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ABSTRACT

Protein-binding microarray (PBM) is a high-through-
out platform that can measure the DNA-binding
preference of a protein in a comprehensive and
unbiased manner. A typical PBM experiment can
measure binding signal intensities of a protein to
all the possible DNA k-mers (k = 8 �10); such com-
prehensive binding affinity data usually need to be
reduced and represented as motif models before
they can be further analyzed and applied. Since
proteins can often bind to DNA in multiple modes,
one of the major challenges is to decompose the
comprehensive affinity data into multimodal motif
representations. Here, we describe a new algorithm
that uses Hidden Markov Models (HMMs) and can
derive precise and multimodal motifs using belief
propagations. We describe an HMM-based
approach using belief propagations (kmerHMM),
which accepts and preprocesses PBM probe raw
data into median-binding intensities of individual
k-mers. The k-mers are ranked and aligned for
training an HMM as the underlying motif represen-
tation. Multiple motifs are then extracted from the
HMM using belief propagations. Comparisons of
kmerHMM with other leading methods on several
data sets demonstrated its effectiveness and
uniqueness. Especially, it achieved the best per-
formance on more than half of the data sets. In
addition, the multiple binding modes derived by
kmerHMM are biologically meaningful and will be
useful in interpreting other genome-wide data such
as those generated from ChIP-seq. The executables
and source codes are available at the authors’
websites: e.g. http://www.cs.toronto.edu/�wkc/
kmerHMM.

INTRODUCTION

In human and other higher eukaryotes, gene expression is
regulated by the binding of various modulatory transcrip-
tion factors (TF) onto cis-regulatory DNA elements near
genes. Binding of different combinations of TFs may result
in a gene being expressed in different tissues or at different
developmental stages. To fully understand a gene’s
function, it is essential to identify the TFs that regulate
the gene and the corresponding TF-binding sites (TFBS).
Traditionally, these regulatory sites were determined by
labor-intensive experiments such as DNAse footprinting
or gel-shift assays. Various computational approaches
have been developed to predict TFBS in silico, which is
an active research area in bioinformatics (1). TFBS are
relatively short (10–20bp) and highly degenerate
sequence motifs, which make their effective identification
a computationally challenging task. A number of high-
throughput experimental technologies were also developed
recently to determine protein–DNA-binding affinity.
It is expensive and laborious to experimentally identify

TF-TFBS sequence pairs, for example, using DNA foot-
printing (2) or gel electrophoresis (3). The technology of
Chromatin immunoprecipitation (ChIP) followed by
microarray or sequencing (4,5) measures the binding oc-
cupancy of a particular TF to the nucleotide sequences of
co-regulated genes on a genome-wide scale in vivo but at
low resolution. Further processing is needed to extract
precise TFBSs (6). On the other hand, in vitro techniques
such as protein-binding microarray (PBM) (7),
microfluidic affinity analysis (8) and protein microarray
assays (9,10) enable us to measure the DNA sequence
binding of TFs in vitro completely. TRANSFAC is one
of the largest databases for regulatory elements including
TFs, TFBSs, weight matrices of the TFBSs and regulated
genes (11). JASPAR is a comprehensive collection of TF
DNA-binding preferences (12). Other annotation data-
bases are also available [e.g. Pfam, UniProbe, ScerTF,
FlyTF, YeTFaSCo, hPDI and TFcat (13–19)].

*To whom correspondence should be addressed. Tel: +1 416 946 0924; Fax: +1 416 946 0924; Email: zhaolei.zhang@utoronto.ca

Published online 29 June 2013 Nucleic Acids Research, 2013, Vol. 41, No. 16 e153
doi:10.1093/nar/gkt574

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.cs.toronto.edu/~wkc/kmerHMM
http://www.cs.toronto.edu/~wkc/kmerHMM
http://www.cs.toronto.edu/~wkc/kmerHMM


Background

Numerous studies have been carried out to analyze
existing protein–DNA-binding 3D structures comprehen-
sively (20,21) or with focus on specific families [e.g. zinc
fingers (22)]. Various properties have been discovered con-
cerning, e.g. bonding and force types, TF conservation
and mutation (23) and bending of the DNA (24). Some
are already applied to predict binding amino acids on the
TF side, e.g. (25,26). Alternatively, researchers have
sought for general binding ‘code’ between proteins and
DNA, in particular, the one-to-one mapping between
amino acids from TFs and nucleotides from TFBSs.
Despite many proposed one–one-binding propensity
mappings, it has come to a consensus that there is no
simple binding ‘code’ (27).
To have a better understanding on protein–DNA-

