by the k-NN classifier with different
types of feature extraction schemes. The averaging process is conducted over a set of values obtained
for different values of k. The use of MLMs also allows testing of vectors of dependent values that
analyze vectors of unequal length. This feature is important in the context of experiments 2 and 3,
which have tables of results with missing values. For the calculation of MLMs, an implementation of
this method provided in the Python statsmodels package [92] was employed. Columns from Table 2
were treated as dependent vectors of observations, thus the test describes the difference of performance
of the k-NN algorithm for each type of input data preprocessing, and this difference is observed on
a set of varied k-NN algorithm k hyperparameter values. The results of the test procedure are shown in
Table 3. The algorithm finds the influence of each algorithm on the mean value of accuracy shown in
the Table 2. The reference, which also defines values observed for the Intercept row from the table,
is the welch32 algorithm, which was found to provide the highest mean accuracy calculated as a mean
of performance for all variants of the k-NN algorithm.

Table 3. Results of the mixed linear model analysis for data from Table 2. The values presented are
coefficients of a linear model calculated by the analysis procedure, standard error, statistic, and p-value
of a test for statistical significance and left and right boundaries of the confidence interval for the
influence of each algorithm in comparison to reference algorithm (welch32). Boundary probabilities of
the confidence interval are 0.025 and 0.975.

Coeff. Std. Err. z P > |z|
Left c.f.

Boundary
Right c.f.

Boundary

Intercept (welch32-based influence) 0.635 0.012 53.682 0.000 0.612 0.658
ar16 −0.142 0.017 −8.474 0.000 −0.175 −0.109
ar24 −0.152 0.017 −9.082 0.000 −0.185 −0.119
dwt −0.281 0.017 −16.782 0.000 −0.314 −0.248

dwt_stat −0.196 0.017 −11.728 0.000 −0.229 −0.163
welch16 −0.025 0.017 −1.487 0.137 −0.058 0.008
welch64 −0.013 0.017 −0.763 0.446 −0.046 0.020

Results of the analysis shown in Table 3 lead to the conclusion that all Welch-based classifiers had
similar performance, and there are no statistically significant differences between them. This conclusion
may be driven from both the value of z statistic and the associated p-value and from the confidence
interval values, which are negative for the left boundary and positive for the right boundary.
The significance level was assumed to be equal to the standard value of 0.05. The influence of
the rest algorithms is negative, and the worst performance is found in the case of the dwt-based
parameterization method, which, even in the most positive case of a value retrieved from the right
boundary of the confidence interval, is worse than the left boundary of all other algorithms. Therefore,
it can be concluded that the best performing group of parameterization is the one based on the Welch
method, and there were no significant differences between algorithms from this group.
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Below, a detailed discussion on examples of feature extraction schemes and classifier scenarios is
shown. In Table 4 (left), a normalized confusion matrix for the 11-NN classifier and the welch32 feature
extraction scheme is shown. Observations belonging to the meditation class were mostly correctly
classified, while observations belonging to the music video and logic game classes were often confused
with each other. Such a result is somewhat expected, as both watching the music video and solving
logic puzzles involve a certain level of mental stimulation and require focusing the subject’s attention.
Meditation, as the activity most different from the others, proved to be the easiest one to classify
correctly. Confusion matrices for 11-NN welch16 and 11-NN welch64 (not presented in the article)
contain very similar values. On the right side of Table 4 (right), a normalized confusion matrix for
the 17-NN classifier and ar16 feature extraction scheme is shown. Again, the frames belonging to the
meditation class are mostly correctly classified. Observations belonging to the logic game class are
sometimes assigned to two remaining classes. Observations belonging to the music video class are least
often correctly classified ones—only 32% of the observations of this class were correctly recognized.
As many as 43% of the music video observations were misclassified as meditation. The confusion
matrix for 17-NN ar24 (not shown in the article) contains very similar values.

Table 4. Normalized confusion matrix for the 11-NN classifier and the welch32 feature extraction scheme
(left). Normalized confusion matrix for the 17-NN classifier and the ar16 feature extraction scheme (right).

Confusion Matrix for 11-NN welch32 Confusion Matrix for 17-NN ar16

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.82 0.09 0.08 meditation 0.72 0.19 0.10
music video 0.11 0.47 0.42 music video 0.43 0.32 0.25
logic game 0.04 0.34 0.62 logic game 0.27 0.25 0.48

In Table 5, normalized confusion matrices for 17-NN dwt and 17-NN dwt_stat scenarios are
shown. These matrices differ greatly. In the case of 17-NN dwt, most observations of all classes have
been recognized as logic game, a much lesser part as music video, and the least part as meditation.
In the 17-NN dwt_stat scenario, the meditation observations were mostly correctly classified, while
logic game and music video were assigned in different proportions to all classes, however most often
to the meditation class.

Table 5. Normalized confusion matrix for the 17-NN classifier and the dwt feature extraction scheme (left).
Normalized confusion matrix for the 17-NN classifier and the dwt_stat feature extraction scheme (right).

Confusion Matrix for 17-NN dwt Confusion Matrix for 17-NN dwt_stat

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.09 0.26 0.64 meditation 0.73 0.14 0.13
music video 0.08 0.26 0.67 music video 0.43 0.29 0.28
logic game 0.05 0.23 0.72 logic game 0.38 0.28 0.35

In Table 6, values of precision, recall, and F1 score for chosen scenarios are shown. Precision for
a given class is defined as the ratio of the number of observations correctly assigned by a classifier to
that class (true positives) to the number of all observations assigned by a classifier to that class (sum
of true and false positives). Recall that a given class is defined as the ratio of true positives to the
number of all observations belonging to that class (sum of true positives and false negatives). F1 score
is defined in the following way.

F1 = 2·
precision·recall

precision + recall
(1)
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Table 6. Values of precision, recall, and F1 score for each signal class for chosen variants of Experiment 1.

