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A B S T R A C T   

High temporal resolution concentration measurements in rapid gas flows pose a serious challenge for most analytical instruments. The interaction of such flows with 
solid surfaces can generate excessive aero-acoustic noise making the application of the photoacoustic detection method seemingly impossible. Yet, the fully open 
photoacoustic cell (OC) has proven to be operable even when the measured gas flows through it at a velocity of several m/s. The OC is a slightly modified version of a 
previously introduced OC based on the excitation of a combined acoustic mode of a cylindrical resonator. The noise characteristics and analytical performance of the 
OC are tested in an anechoic room and under field conditions. Here we present the first successful application of a sampling-free OC for water vapor flux 
measurements.   

1. Introduction 

Extractive sampling-based measurements are notoriously vulnerable 
to gas sampling errors. This is especially true for aerosol analysis, where 
reliable measurements require the strict maintenance of isokinetic 
sampling conditions, i.e. the velocity of the gas entering a sample gas 
transmission system must be equal to that of the undisturbed gas stream. 
Isokinetic sampling is not critical for gaseous analytes, yet temporal or 
even permanent differences might appear between the measured and 
actual analyte concentrations due to the occurrence of adsorption/ 
desorption processes (ADP) in the sampling system and the detection 
unit. These errors can be decreased by using properly selected materials 
and coatings for these units. Alternatively, the effects of ADP can also be 
measured and incorporated into a model that describes the response of 
the sampling unit. Additionally, the temporal variation of the input 
concentration can be determined by a system theory approach, i.e., by 
deconvolving the measured signal with the transfer function of the 
sampling unit. Another drawback of extractive sampling is that it 
inevitably increases the response time of the measurement. Transfer 
through the sampling and the detection units can be quantified by a 
residence time distribution function [1]. The first moment of residence 

time distribution is the response time, which can be approximated with 
the purging time calculated as the combined volume of the sampling and 
the detection units divided by the volumetric flow rate of the sampled 
gas. To allow a detection unit to follow sudden concentration variations 
with short delays and minimal signal distortion, the volumes of the 
sampling and detection units need to be minimized and the volumetric 
flow rate of the sampled gas must be maximized. However, various 
secondary effects, including “dead volumes” and ADP, prolong the 
response of the system to sudden concentration variations. 

Flux measurements for studying surface-atmosphere exchange pro
cesses is a research field in which the use of extractive sampling-based 
analytical instruments is especially problematic. Among different ana
lytes targeted in flux measurements, water vapor is key as evapotrans
piration plays a central role in the hydrological cycle by transferring 
water vapor into the atmosphere and regulating the energy balance of 
the surface. Eddy covariance (EC) is a widely used micrometeorological 
technique to monitor the water vapor exchange between the atmosphere 
and various surfaces. It is a direct measurement method routinely used 
to record surface layer fluxes [2]. An EC instrument typically consists of 
a three-dimensional sonic anemometer and a gas analyzer that measure 
and analyze the horizontal and vertical wind components, as well as 
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fluctuations in gas concentrations (e.g., water vapor) [3]. These vari
ables must be sampled at a high frequency (typically at 10 Hz), and the 
obtained profile can be used to derive the surface fluxes [4]. Accord
ingly, the water vapor flux can be calculated as follows: 

Fρv = w′ρv
′ (1)  

where w′ and ρv
′ are the fluctuations of vertical wind speed and water 

vapor density around their respective means during a chosen averaging 
period (typically ranging from 5 min to a few hours). The overbar de
notes the covariance of these two quantities. 

Depending on the gas of interest, EC measurements can be conducted 
with a wide variety of fast-response sensors having either an open- or a 
closed-path (i.e., extractive sampling based) configuration. In the latter 
case, the air is delivered to the gas analyzer through a tube, which leads 
to the attenuation of concentration fluctuations due to the flow within 
the tube [5]. In contrast, open-path sensors provide a sampling-free 
approach with minimal disturbance and direct gas concentration mea
surement [6]. In the case of water vapor, infrared (IR) sensors are 
dominantly used in both open- and closed-path systems, although other 
measurement principles can also be applied. Water vapor concentration 
has also been successfully measured by proton-transfer-reaction mass 
spectrometry; however, this technique requires a closed-path system. 