binding motifs, many data mining approaches were
proposed and reviewed (28). Researchers use and
transfer additional detailed information such as base com-
positions, structures, thermodynamic properties (29,30) as
well as expressions (31), into sophisticated features to fit
into certain data mining techniques. These methods
usually extract complicated features rather than working
on interpretable data directly. Many data-mining tech-
niques, such as neural networks, support vector
machines (32) and regressions (28), may generate rules
that are difficult to interpret. Furthermore, many data-
mining approaches were based on specific protein
families or particular data sets. On the other hand,
DNA and protein sequences are often the only primary
data, which carry important information for protein–
DNA-bindings (27,33). Therefore, it is desirable to make
use of the existing comprehensive sequence data to
discover motif models (34,35).

Related works

Motif discovery (36) can be categorized into two types:
motif scanning and de novo motif discovery. (i) Motif
scanning is to identify putative TFBSs based on motif
knowledge obtained from annotated data (37). (ii) de
novo motif discovery predicts conserved patterns without
knowledge on their appearances, based on mathematical
modeling and scoring functions (38,39) from a set of
protein/DNA promoter sequences with similar regulatory
functions. Although de novo motif discovery is successful
for well-conserved amino acid domain motifs, the coun-
terpart for DNA remains challenging with less-than-
perfect performance on real benchmarks (1,40,36).
To tackle this problem, researchers have used a number

of methods to optimize statistical measures, such as Gibbs
sampling, expectation maximization, artificial neural
network, Markov Chain Monte Carlo, genetic algorithm,
maximal information content greedy search approach,
simulated annealing, tree data structure, k-mer frequency
table, dinucleotide modeling and exhaustive searches
(41–55).
It had been pointed out that a fundamental bottleneck

in TFBS identification is the lack of quantitative binding
affinity data for a large proportion of the TFs. The ad-
vancement of new high-throughput technologies such as

ChIP-chip, ChIP-seq, protein microarray assays and
PBM has made it possible to determine the binding
affinity of these TFs (9,10,56). In light of this deluge
of quantitative affinity data, traditional approaches
that rely on thresholds are no longer adequate. Instead,
more robust and probabilistic methods were developed to
take into account these quantitative affinity data. Later
in the text, we briefly review some of these methods.
Seed and Wobble has been proposed as a seed-based
approach using rank statistics (7). RankMotif++ was
proposed to maximize the log likelihood of their probabil-
istic model of binding preferences (57). MatrixREDUCE
was proposed to perform forward variable selections to
minimize the sum of squared deviations (58). MDScan
was proposed to combine two search strategies together,
namely, word enumeration and position-specific weight
matrix updating (6). PREGO was proposed to maximize
the Spearman rank correlation between the predicted
binding intensities and the measured binding intensities
(59). BEEML-PBM was proposed as a regression
method to learn an accurate energy model from noisy
PBM data (60).

Problem description

PBM was developed to measure the binding preference of
a protein to a complete set of k-mers in vitro (7,61). The
PBM method has unprecedentedly high resolution and
rapid throughput, comparing with the other traditional
techniques. It has also been shown to be largely consistent
with those generated by in vivo genome-wide location
analysis (ChIP-chip) (7,61). As a result, researchers have
applied this technique onto many TFs, and a large amount
of PBM data have been being accumulated and deposited
to the UniProbe database (14).

Given a set of DNA sequences, PBM can be used to
measure their binding signal intensities for a given DNA-
binding protein. Specifically, each probe sequence is
associated with a normalized signal intensity value. The
higher the normalized signal intensity, the stronger is
the binding preference of the DNA-binding protein
to the corresponding probe sequence. The actual math-
ematical relationship between the real binding affinity
and the normalized signal intensity is unknown, as it
still depends on specific experimental settings (57). Given
such data, our goal is to uncover a motif model, which can
summarize and represent the DNA-binding preference of
the DNA-binding protein. The most common motif model
is the Position Weight Matrix (PWM), which assumes in-
dependence between adjacent motif positions, justified by
the experimental and theoretical statistical mechanical
study (62). Although a recent attempt has been made to
generalize PWM, the insertion and deletion operations
between adjacent nucleotide positions are still challenging
(63). In this work, we describe our efforts in developing
a hidden Markov models (HMM)-based approach to
model the dependence between adjacent nucleotide pos-
itions rigorously; we also show that our method
(kmerHMM) can also deduce multiple binding modes
for a given TF.
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MATERIALS AND METHODS