Scenario Class Precision Recall F1

11-NN welch32
meditation 0.8497 0.8234 0.8363
logic game 0.5521 0.6215 0.5847

music video 0.5204 0.4710 0.4944

17-NN ar16
meditation 0.5049 0.7177 0.5928
logic game 0.5824 0.4807 0.5267

music video 0.4270 0.3216 0.3669

17-NN dwt
meditation 0.4274 0.0925 0.1521
logic game 0.3545 0.7201 0.4751

music video 0.3408 0.2563 0.2926

17-NN dwt stat
meditation 0.4772 0.7334 0.5782
logic game 0.4593 0.3476 0.3957

music video 0.4101 0.2896 0.3395

In the case of data from Table 6, we also employed a series of statistical tests to find out the
statistical significance of the obtained results. All confusion matrices used for calculation of precision,
recall, and F1 score were also subject to the chi-square test, which is used to find if unevenness of value
distribution in a given contingency table is uneven to a purely random chance or is it caused by some
external factor. Confusion matrices in this context can be treated as a special case of contingency tables.
For Table 6, only one result was found to be statistically insignificant and thus not recognized by the
classification algorithm—a music video scenario in the case of the 17-NN dwt algorithm. The value of
the test statistic was equal to 3.634, and thus the p-value is equal to 0.056. If the significance level of
0.05 is considered, the result of the classifier is equivalent to random assignment to the class, and the
result is statistically insignificant. For the rest of the classifiers, the results are statistically significant.
A Holm–Bonferroni correction for multiple testing was applied to the outcomes of the three consecutive
tests conducted for each of the classes.

As earlier mentioned, results obtained with the use of the first validation scheme (training/

validation/test or training/test) were compared to the outcomes of 10-fold cross-validation (2nd scheme).
A confidence interval (α = 0.95) was calculated for a vector of values provided by the cross-validation
procedure. Differences between the scores of both validation schemes are considered statistically
significant if this value was outside the confidence interval. Calculations are performed with the use of
R language. For calculation of confidence intervals, a DescTools library was employed [93].

If, in the 1st validation scheme, the result is outside the confidence interval, then the difference
between this result and the nearer boundary of the confidence interval is taken into account. In our
further discussion, if a performance measure value from the study based on the 1st scheme is below
the lower boundary of the confidence interval, we will report an increased performance in the case of
the cross-validation and provide the difference of performances according to the following formula,

∆Mp = CIL −M3sets, (2)

where ∆Mp is a difference between measures which can be accuracy, precision, recall, or F1; CIL is the
value of the lower boundary of confidence interval calculated for results from cross-validation based
assessment; and M3sets is the value of measure based on assessment employing single random division
into training, validation, and test sets.

The formula is applied only if CIL > M3sets. If the degradation of performance is observed, then
another formula is employed for reporting the result:

∆Mp = M3sets −CIU, (3)

where CIU denotes the upper boundary of confidence interval derived from outcomes of cross-validation
based benchmark. This equation is applied only if M3sets > CIU.
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Experiment 1

For comparison, 10-fold cross-validation was performed for the best (11-NN welch32) and
the worst (17-NN dwt) training/test scheme in Experiment 1. The results are contained in Table 7.
Comparing precision, recall, and F1 score metrics of the two test schemes, they are quite similar for
11-NN welch32. However, they differ for the logic game and music video for the 17-NN dwt. In the case
of 10-fold cross-validation and 11-NN welch32, most of the observations belonging to the meditation
class are classified correctly, while observations of remaining classes are assigned in nearly the same
proportions to all classes. The statistical analysis performed for the comparison purpose between
validation schemes is shown further on.

Table 7. Values of precision, recall, and F1 score in 10-fold cross-validation for the best and the worst
feature extraction method variants of Experiment 1 (k-NN classifier).

Scenario Class Precision Recall F1

11-NN welch32
meditation 0.8621 0.8300 0.8458
logic game 0.5794 0.5621 0.5706

music video 0.5018 0.5354 0.5180

17-NN dwt
meditation 0.4402 0.0957 0.1572
logic game 0.3587 0.6098 0.4517

music video 0.3370 0.3649 0.3504

In the case of the worst scenario, when the DWT-based parametrization is considered, the accuracy
value obtained in the 1st scheme was found to be within the confidence interval calculated from
the results of cross-validation, thus there were no statistically significant differences between two
approaches. Similarly, no such differences were found for the precision measure. However, for the
recall measure, we found that the classifier performed significantly worse for the logic game class;
the upper boundary of the confidence interval is 0.098 smaller than the result from the 1st scheme.
However, the same classifier performed better in the case of the music video, and the improvement
is very similar to the reduction of performance in the case of the logic game (i.e., 0.095). Obviously,
a similar pattern can be observed for the F1 measure, which is derived from precision and recall.
Performance for the logic game is statistically significantly worse (i.e., 0.018), and performance for
music video increased by 0.048.

In the case of the best performing algorithm (based on the Welch method), we also did not find
accuracy to be statistically different in both scenarios. Differences were observed for all remaining
measures. For precision measure, an increase in performance was found for the logic game (i.e., 0.0158)
and degradation for the music video class by 0.007. For the recall measure, performance degraded by
0.0445 for the logic game and increased by 0.0546 for the music video. For the F1 measure, performance
for logic game degraded by 0.0052, and increased for meditation by 0.0028 and for music video by 0.0154.

Observed changes of performances were statistically significant, but it is worth mentioning that
in some cases, the difference between values from the 1st scheme and the closest boundary derived
from the cross-validation assessment is small (smaller than 0.01).

3.2. Experiment 2: Support Vector Machines with a Linear Kernel

In the second experiment, the accuracy of classification with support vector machines was tested.
A linear function was used as a kernel. Used values of penalty parameters C were 0.01, 0.1, 1, 10, and
100. For some combinations of C parameter value and feature extraction scheme, experiments were not
conducted because of very long computation times, and poor results achieved for the given scheme in
conjunction with other values of C. Data used for training and testing were the same as in Experiment 1.
The code for training and testing classifiers is contained in Appendix A.

The results are shown in Table 8. The best individual scores for the given feature extraction
scheme and best mean score from all feature extraction schemes for given k value are highlighted in



Sensors 2020, 20, 2403 12 of 31

bold. The highest value of accuracy was achieved for the welch32 feature extraction scheme, combined
with the value of C = 1. It amounted to 66.71%, which is almost three percentage points higher than
the best result in Experiment 1. The best mean value of the classification accuracy was achieved for the
welch64 feature extraction scheme, although the score obtained with welch32 was not much worse.
The highest mean scores of all feature extraction schemes were acquired for C = 10 and C = 100. This
is probably because experiments were not conducted for wavelet-based feature extraction schemes,
which would otherwise lower the mean scores.

Table 8. Accuracy of test data classification with support vector machine (SVM)-linear classifier for
chosen values of C parameter.