Sampling-free methods are based either on miniaturized sensors 
which can be immersed directly into the flowing gas or on open-path 
systems through which the measured gas can flow. Quite uniquely, 
photoacoustic (PA) cells can be optimized for either approach [7–10] 
because the PA signal generated by the absorption of periodically 
modulated light beam can be maximized in two ways:  

– A non-resonant PA cell can have an inner volume of a few cm3 or less. 
As the PA signal is inversely proportional both to the volume of the 
cell and to the modulation frequency, strong PA signals can be 
generated in such a cell whenever its light source is modulated at a 
low frequency (typically at a few Hz). Due to its small size, this type 
of cell can be immersed directly into the measured gas stream [11].  

– A resonant PA cell has a high volume (several tens or hundreds of 
cm3) and its light source is typically modulated in the kHz range. In 
this case, the strength of the PA signal is ensured by the quality factor 
of the resonance (Q), which can be as high as 200 [12]. These cells 
can be constructed in a way that the measured gas flows through it 
freely, while the its Q factor suffers a tolerable decrease only. 

While most of the analytical parameters of the two types of PA cells 
can be rather similar, resonant PA cells clearly outperform their non- 
resonant counterparts as far as response time is concerned, primarily 
because the gas enters these cells by direct flow or via the much slower 
process of diffusion. Nevertheless, even for a resonant PA cell the 
envisioned sub-second response time can only be achieved in an open- 
path construction, i.e. the use of extractive sampling must be 
completely avoided (see below). The consequences of having an open 
resonator are the reduction of the Q factor and that the resonator is 
directly exposed to external acoustic noise. Therefore, great emphasis 
should be put on the optimization of the resonator design and of the 
excited acoustic mode [13–15]. 

In this paper, we present the first field application of our initial open 
PA cell (OC) concept, which we developed about a decade ago [16]. 
Regarding the maximization of the PA signal, the applied concept is the 
same for both the original and the upgraded version of the OC. The PA 
signal is generated by exciting the combined mode of the second 
azimuthal and the first longitudinal modes (0,2,1). Furthermore, the 
external noise is suppressed with the same method i.e. by placing two 
microphones into the resonator in a way that they sense the same 
acoustic resonance, but in opposite phases. The output signals of these 
two microphones are fed into a differential amplifier, which efficiently 
subtracts the noise that impinges on the microphones in the same phase, 

while the subtraction doubles the useful PA signal, due to the opposite 
phase of the excited resonance recorded at the positions of the two 
microphones. 

The aim of the present paper was to study, for the first time, the 
disturbance of the gas flow and response time of the OC. This article 
presents the first successful application of a sampling-free OC for water 
vapor flux measurement. Section 2 contains the description of the OC- 
based water vapor measuring PA system and its tests conducted both 
in an anechoic room and under field conditions. Section 3 presents and 
discusses the measurement results in combination with some theoretical 
considerations, while Section 4 provides conclusions of our work. 

2. Experimental 

The OC presented here is a slightly modified version of our previous 
OC, which had an eigenfrequency of approximately 10.5 kHz for (0,2,1) 
eigenmode (length 32 mm, radius 17 mm) [16]. The novel cylindrical 
acoustic resonator has a length and radius of 50 mm and 14 mm, 
respectively, resulting in an approximate eigenfrequency of 12.5 kHz. 
The increase of the eigenfrequency is advantageous as environmental 
acoustic noises typically have 1/f frequency dependence. An additional 
upgrade in the current OC is the replacement of the formerly used 
electret microphones with MEMS microphones (SisonicTM 
SPU0410HR5H-PB). For the excitation of the PA signal with an ampli
tude proportional to the water vapor concentration, a near-infrared 
pigtailed butterfly diode laser (NLK1E5GAAA, NTT Electronics, with 
an output power of about 20 mW) is used. It is tuned to 1371 nm, where 
water vapor has a strong absorption line. Laser control and modulation, 
microphone signal collection, amplification, and PA signal calculation 
are performed with special electronics (courtesy of Videoton Holding 
Plc.) as described previously in numerous publications [17]. 