Figure 1 illustrates the computational framework that we
developed for kmerHMM. For a DNA-binding protein,
we are given a set of DNA sequences fseq1,seq2, ::: , seqng
and the corresponding normalized signal intensity values
fi1,i2,:::,ing (e.g. Array #1). Following the PBM data
analysis convention, we refer to such type of input data
set as an array in this manuscript. To extract informative
motif data, a sliding window of length k is used to scan
each DNA sequence (and its reverse complement) to count
and record the normalized signal intensity values for each
k-mer. Once all the DNA sequences are scanned, a list of
normalized signal intensity values is obtained for each k-
mer that is present in those DNA sequences. The median
of the list is calculated as the median signal intensity mx

for each k-mer x. Among those k-mers, some are motif
instances (positive k-mers), whereas the others are just
background k-mers. To distinguish them, the robust
estimate procedures proposed in RankMotif++ (57) is
adopted in this work. In other words, we define the
positive k-mers to be the k-mers y whose median signal
intensity my > mi+4� where mi and s are the median and
the median absolute deviation (MAD) of the normalized
intensities fi1,i2, ::: , ing divided by 0.6745 (the MAD of the
unit normal distribution), respectively. All the previous
numeric settings are set such that the computational con-
dition is consistent with the previous study (57).

After a set of positive k-mers were selected, they are
aligned using a multiple sequence alignment method.
The aligned k-mers are then input for training an HMM
to represent the binding preferences of the DNA-binding
protein of interest, using Baum–Welch training algorithm
(64). Mathematically, the Baum–Welch training algorithm
can be described herein:

Input:
A set of aligned k-mers S ¼ fs1,s2,s3,:::,sMg of length L.
Each k-mer sm can be represented as sm ¼ sm1sm2:::smL

where smp is the p-th nucleotide of the aligned k-mer sm:

smp 2 fA,C,G,T,�g

8m 2 f1,2,:::,Mg,8p 2 f1,2,:::,Lg

Output:
an HMM model y trained to represent the input aligned
k-mers:

� ¼ ðfaijg,fbiðxÞg,f�igÞ

8i,j 2 f1,2,:::,Ng,8x 2 fA,C,G,T,�g

where aij is the transition probability from state i to state j;
biðxÞ is the emission probability to emit x at state i; �i is
the initial state probability for state i. The mathematical
details are available in the Supplementary Data.

After the HMM is trained, each of its hidden state rep-
resents a possible nucleotide position in which occurring
probabilities of different bases (including gaps) are

represented by its emission distribution. The transition
probabilities of the HMM encode the indel (insertion/de-
letion) operations within the motif model implicitly. The
advantage of using HMMs over other topologically re-
stricted probabilistic graphical methods is that the graph
topology is more flexible so that multimodal motif models
can be captured. We subsequently tested the derived
HMM model on another set of DNA sequences, which
were not used for training (e.g. Array #2). In particular,
one may be interested in the ability of the trained HMM
to rank the DNA sequences so as to predict which ones
are more likely to be the positive probes as well as the
correlation between the predicted ranks and measured
ranks among the positive probes. On the other hand, N-
Max-Product algorithm can be implemented to extract the
N most probable paths in its Markov chain, creating
multiple motif models in PWM-like forms. Max-product
algorithm is a complete generalization of the well-known
Viterbi algorithm (65). The major difference is that Viterbi
algorithm is given an input sequence and an HMM,
whereas max-product algorithm is only given an HMM.

Parameter settings

The proposed approach was implemented and tested on a
previously published PBM data set (7). If the number of
positive k-mers is <50, the top 50 k-mers are used to
mitigate sampling error. Progressive multiple alignment
is adopted; each pairwise alignment is done with the
NUC44 scoring matrix (64). After that, pairwise distances
between sequences are computed by counting the propor-
tion of sites at which each pair of sequences are similar
and different using NUC44 (ignoring gaps). Assuming
equal variance and independence of evolutionary
distance estimates, the guide tree is calculated by the
neighbor-joining method. We have used 50 hidden states
for all HMM models trained to achieve rigorous pattern
modeling. Such a number of hidden states are chosen
based on the empirical performances in a few preliminary
runs. Laplace smoothing with � ¼ 0:01 is applied to the
emission matrices trained. To be comparable with the
previous results, k is set to 8, i.e. only 8 mer is considered
(57). In particular, we need to control how many steps the
Baum–Welch training algorithm executes. In this work,
the algorithm terminates when all of the following three
quantities become numerically negligible (i.e. <0.1%):
(i) the change in the log likelihood that the input
sequence is generated by the currently estimated values
of the transition and emission matrices; (ii) the change
in the norm of the transition matrix, normalized by the
size of the matrix; (iii) the change in the norm of the
emission matrix, normalized by the size of the matrix.
As each HMM is initialized randomly, the training is
repeated for 10 times to avoid any suboptimal conver-
gence. Among them, the HMM model with the highest
Spearman correlation in the training data is selected as
the output HMM model.
We followed the evaluation procedures described in a