Feature Extraction Scheme

C ar16 ar24 dwt dwt stat welch16 welch32 welch64 mean

0.01 0.5072 0.5397 0.3353 0.5149 0.5653 0.6122 0.6290 0.5291
0.1 0.5083 0.5397 0.3351 0.5129 0.6070 0.6378 0.6528 0.5491
1 0.5085 0.5393 0.3287 0.5131 0.6249 0.6671 0.6612 0.5490

10 0.5085 0.5395 - 0.5145 0.6550 0.6628 0.6598 0.5900
100 0.5085 0.5397 - - 0.6548 0.6638 0.6548 0.6043

mean 0.5082 0.5396 0.3330 0.5138 0.6214 0.6487 0.6515

Both the best individual and mean scores turned out to be slightly better than the scores obtained
in Experiment 1. Nevertheless, similar conclusions can be drawn from both experiments. Welch’s
method again turned out to be the best parametrization method in terms of both individual best and
mean scores. The dwt scheme again turned out to be the least effective one. The main difference in
the results of both experiments is that in Experiment 2, applying the ar24 scheme resulted in higher
accuracy scores than using the ar16 scheme. The most substantial improvement in results was obtained
for the dwt_stat scheme.

Similarly to the first experiment, an MLM-based analysis was also applied for data from Table 8.
Results from such analysis are presented in Table 9. This table contains the results calculated with the
mixed linear model analysis. In this case, a welch64 algorithm was employed as a reference.

Table 9. Coefficients of a linear model calculated by the analysis procedure, standard error, statistic, and
p-value of a test for statistical significance as well as left and right boundaries of the confidence interval
for the influence of each algorithm in comparison to the reference algorithm (welch64). Boundary
probabilities of the confidence interval are 0.025 and 0.975.

Coeff. Std. Err. z P > |z|
Left c.f.

Boundary
Right c.f.

Boundary

Intercept (welch64-based influence) 0.652 0.012 53.764 0.000 0.628 0.675
ar16 −0.143 0.017 −8.291 0.000 −0.177 −0.109
ar24 −0.112 0.019 −5.965 0.000 −0.149 −0.075
dwt −0.318 0.022 −14.386 0.000 −0.362 −0.275

dwt_stat −0.138 0.018 −7.680 0.000 −0.173 −0.103
welch16 −0.030 0.026 −1.144 0.253 −0.082 0.021
welch32 −0.003 0.024 −0.118 0.906 −0.049 0.043

Again, similar to the outcomes of the first experiment, Welch method-based algorithms performed
similarly, and there were no statistically significant differences in their performance. The rest of the
algorithms performed worse than the reference algorithm. The worst performance is associated with
the dwt algorithm.

Moreover, accuracies for the case of SVM (linear kernel) in 10-fold cross-validation were obtained
for welch32 (the best performance) and dwt (the worst outcome) feature extraction variants. The results
are shown in Table 10. Comparing these values with Table 8, one can observe that they are quite similar,
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though accuracy values are lower in the 10-fold cross-validation scheme. Again, the formal approach
to statistical analysis will be shown at the end of this Section.

Table 10. Accuracy values for the case of SVM (linear kernel) in 10-fold cross-validation.

Feature Extraction Scheme

C dwt welch32

0.01 0.3330 -
1 - 0.6595

In Tables 11 and 12, the normalized confusion matrices for welch32, ar16, dwt, and dwt_stat
feature extraction schemes are shown. For the first three variants, confusion matrices are very similar
to the ones obtained in Experiment 1. For the dwt_stat scheme, improvement in classification scores
for observations belonging to logic game and music video in comparison to scores from Experiment 1
can be noted.

Table 11. Normalized confusion matrix for SVM classifier with linear kernel, value of C = 1, and
welch32 feature extraction scheme (left). Normalized confusion matrix for SVM classifier with linear
kernel, value of C = 1, and ar16 feature extraction scheme (right).

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.85 0.12 0.03 meditation 0.73 0.15 0.12
music video 0.13 0.50 0.37 music video 0.40 0.28 0.31
logic game 0.04 0.31 0.66 logic game 0.27 0.22 0.51

Table 12. Normalized confusion matrix for SVM classifier with linear kernel, value of C = 0.01, and
dwt feature extraction scheme (left). Normalized confusion matrix for SVM classifier with linear kernel,
value of C = 0.01, and dwt_stat feature extraction scheme (right).

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.30 0.35 0.35 meditation 0.68 0.20 0.13
music video 0.30 0.35 0.35 music video 0.25 0.37 0.38
logic game 0.31 0.34 0.35 logic game 0.18 0.32 0.50

In Table 13, values of precision, recall, and F1 score for welch32, ar16, dwt, and dwt_stat schemes
are presented. In all variants, with the exception of dwt values, all aforementioned measures are
highest for the meditation class and lowest for the music video class.

Table 13. Values of precision, recall, and F1 score for each signal class for chosen variants of Experiment 2.

Variant Class Precision Recall F1

welch32
C = 1

meditation 0.8369 0.8501 0.8434
logic game 0.6179 0.6560 0.6364

music video 0.5367 0.4952 0.5151

ar16
C = 1

meditation 0.5209 0.7310 0.6083
logic game 0.5400 0.5103 0.5247

music video 0.4360 0.2842 0.3441

dwt
C = 0.01

meditation 0.3324 0.3017 0.3163
logic game 0.3345 0.3525 0.3432

music video 0.3388 0.3519 0.3452

dwt stat
C = 0.01

meditation 0.6134 0.6753 0.6429
logic game 0.4946 0.5000 0.4973

music video 0.4159 0.3694 0.3913
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Outcomes from Table 13 were also tested with the chi-square statistical test. Results from all
variants were found to be statistically significant with the exception of dwt and C = 0.01. In this
case, the statistic for meditation class was smaller than 0.001, which resulted in a p-value of 0.993;
the logic game was associated with a test statistic of 0.629, which resulted in a p-value of 0.812; and
the music video was associated with a test statistic value of 0.582 and a p-value of 0.812. Therefore,
classification in this variant is equivalent to the class assignment done randomly, and outcomes are
statistically insignificant.

In Table 14, precision, recall, and F1 score are shown for a 10-fold cross-validation scheme.
Comparing these values with Table 13, one may observe that the metric values obtained for all classes
look very similar; however, the statistical analysis shown below details whether the differences are
statistically significant.

Table 14. Values of precision, recall, and F1 score for 10-fold cross-validation for the best and worst
results resulted from the training/validation/test scheme as contained in Table 13.

Variant Class Precision Recall F1

welch32
C = 1

meditation 0.8472 0.8594 0.8533
logic game 0.6052 0.6246 0.6147

music video 0.5187 0.4946 0.5063

dwt
C = 0.01

meditation 0.3288 0.3134 0.3209
logic game 0.3344 0.3394 0.3369

music video 0.3356 0.3463 0.3408

For the feature extraction method associated with the worst performance (based on DWT) we found
that there were no statistically significant differences between the 1st scheme and the cross-validation
based benchmarks. For the best performing scenario (based on welch32), we may observe that most of
the results differ in a statistically significant way; however, some of the differences in performances are
very small (smaller than 0.01). Overall accuracy was found to be lower for cross-validation (0.0012).
Precision also provided smaller values for cross-validation (i.e., 0.0027). For recall, the performance
also decreased for logic game and meditation (by 0.0206 and 0.0012, respectively). The performance
for meditation increased by 0.0012. Degradation (0.0156) of the F1 score was observed for the logic
game, and an increase of 0.003 in the F1 value was found for the meditation class.