The acoustic characteristics of the OC were measured in the anechoic 
room of the Békésy György Acoustic Research Laboratory (Budapest). 
Gas flows through the OC at different velocities were generated with a 
special flow system which, due to the incorporated silencers, generates 
negligible flow noise. Noise spectra generated aero-acoustically within 
the OC were recorded by the OC’s microphones operated in differential 
mode and were analyzed by the data acquisition unit of the Videoton 
electronics. As a noise level calibration reference, we used a Brüel & 
Kjaer microphone (type 4165) and its electronics (type 2639 preampli
fier, type 2636 amplifier) in these noise measurements. Our goal with 
these measurements was to find the highest flow velocity with which the 
OC is still operable and to verify the applicability of the numerical model 
developed for the simulation of the aero-acoustical noise generated by 
the interaction of the flow and the OC. In these numerical experiments, a 
block structured, high resolution mesh was produced in a way to satisfy 
the requirements of low-Reynolds wall treatment (y + < 1). Only a 
quarter of the original geometry was modeled, supposing tangential 
periodicity. Assuming a low Mach number (Ma < 0.05), we applied an 
incompressible approach using aero-acoustic analogies. The numerical 
investigations were conducted in three steps using the OpenFOAM 
toolbox [18]. First, we performed a steady state precursor simulation 
with an axially periodic domain modeling an infinitely long upwind pipe 
section, using the Launder-Sharma k-ε Low-Reynolds turbulence model. 
The flow was driven by a pressure gradient, which was iteratively tuned 
to reach the desired volume flow rate. In the next step, we generated the 
initial conditions by running a steady state simulation on OC geometry, 
taking the results of the precursor simulation as inlet boundary condi
tions, applying the same turbulence model. In the last step, we ran a time 
resolved simulation using the initial and boundary conditions generated 
by the previous simulations. At this stage, we used a hybrid turbulence 
modeling approach, the Spalart-Allmaras Detached Eddy Simulation 
(DES) model, which combines the advantages of Large Eddy Simulation 
and Reynolds averaged models. Furthermore, we determined the time 
resolved boundary conditions at the inlet with the Divergence-Free 
Synthetic Eddy Method [19]. Finally, and we tested the OC for water 
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vapor flux measurements over a plain grassland in a short, 
few-hour-long measurement campaign. A commercial EC instrument – 
consisting of a CSAT3 sonic anemometer (Campbell Sci. Ltd.) and an 
EC150 IR gas analyzer (Campbell Sci. Ltd.) which measured the vertical 
wind speed and water vapor density fluctuations, respectively – was 
supplemented with the OC installed as close as possible to the EC in
struments. A CR3000 Datalogger (Campbell Sci. Ltd.) collected the data 
of the anemometer and the IR analyzer in a synchronized manner. The 
signal of the OC was recorded separately. Fluctuation components were 
determined by decomposing the velocity and scalar time series of con
centrations into means and deviations around the means. Turbulent 
water vapor fluxes were calculated by Eq. 1, in which water vapor 
density fluctuations were obtained either from the IR gas analyzer or the 
OC. The flux data calculated from the readings of the IR sensor were 
considered as reference. The averaging periods for both flux measure
ments were 15 min. Relative to the data of the IR sensor, temporal lags 
may occur between the w′ and the ρv

′ time series from the OC, as it was 
positioned further away from the anemometer and its recordings were 
not synchronized with the wind speed measurements. To obtain correct 
fluxes from the OC measurements, the time delay between the w′ and ρv