3.3. Experiment 3: Support Vector Machines with Radial Basis Function Kernel

Experiment 2 was repeated using a radial basis function (RBF) as a kernel. The utilized values
of RBF parameter γ were as follows, 0.1, 1, and 10. The code for training classifiers and test data
classification is shown in Appendix A. A summary of results is presented in Table 15. The best individual
scores and the best mean score for the given feature extraction scheme, C and γ are highlighted in bold.

The highest individual classification accuracy was again achieved for the welch32 scheme with
parameters C = 10 and γ = 10. It amounted to 69.33%, a result that is over 2.5 percentage points
better comparing to the linear SVM best score and 5.5 percentage points better than the k-NN best
score. As in previous experiments, the scores obtained using the Welch method, in particular, in the
welch32 and welch64 variants, turned out to be much higher than with the other methods. On the
other hand, the mean accuracy scores of all C and γ values are not much higher for welch32 and
welch64 variants in comparison to values obtained in Experiment 2. Moreover, for autoregressive
modeling-based schemes and the dwt_stat variant, mean accuracy scores turned out to be much lower
in comparison to scores obtained in previous experiments. This is due to the greater influence of C
and γ on accuracy scores. In previously tested classifiers, changing the values of k and C parameters
had a small impact on the accuracy of the classification. In the present experiment, the classification
accuracy for the ar16 scheme with the parameters C = 1 and γ = 0.1 was 52.86%. After changing the
value of γ to 10, classification accuracy amounted to only 33.33%. The difference is, therefore, almost
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20 percentage points. As seen from Table 15, most of the used combinations of C and γ values resulted
in relatively low classification accuracy compared to the maximum values, both in this experiment and
in the previous ones, for a given feature extraction scheme. This explains the low average values of
classification accuracy and indicates the need for fine-tuning of the SVM classifier parameters when
using the RBF kernel.

Table 15. Accuracy of test data classification with the SVM-RBF classifier for chosen values of C and
γ parameters.

Feature Extraction Scheme

C γ ar16 ar24 dwt dwt stat welch16 welch32 welch64 mean

0.01
0.1 0.3769 0.3392 0.4097 0.3976 0.5651 0.6133 0.6231 0.4750
1 0.3333 0.3333 0.3414 0.3523 0.5689 0.6193 0.6332 0.4545
10 0.4252 0.4180 0.3557 0.3333 0.6072 0.6378 0.6380 0.4879

0.1
0.1 0.4821 0.3734 0.4097 0.3976 0.5651 0.6169 0.6310 0.4965
1 0.3333 0.3333 0.3392 0.3529 0.6161 0.6453 0.6578 0.4683
10 0.4252 0.4178 0.3557 0.3333 0.6334 0.6683 0.6713 0.5007

1
0.1 0.5286 0.5107 0.4222 0.3333 0.6157 0.6455 0.6604 0.5309
1 0.3597 0.3333 0.4319 0.3535 0.6338 0.6655 0.6709 0.4927
10 0.3333 0.4178 0.3557 0.3333 0.6578 0.6846 0.6866 0.4956

10
0.1 0.4998 0.5070 - 0.3535 0.6334 0.6650 0.6626 0.5535
1 0.3636 0.3366 - 0.3333 0.6578 0.6681 0.6765 0.5060
10 0.3333 0.4210 - - 0.6632 0.6933 0.6644 0.5550

100
0.1 0.5000 - - 0.3327 0.6133 0.6632 0.6626 0.5544
1 0.3636 - - 0.3535 0.6548 0.6820 0.6725 0.5453
10 0.3333 - - 0.3333 0.6683 0.6701 0.6606 0.5331

mean 0.3994 0.3951 0.3801 0.3495 0.6236 0.6559 0.6581

In the performed experiment, the feature extraction scheme resulting in the poorest results turned
out to be the dwt_stat scheme. The highest classification accuracy for this scheme decreased by
12 percentage points compared to the linear SVM classifier, and by six percentage points compared
to the k-NN classifier. Using the radial basis function kernel resulted in a very different shape from
the hyperplane decision boundary of the linear SVM classifier. The decision boundary of the k-NN
classifier at high k values may converge to the hyperplane, which explains the similarity of the results
for the k-NN and the SVM linear classifier. A different shape of achievable decision boundaries may
result in better classification results in some data sets, but worse in others.

Results of the statistical MLM-based analysis of outcomes of the third experiment are presented
in Table 16. In this table, the results of the mixed linear model analysis for data from Table 15 are
contained. In this case, also the welch64 algorithm was treated as a reference.

Table 16. Coefficients of a linear model calculated by the analysis procedure, standard error, statistic,
and p-value of a test for statistical significance and left and right boundaries of the confidence interval
for the influence of each algorithm in comparison to the reference algorithm (welch64). Boundary
probabilities of the confidence interval (c.f. ) are 0.025 and 0.975.

Coeff. Std. Err. z P > |z|
Left c.f.

Boundary
Right c.f.

Boundary

Intercept (welch6-based influence) 0.658 0.042 15.639 0.000 0.576 0.741
ar16 −0.259 0.051 −5.049 0.000 −0.359 −0.158
ar24 −0.263 0.053 −4.977 0.000 −0.367 −0.159
dwt −0.278 0.062 −4.480 0.000 −0.400 −0.156

dwt_stat −0.309 0.062 −4.946 0.000 −0.431 −0.186
welch16 −0.035 0.064 −0.542 0.588 −0.159 0.090
welch32 −0.002 0.063 −0.035 0.972 −0.125 0.121
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Similar to the previous two experiments, no significant differences were observed for welch-based
algorithms and the worst performance was found in the case of the dwt algorithm. However,
the difference in performance between dwt and other algorithms such as ar16 and ar24 is not as
prominent as in the case of previous experiments. In their case, pessimistic performance is similar to
the pessimistic performance of the dwt algorithm.

10-fold cross-validation was also performed for SVM with a radial kernel function for two feature
schemes based on the accuracy results (the lowest and the highest accuracies) contained in Table 17.
Therefore, dwt_stat (C = 0.01, γ = 0.1) and welch32 (C = 10, γ = 10) cases were examined. Comparing
Tables 15 and 17, one can see that the results look very similar, though accuracy for the worst-performing
algorithm (based on dwt stat) degraded by 0.0703.

Table 17. Accuracy of test data classification for the SVM-RBF classifier for 10-fold cross-validation
performed for the best and worst results obtained from the training/validation/test scheme.

Feature Extraction Scheme

C γ dwt_stat welch32

0.01 0.1 0.3229 -
10 10 - 0.6905

In Tables 18 and 19, the normalized confusion matrices for feature extraction schemes welch32,
ar16, dwt, and dwt_stat with the best parameter combinations are shown. The confusion matrix for
the welch32 scheme is very similar to the confusion matrix obtained for that scheme in previous
experiments. The majority of meditation frames are correctly classified, while the other two categories
are sometimes confused with each other.

Table 18. Normalized confusion matrix for SVM classifier with RBF kernel, C = 10, γ = 10, and the
welch32 feature extraction scheme (left). Normalized confusion matrix for SVM classifier with RBF
kernel, C = 1, γ = 0.1, and the ar16 feature extraction scheme (right).

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.86 0.11 0.03 meditation 0.62 0.24 0.14
music video 0.10 0.53 0.37 music video 0.28 0.37 0.35
logic game 0.01 0.30 0.69 logic game 0.18 0.22 0.59

Table 19. Normalized confusion matrix for SVM classifier with RBF kernel, C = 1, γ = 1, and the dwt
feature extraction scheme (left). Normalized confusion matrix for SVM classifier with RBF kernel, C =

0.01, γ = 0.1, and the dwt_stat feature extraction scheme (right).

Meditation Music
Video

Logic
Game Meditation Music

Video
Logic
Game

meditation 0.70 0.16 0.14 meditation 0.52 0.26 0.22
music video 0.51 0.23 0.26 music video 0.37 0.34 0.29
logic game 0.40 0.23 0.37 logic game 0.35 0.32 0.33

The error matrix for the ar16 variant has similar values, as in the previous experiment. Classification
accuracy for logic game and music video frames increased, while the accuracy for the meditation
class decreased.

The confusion matrix for the dwt scheme, in turn, differs greatly from the matrices obtained
in previous experiments, in which most of the observations were classified into the logic game
or music video classes and very few observations into the meditation category. In the present
experiment, most of the observations belonging to the meditation class are classified correctly, while
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observations of remaining classes are assigned in different proportions to all classes, but most often to
the class meditation.

In the case of the dwt_stat scheme, observations belonging to the logic game and music video
classes are assigned to three classes roughly equally. Observations of the meditation class are in half of
the cases mistakenly assigned to other classes.

In Table 20, values of precision, recall, and F1 score for each signal class for the welch32, ar16,
dwt, and dwt_stat feature extraction schemes are presented. For welch32 and ar16, the values of all
measures are the highest for the meditation class and the lowest for the music video class. Note the
relatively low precision for the meditation class and the dwt scheme.

Table 20. Values of precision, recall, and F1 score for each signal class for chosen variants of Experiment 3.

Variant Class Precision Recall F1

welch32 meditation 0.8876 0.8597 0.8735
C = 10 logic game 0.6287 0.6898 0.6578
γ = 10 music video 0.5676 0.5302 0.5483
ar16 meditation 0.5716 0.6203 0.5950
C = 1 logic game 0.5496 0.5931 0.5705
γ = 0.1 music video 0.4457 0.3724 0.4058

dwt meditation 0.4344 0.6983 0.5356
C = 1 logic game 0.4791 0.3664 0.4152
γ = 1 music video 0.3680 0.2310 0.2838

dwt_stat meditation 0.4178 0.5193 0.4631
C = 0.01 logic game 0.3997 0.3337 0.3638
γ = 0.1 music video 0.3685 0.3398 0.3536

After the statistical testing process with chi-square test, all differences presented in Table 20 were
found to be statistically significant.

In Table 21, values of precision, recall, and F1 score are shown for 10-fold cross-validation for the
best and worst results of the training/validation/test scheme, as shown in Table 20. For welch32, resulting
metrics are very similar. For dwt_stat feature extraction scheme, values of all measures are lower. Again,
the statistical analysis was performed showing which differences are statistically significant.

Table 21. Values of precision, recall, and F1 score for 10-fold cross-validation for the best and worst
results of the training/validation/test scheme as contained in Table 20.

Variant Class Precision Recall F1

welch32 meditation 0.8848 0.8722 0.8785
C = 10 logic game 0.6269 0.6665 0.6461
γ = 10 music video 0.5601 0.5326 0.5460

dwt_stat meditation 0.3271 0.3925 0.3568
C = 0.01 logic game 0.3211 0.3854 0.3503
γ = 0.1 music video 0.3182 0.1909 0.2387

Degradation was found for all classes in terms of precision. The logic game deteriorated by 0.1526,
music video by 0.1661, and music video by 0.2089. No differences were found for recall measure.
In terms of the F1 measure, degradation was observed for meditation class (i.e., 0.0838) and music
video (i.e., 0.1114).

Only two statistically significant differences were found for the best performing algorithm (based
on Welch’s method). Both are associated with the recall measures. For the logic game, performance
dropped by 0.0071, and there was an increase of 0.0033 for meditation. It is worth noting that these are
low values compared to the magnitude of performance changes in other algorithms.



Sensors 2020, 20, 2403 18 of 31

3.4. Experiment 4—Neural Networks

In the last experiment performed, the accuracy of classification using neural networks was
examined. Neural networks belonging to deep learning classifiers class, with a single hidden layer with
the ReLU activation function [94,95] and the softmax activation function in the output layer, were used.
Weights were initialized with the He method (parameter kernel initializer = ‘he uniform’) [96] was
used, while biases were initialized with zeros. The Nesterov gradient method was used for training the
network [97]. The learning rate parameter was set to 0.01 with a decay of 10−6 per epoch. Momentum
was set to α = 0.9. To prevent overfitting, early stopping with the patience of 50 epochs was used. This
parameter refers to the number of epochs to wait before early stop if no progress on the validation
set is achieved. The maximum possible number of learning epochs was set to 2000. The results are
presented in Table 22. The code used for training the networks is shown below.