′

time series must be corrected. An accepted method for time delay 
adjustment is covariance maximization [20,21]. Using this method, we 
shifted one of the time series relative to the other one in both directions, 
scan by scan, until we found the maximum covariance (w′ρv

′). Then we 
compared the fluxes obtained from the two gas sensors based on their 
co-spectra. The co-spectrum represents the contribution of different 
eddies to the total flux along their frequencies and is defined as the 
product of the Fourier transform of w′ and the complex conjugate of the 
Fourier transform of ρv

′. The total flux can also be calculated by inte
grating the one-sided co-spectrum over frequency. In this first analysis, 
we compared raw fluxes and did not perform any further corrections 
which may be required in standard EC measurements [22]. 

3. Results and discussions 

Under the same measurement conditions, i.e., by using the same 
laser and measuring the same concentration of water vapor, the current 
OC was found to generate a PA signal approximately 5 times higher than 
the old OC. This unexpected sensitivity increase corresponds to an in
crease in the Q factor of the excited resonance (Q≈50 and Q≈10 for the 
current and the old OC, respectively). This development can be attrib
uted to the changes of the geometrical parameters and the type of the 
attached microphones. 

The level of the generated noise detected during the anechoic room 
measurements was found to be proportional to the flow velocity raised 
to the power of 6.27, which shows the presence of predominantly dipole 
sound sources [23]. This steep increase means that there is a rather 
sharp threshold in flow velocity; below this threshold the flow-generated 
noise is buried by the self-noise of the microphones, while above it the 
aero-acoustic noise hinders the PA measurements. We found this 
threshold flow velocity to be at about 4 m/s, above which we observed a 
supposedly mechanical overload in the microphone signals. Fig. 1 shows 
the result of noise measurement in the anechoic room at a flow velocity 
of 4 m/s together with the result of the numerical aero-acoustic noise 
simulation. The yielded Sound Pressure Level (SPL) is shown in Fig. 1, 
together with the measured reference. The fact that the measured and 
simulated data show good agreement verifies the simulation, and 
furthermore opens the possibility of using the numerical model for 
further optimization of the aero-acoustic properties of the OC in the 
future. 

Although the field test of the OC for water vapor detection could not 
cover a wide range of meteorological conditions from low to high wind 
speeds with different atmospheric stability states, these first results have 
satisfactorily demonstrated the applicability of the OC for water vapor 
flux measurements. With the covariance maximization procedure, we 

could identify a clear maximum in the calculated raw fluxes for the OC. 
Similarly to the covariance maximization procedure in the case of the 
OC, covariances were also calculated as a function of time shift (Δt) 
using the IR sensor data. As Fig. 2 shows, the covariance functions of the 
OC and the IR sensors properly overlap. This indicates that the OC can 
capture the ρv

′ variations with an accuracy comparable to that of the IR 
sensor. 

In Fig. 3, the co-spectra (from which total fluxes can be calculated by 
integration) are compared when the time series were transformed from 
time domain into frequency domain, showing how much flux is trans
ported at each frequency. We observed that at low frequencies, the OC 
data based co-spectrum was in good agreement with the one obtained 
from the IR sensor, and it also followed the theoretical spectrum in the 
upper part of the inertial sub-range. The inertial subrange is at inter
mediate frequencies where turbulence is isotropic. In this range, tur
bulent eddies are transformed into smaller ones following an energy 
cascade. According to Kolmogorov’s law, the energy decrease occurs 
with increasing frequency (f) proportional to f − 5/3 [4]. However, the PA 
system somewhat underestimated the flux portion at higher frequencies. 
This deviation may be attributed to several reasons, e.g. the shape and 
orientation of the OC were not optimal; the distance from the 
anemometer was larger than in the case of the IR sensor. This latter 
problem is often referred to as sensor separation. Furthermore, it is also 
common in EC measurements that even fast-response IR scalar sensors 
provide attenuations at frequencies above 1 Hz as they cannot perfectly 

Fig. 1. Sound Pressure Level (SPL) of aero-acoustic noise as a function of fre
quency obtained from experiments (black line) and numerical simulations (red 
line). Experiments were carried out in the anechoic room of the Békésy György 
Acoustic Research Laboratory using the microphones of the OC. 