Table 22. Accuracy of test data classification using the neural network with a single hidden layer.
The evaluation was repeated 10 times for each parameterization method.

ar16 ar24 dwt dwt stat welch16 welch32 welch64

0.5149 0.5296 0.3428 0.4911 0.6705 0.7031 0.6894
0.5191 0.5339 0.3313 0.4986 0.6721 0.7048 0.6961
0.5131 0.5266 0.3386 0.4962 0.6713 0.7046 0.6941
0.5163 0.5240 0.3400 0.4847 0.6763 0.6963 0.6913
0.5266 0.5347 0.3424 0.4974 0.6653 0.7058 0.6894
0.5208 0.5341 0.3424 0.4736 0.6755 0.7003 0.6955
0.5155 0.5236 0.3434 0.4942 0.6717 0.6997 0.6904
0.5169 0.5353 0.3428 0.4923 0.6626 0.7035 0.6870

For the autoregressive modeling-based and wavelet transform-based methods, the results obtained
were similar to the results obtained with linear SVMs, while for Welch’s method, the obtained accuracy
was even higher than in previous experiments. Again, the welch32 scheme, for which classification
accuracy higher than 70% was achieved for the first time, turned out to be the best option. The code
employed to achieve these outcomes is provided in Appendix A.

Values from Table 22 were also subject to statistical testing. To test it, the ANOVA analysis could be
employed; however, first, a Levene test for uniformity of variance should be performed. The value of test
statistic was equal to 0.883, and thus p-value was equal to 0.512. Therefore, all variances of observation
vectors gathered for each algorithm can be assumed to be equal. Next, a series of Shapiro–Wilk tests
were conducted to test the second assumption of the ANOVA test, which is Gaussian distribution of
observation. For all but one algorithm p-value of the Wilk–Shapiro test was in a range between 0.157
and 0.629. However, for the dwt algorithm, the value of the Shapiro–Wilk algorithm was equal to 0.016,
and therefore, it is concluded that one of the observations does not have Gaussian distribution, and the
ANOVA test cannot be performed. p-values of the Shapiro–Wilk test were corrected for multiple testing
with a Holm–Bonferroni correction. Instead of ANOVA, the Kruskal–Wallis nonparametric alternative
for ANOVA has to be conducted. The statistic of the Kruskal–Wallis test is in this case equal to 67.454,
and thus the p-value is smaller than 0.001, and differences between medians of results obtained by each
algorithm are statistically significant in the case of at least one pair of algorithms. To find out such pairs,
the Dunn post-hoc test is conducted. The matrix of p-values of the Dunn test is presented in Table 23.

Ar16 and ar24 performed similarly, and no statistical difference was found between the performance
of those two algorithms. The behavior of the group of welch-based algorithms was close to ar-based
schemes; however, a statistically significant difference was found between welch16 and welch32
algorithms. Although dwt and dwt_stat algorithms performed in a similar manner, no statistically
significant differences in performance were found in their case.
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Due to the fact that in each of the conducted experiments, the welch32 scheme provided the best
results, further part of the experiments focused on tuning the neural network to obtain the best possible
outcome with this scheme.

Table 23. Result of the Dunn post hoc test in the form of the p-value matrix. Values indicating no
statistically significant values are marked in bold font.

ar16 ar24 dwt welch16 welch32 welch64 dwt_stat

ar_16 0.307 0.025 0.031 <10−3 0.001 0.255
ar_24 0.307 0.001 0.255 <10−3 0.025 0.0301
dwt 0.025 0.001 <10−3 <10−3 <10−3 0.272

welch16 0.031 0.255 <10−3 0.028 0.272 <10−3

welch32 <10−3 <10−3 <10−3 0.028 0.272 <10−3

welch64 0.001 0.025 <10-3 0.272 0.272 <10−3

dwt_stat 0.255 0.031 0.272 <10−3 <10−3 <10−3

The general specification of the neural networks for which the best results were obtained is
presented in Table 24. All described networks have output layers consisting of three neurons with the
softmax activation function. In all networks, weights were initialized with the He method, while biases
were initialized with zeros. The Nesterov gradient method was used to train the networks. The best
result of all performed experiments is marked in bold. While using the 10-fold cross-validation scheme,
the accuracy for the best neural network configuration resulted in a value of 0.7412. Thus, the outcome
is very similar in both testing/validation schemes.

Table 24. Specifications of neural networks for which the highest values of classification accuracy
were achieved.

Hidden Layers Activation Function SGD Parameters Patience Max Epochs Accuracy

3 LReLU
(a = 0.2)

lr = 0.01
decay = 10−6

momentum = 0.9
50 2000 0.7477

4 tanh + LReLU
(a = 0.2)

lr = 0.005
decay = 10−6

momentum = 0.9
250 3000 0.7469

6 ReLU
lr = 0.01

decay = 10−6

momentum = 0.9
70 2000 0.7467

3 tanh
lr = 0.01

decay = 10−6

momentum = 0.9
250 3000 0.7446

In Table 25, the normalized error matrix for the best neural network is presented. It can be seen
that better classification results compared to the SVM (RBF) classifier are due to the higher sensitivity
for the music video category. Sensitivity for the other classes remained at a similar level. The left
side of Table 25 shows results for the training/validation/test scheme, whether the outcomes of 10-fold
cross-validation are contained on the right side. As seen in Table 25, the above conclusions are valid
for both testing schemes.

In Table 26, values of precision, sensitivity, and F1 score for each class for the best neural network
configuration are shown. Similarly, as in the previous experiments, scores are the highest for the
meditation class and the lowest for the music video class. Noteworthy is a considerable increase in the
value of measures, primarily sensitivity, for the music video class, 13 percentage points compared to
SVM-RBF, and 21 percentage points compared to k-NN. All values from Table 26 were found to be
statistically significant after conducting the chi-square test.
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Table 25. Normalized confusion matrix for NN with three hidden layers, LeakyReLU activation
function, and the welch32 feature extraction scheme (on the left side: training/validation/test scheme is
shown, whether the outcomes of 10-fold cross-validation are contained on the right side).

Training/Validation/Test Meditation Music
Video

Logic
Game

10-Fold
Cross-Validation Meditation Music

Video
Logic
Game

meditation 0.87 0.11 0.02 meditation 0.90 0.08 0.02
music video 0.06 0.69 0.26 music video 0.07 0.63 0.29
logic game 0.02 0.30 0.68 logic game 0.02 0.29 0.69

Table 26. Values of precision, recall, and F1 score for each class for NN with three hidden layers with
the LeakyReLU activation function and the welch32 feature extraction scheme.

Class Precision Recall F1 Score

meditation 0.9203 0.8724 0.8957
logic game 0.7116 0.6832 0.6971

music video 0.6296 0.6874 0.6572

Similarly, for the same NN configuration and the welch32 feature extraction scheme, 10-fold
cross-validation was performed, and the resulted metrics are shown in Table 27.

Table 27. Values of precision, recall, and F1 score for each activity class for NN with three hidden
layers with the LeakyReLU activation function and the welch32 feature extraction scheme (10-fold
cross-validation).

Class Precision Recall F1 Score

meditation 0.9079 0.8973 0.9026
logic game 0.6840 0.6933 0.6886

music video 0.6343 0.6332 0.6337

The accuracy increased in the cross-validation-based study. The difference between original
performance from the 1st scheme assessment and the lower boundary of the confidence interval for
cross-validation based study is 0.0318. For the performance, drops were observed for the logic game,
it was dropped by 0.027, and for the music video by 0.0014. For recall, an increase of 0.011 was
observed for meditation, and the fall for the music video (i.e., 0.014). For the F1 measure, performance
for meditation increased by 0.0041 and dropped by 0.0068 for music video.

Summary

Translation of performances from evaluation based on three subsets to assessment based on
cross-validation differed in the case of all seven algorithms. Some of the changes were statistically
significant, but the difference between the boundary of confidence interval and value of measure
calculated based on the 1st scheme differed by a very modest amount (smaller than 0.01). Some
changes were very pronounced, an example is the dwt stat-based scenario from Experiment 3. There
were feature/classification algorithm scenarios which performed identically in terms of the proposed
analysis, and an example of such is the one based on dwt from Experiment 2. This can be a vital
indication related to how each feature extraction/algorithm can generalize while tested on data from
other datasets and how reliable and reproducible these effects are.

It should be noted that applying the techniques listed below did not improve or even worsened
the classification accuracy:

• adding more hidden layers,
• using parametric ReLU activation function,
• using adaptive optimization methods like Adam,
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• adding batch normalization or dropout layers,
• adding L1 or L2 weight decay,
• adding additional features: skewness, kurtosis, and energy computed for every channel from raw,

unprocessed frames

In Figures 2 and 3, the first two principal components of the training and test data sets parameterized
with the welch32 scheme are plotted. The first two principal components, in this case, are responsible
for 12.87% and 4.33% of the training dataset variance, respectively. It is possible to draw the decision
boundary in such a way that most observations belonging to the classes meditation and logic game
are correctly classified. Observations belonging to the music video class are problematic because they
mix with observations of the other classes, in particular with the observations of the logic game class.
In order to further improve the accuracy of classification, the critical issue is finding features that will
enable separating observation of the music video class from the observation of the other two classes.
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4. Conclusions

The aim of this study was to compare the effectiveness of selected methods of signal analysis and
classification methods in the task of recognizing three mental states: meditation, logic game, and a video
clip, based on a recorded EEG signal. The data have been preprocessed by employing independent
component analysis. For parametrization of the signal, autoregressive modeling, Welch method,
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and discrete waveform transformation were used. Feature vectors were reduced by the principal
components analysis. The classification was performed employing nearest neighbors, support vector
machines, and neural networks (with three hidden layers and the LeakyReLU activation function).

Among the tested methods of signal analysis in the carried out investigation, the best results
were achieved with Welch’s method, while the neural network turned out to be the most effective
classifier. The choice of parameterization method turned out to have a much greater influence on
the final accuracy of classification than the choice of a classifier. The same trend in metrics was also
obtained while utilizing the 10-fold cross-validation scheme. We can see that for overall accuracy
satisfactory results appear in our study for the meditation phase as they reach 90% in the accuracy
score. This means that several limitations in our approach should be overcome; some of them are
listed below.

In the conducted experiments, autoregressive model coefficients were used as features. Another
possible approach is to calculate an estimate of the spectral power density from the obtained
autoregressive model. Other factors that have not been studied are the effect of the ICA algorithm
on classification results used [18–26], the effect of the initial removal of the constant component and
whitening of data frames, the effect of a long data frame (also in the context of the compromise between
the frame length and the number of training observations), the effect of the tab length, and in the case of
the discrete waveform, the effect of the waveform. It should also be noted that another dataset should
be tested as a benchmark to avoid the problem that the results obtained are due to a combination of
specific features or classification techniques [98–101]. As recalled in the introductory section, there
exists a variety of datasets available to the public, thus they may be utilized for this purpose, however
when having similar dataset features and formats. Testing the influence of all these factors is to be
a further direction of our research.

The main factor limiting the accuracy of classification was the difficulty of separating the video
class observations from those of other classes. Therefore, the need to develop a set of features allowing
for better separation of classes should be researched. There is also a possibility of introducing an
additional meditation phase between the music video phase and the logic game. This would probably
allow for a better signal separation of these two active phases, and in consequence, in a more effective
classification. Moreover, analyzing all the results, one may suppose that playing the logic game and
watching the music video clip result in similar brain activity. If this is a case, two classes could be
discerned, i.e., meditation/activity only. This is one of the future directions of this study.

Moreover, to determine differences, another type of BCI casque may be utilized containing more
measuring electrodes and better preprocessing [44]. Then, the problem of eventually overlapping
brain signals in these two activities may be easier to resolve.

Besides, it was found that EEG signals respond differently to different types of music [102]. Thus,
it will be interesting to pursue this direction. This effect may also be person- and mood-dependent.
That is why a questionnaire form may be prepared to ask what are subjects’ music preferences and in
what mood they are when taking part in the tests.

However, when approaching the problem of the limitations of the EEG signal analysis, and building
an effective BCI interface in general, one may refer to several additional experimental issues. Zhang
referred to overfitting in electroencephalogram (EEG) classification as one of the essential limitations in
using EEG as brain–computer interfaces (BCIs) [35]. This may require various regularization schemes,
data augmentation, or using dropouts in the NN model. Moreover, the effectiveness of the classification
process depends to a large extent on the amount and quality of the prepared data (including both
selection of characteristics and redundancy), thus a variety of methods might be checked with different
settings. Classification outcomes determine the best configuration of the feature scheme/classification
algorithm. However, for the EEG signal analysis, 2D spectral representations may be used to augment
data for the deep learning classification. Another way of data augmentation is to utilize examples from
similar but not identical datasets. This may allow obtaining better generalization due to exposing the
network to more training examples. It may be realized based on unsupervised pre-training or transfer
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learning. As pointed out by Han et al. [103], it is often reasonable to assume that the input–output
mapping is similar across different models, so a better NN performance may be obtained by fitting all
the parameters at the same time. Lastly, since poor generalization ability still limits the broader use of
BCI, thus deep learning could be employed in the form of, e.g., autoencoders without manual feature
selection [32,35].