Fig. 2. Covariance values obtained by shifting water vapor fluctuation (ρv
′) 

time series from the IR sensor (red dots) and PA signal fluctuation (a′) from the 
PA sensor (solid black line) relative to the vertical wind velocity fluctuation (w′) 
as a function of time shift (Δt). 
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detect small-scale variations related to eddies with smaller wavelengths 
[24]. 

As co-spectrum calculation is a fundamental step in standardized EC 
postprocessing procedures, various analytical (theoretical) and empir
ical corrections exist to compensate for losses in different frequency 
ranges depending on the scalar variable [22,25]. In the case of water 
vapor flux, an accepted method for the correction of high-frequency 
attenuation is the application of empirical spectral transfer functions 
[6,24,26]. These functions can be derived by employing theoretical or 
empirical loss-free spectra (i.e., sensible heat flux). Following the liter
ature, for this short test period, we could establish an empirical transfer 
function based on the obtained IR and EC co-spectrum pairs to 
compensate for the spectral loss and resulted in good agreement with the 
IR-based water vapor fluxes. Furthermore, with longer field tests under 
more diverse meteorological conditions and possibly also with various 
OC orientations and/or aerodynamic properties, more optimal mea
surement configurations are expected to be found. 

The reported field measurements open the possibility to estimate the 
response time of the OC, which obviously depends on gas flow speed. As 
the roughest estimation, one can divide the length of the OC by the gas 
flow velocity to give the first estimate of the response time. In case of a 
wind speed of 1 m/s, this estimated response time is 50 ms. As a more 
systematic approach one can define an empirical transfer function, 
which is the ratio of the dampened (PA) and the undampened (IR) co- 
spectra [24,27]. This can also be described by the transfer function of 
a first-order sensor, as follows [28]: 

Hwa(f ) ≡
CoPA(f )
CoIR(f )

=
1

1 + (2πτc f )2 (2)  

where CoPA(f) and CoIR(f) are the co-spectra from the IR gas analyzer 
and the OC, respectively, and f is the frequency. The right-hand side 
term of Eq. 2 is the transfer function of a first-order instrument, where τc 
is the characteristic time constant of the sensor response [24]. As shown 
in Fig. 4, the obtained empirical transfer function followed reasonably 
well the theoretical first-order transfer function, representing a sensor 
response of 10 Hz or τc = 0.1 s. This estimated time constant of the OC is 
an order of magnitude better than that of the proton-transfer-reaction 
mass spectrometry, which could be characterized by τc = 1.2 s [26]. 
Obviously, to improve our understanding of the time constant and the 
temporal response of the OC, we must conduct tests under diverse 
meteorological conditions, e.g., at higher wind speeds. Indeed, the 
characteristic time constant of sensor response is known to be affected 
by atmospheric stability and wind speed [26,28]. 

4. Conclusions 

An OC-based on the excitation of a combined acoustic mode of a 
cylindrical resonator was upgraded and tested in an anechoic room and 
under field conditions. During anechoic room measurements, the 
threshold flow velocity was found to be approximately 4 m/s. This 
relatively high flow velocity value indicated the suitability of our OC for 
field measurements. In terms of the flux measurements, the OC provided 
not just promising but reliable estimates. In combination with a sonic 
anemometer, it constitutes an open-path EC arrangement having un
ambiguous benefits compared to an extractive sampling-based closed- 
path system and is expected to result in a flux sensor with low distur
bance against turbulent airflow. Based on the first results, the applica
tion of an empirical spectral correction function may be necessary, but 
this is a standard procedure in EC measurements. Overall, we firmly 
believe that the combination of the presented OC with a small sonic 
anemometer (e.g., TriSonica Sphere Wind Flux sensor) will lead to an EC 
setup suitable for installation on unmanned aerial vehicles like drones. 
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