Supplementary Materials: Python code prepared for the experiments is available at https://multimed.org/research/
sensors2020.zip.
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Appendix A

Appendix A contains simplified snippets of code utilized in experiments.
The FastICA algorithm is shown below:

# independent component analysis with whitening
# performed for single frame
from sklearn.decomposition import FastICA
ica = FastICA(n_components=14, whiten=True)
new_dataframe = ica.fit_transform(dataframe)

The following code was employed concerning calculations of the autoregressive models. Only the
real values of computed model coefficients were utilized. After concatenating model coefficients from
all channels with previously computed mean values and variances final feature vectors of 252 elements
were obtained.

# computing autoregressive models for single frame
import spectrum
new_dataframe = []
for channel in dataframe:

model = spectrum.arburg(channel,order=16,criteria=None)[0]
model = [item.real for item in model]
new_dataframe.append(model)

In the case of the welch16 parametrization method, samples from each channel in every frame
were divided into eight non-overlapping subframes of 16 samples each. Subsequently, nine coefficients
were obtained per every channel. Final feature vectors (with pre-computed mean values and variances)
contained 154 elements:

# computing power spectral density with Welch’s method for single frame
import scipy.signal
psd = scipy.signal.welch(dataframe,nperseg=16,axis=0)[1]

Decompositon into wavelets was performed using the 4th level discrete wavelet transform (wavedec
function from pywt library). After concatenating coefficient vectors with pre-computed mean values
and variances, final feature vectors of 2184 elements were obtained. The transcription of this algorithm
is provided in a listing below:

https://multimed.org/research/sensors2020.zip
https://multimed.org/research/sensors2020.zip
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# computing discrete wavelet transform
# for single frame
import pywt, numpy as np
new_dataframe = []
for channel in dataframe:
dwt = pywt.wavedec(channel,wavelet=“db4”,level=4,axis=0)
vector = np.ndarray((0,))
for item in dwt:
vector = np.append(vector,item)
new_dataframe.append(vector)

In the case of dwt_stat parametrization method, for each of five wavelet coefficient-based vectors
mean value, mean value of absolute values, variance, skewness, kurtosis, zero-crossing rate, and the
sum of squares were computed:

# computing descriptive parameters from wavelet coefficients
# for single frame
import numpy as np, scipy.stats, pywt
def zero_crossings(data):
return ((data[:−1] ∗ data[1:]) < 0).sum()
dwt = pywt.wavedec(channel,wavelet=“db4”,level=4,axis=0)
vector = []
for item in dwt:

vector.append(np.mean(item))
vector.append(np.mean(np.abs(item)))
vector.append(np.var(item))
vector.append(scipy.stats.skew(item))
vector.append(scipy.stats.kurtosis(item))
vector.append(zero_crossings(item))
vector.append(sum(np.power(item,2)))

Dimensionalities of feature vectors obtained with the aforementioned schemes were reduced via
principal component analysis (PCA), this was performed in Python as follows:

# dimensionality reduction via principal component analysis
from sklearn.decomposition import PCA
pca = PCA(n_components=0.95)
pca.fit(train_data)
reduced_train_data = pca.transform(train_data)
reduced_val_data = pca.transform(val_data)
reduced_test_data = pca.transform(test_data)

Validation tests were performed as follows:

# dividing dataset into training, validation and test data
import random

data_train = {}, data_val = {}, data_test = {}
a = int(0.7 ∗ 8265)
b = a + int(0.1 ∗ 8265)
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for class_name in eeg.keys():
# eeg.keys() are [‘meditation’,‘music_video’,‘logic_game’]

indices = [i for i in range(8265)]
random.shuffle(indices)
data_train[class_name] = [eeg[class_name][i] for i in indices[:a]] data_val[class_name] =

[eeg[class_name][i] for i in indices[a:b]]
data_test[class_name] = [eeg[class_name][i] for i in indices[b:]]

In the case of training neural networks, it is required for the inputs and outputs of the network to
be encoded as vectors of numbers. An example of one-hot encoding is shown below:

# encoding classes via one-hot encoding
classes = {}
classes[‘meditation’] = np.array([1,0,0])
classes[‘music_video’] = np.array([0,1,0])
classes[‘logic_game’] = np.array([0,0,1])
for i in range(len(train_data_classes)):

train_data_classes[i] = classes[train_data_classes[i]]
for i in range(len(test_data_classes)):

test_data_classes[i] = classes[test_data_classes[i]]
for i in range(len(val_data_classes)):

val_data_classes[i] = classes[val_data_classes[i]]

Code for training k-NN classifiers, test data classification, and computing score measures in
Experiment 1 is shown below:

# training k-NN classifiers, test data classification
# computing accuracy, confusion matrix, precision, recall and F1
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(reduced_train_data,train_data_classes)
results = knn.predict(reduced_test_data)
score = accuracy_score(test_data_classes,results)
conf_matrix = confusion_matrix(test_data_classes,results)
report = classification_report(test_data_classes,results)

The code for training and testing SVM classifiers (Experiment 2, linear kernel function) is
shown below:

# training SVM classifiers with linear kernel
# and test data classification from sklearn.svm import SVC
svm = SVC(C=C,kernel=‘linear’)
svm.fit(reduced_train_data,train_data_classes)
results = svm.predict(reduced_test_data)

The code for training and testing SVM classifiers (Experiment 3, radial kernel function) is
shown below:

# training SVM classifier with radial basis function kernel
# and test data classification from sklearn.svm import SVC



Sensors 2020, 20, 2403 26 of 31

svm = SVC(C=C,kernel=‘rbf’,gamma=gamma)
svm.fit(reduced_train_data,train_data_classes)
results = svm.predict(reduced_test_data)

The code employed for for training and testing neural networks (Experiment 4) is provided below:

# traning neural networks with single hidden layer
# and training data classification
from keras.layers import Dense, Activation from keras.models import Sequential
from keras.optimizers import SGD
from keras.callbacks import EarlyStopping n_inputs = reduced_train_data.shape[1] model =

Sequential()
model.add(Dense(n_inputs,activation=‘relu’,input_dim=n_inputs,
kernel_initializer=‘he_uniform’,bias_initializer=‘zeros’))

model.add(Dense(3,activation=‘softmax’,
kernel_initializer=‘he_uniform’,bias_initializer=‘zeros’))

sgd = SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss=‘categorical_crossentropy’, optimizer=sgd,metrics=[‘accuracy’])
es = EarlyStopping(monitor=‘val_loss’,mode=‘min’,patience=50,restore_best_weights=True)
history = model.fit(reduced_train_data,train_data_classes,batch_size=64,

validation_data=(reduced_val_data,val_data_classes), callbacks=[es],epochs=2000)
predictions = model.predict(reduced_test_data,batch_size=128)
score = model.evaluate(reduced_test_data, test_data_classes,batch_size=128)
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