previous study (57). Specifically, for each DNA-binding
protein of interest, we have two array sets of DNA probe
sequences, i.e. array #1 and array #2. Each DNA probe
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sequence on the array is associated with a normalized
signal intensity value. The higher the value, the higher is
the binding preference of a DNA-binding protein to that
DNA sequence. For each DNA-binding protein, the two
arrays (data replicates) are alternated for the training and
testing purpose. In other words, array #1 is used for
training while array #2 is used for testing in the first
round, whereas array #2 is used for training while array
#1 is used for testing in the second round.
We used two evaluation methods to compare the per-

formance of our method with other previously published
methods. The first one is to examine the ability of individ-
ual methods to recover and rank the binding preferences
of the DNA sequences, whereas the second one is to
examine their ability to predict positive DNA sequences
among the whole set of testing DNA sequences.
For the first evaluation, Spearman rank correlation co-

efficients are adopted as the performance metric to
compare the true ranking of the binding preferences to
the tentative ranking predicted by the different computa-
tional methods. To apply kmerHMM to predict sequence
rank, we use a sliding window of L (i.e. the alignment
length in training) to scan each sequence and compute
the probability of observing the subsequence within the
sliding window using the forward algorithm (65). The
maximal probability within each sequence is taken as the
quantitative measure for ranking. Mathematically, given a
DNA sequence D ¼ d1d2d3:::dT, we compute its predicted
binding preference B(D) as:

BðDÞ ¼ max
p

Pðdpdp+1dp+2:::dp+L�1; �Þ

8p 2 f1,2,:::,T� L+1g

where Pðdpdp+1dp+2:::dp+L�1; �Þ can be computed using the
forward algorithm (65), similar to the training procedure
described in the previous section.

For the second evaluation, the positive (bound) DNA
sequences in each testing data set are defined using the
robust estimate in RankMotif++, which was specifically
developed for the analyzing raw PBM data (57). The re-
maining DNA sequences are defined as the negative ones,
which accounts for 94.6–99.1% of the testing data set.
Given such a two-class classification setting, sensitivities
were computed at the 99% specificity level. For
kmerHMM, the predicted binding preference ðBðDÞÞ is
thresholded to estimate the sensitivities, whereas the
other methods used the same settings as described in the
previous study (57).

Max-Product algorithm

In this study, the most probable state transition path
Y ¼ ðy1,y2,y3,:::,yLÞ is calculated for each HMM y
trained using the max-product algorithm. Mathematically,
Max-Product algorithm can be described herein:

Input:
an HMM model y trained to represent the input aligned
k-mers:

� ¼ ðfaijg,fbiðxÞg,f�igÞ

8i,j 2 f1,2,:::,Ng,8x 2 fA,C,G,T,�g

where aij is the transition probability from state i to state j;
biðxÞ is the emission probability to emit x at state i; �i is
the initial state probability for state i.

Output:
Most probable state transition path Y� ¼ ðy�1,y

�
2,y
�
3,:::,y

�
LÞ

of the input HMM model y:

Y� ¼ arg max
Y

PðYj�Þ

Figure 1. An HMM approach for multimodal motif discovery from PBM data. (1) Positive (bound) k-mers are selected from the training DNA
probe sequences (e.g. Array #1). (2) The positive k-mers are aligned using a multiple sequence alignment method. (3) The aligned positive k-mers are
input for training an HMM using Baum–Welch training in an unsupervised fashion. (4a) The trained HMM is tested on the testing DNA probe
sequences (e.g. Array #2). (4b) The trained HMM can be analyzed and visualized using N-Max-Product algorithm.
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where PðYj�Þ is the probability to have a state transition
path Y in the input HMM model y. It can be calculated
using a dynamic programming approach. The mathemat-
ical details are available in the Supplementary Data.

RESULTS

Comparisons

Tables 1 and 2 list the results from our method
(kmerHMM). The ROC curves are plotted in Figure 2.
From those results, we can observe that kmerHMM
performs better than other methods on three datasets
(Cbf1, Oct-1 and Zif238). On the two other data sets
(Ceh-22 and Rap1), kmerHMM is not the top performer
but is close. In the case of Rap1, kmerHMM performed
slightly worse than other methods. The consensus binding
motif for Rap1 is 13 nt long, which is longer than most of
the common TFs. kmeHMM only considers motifs of 8 nt
long; therefore, it is at an disadvantage for such cases.
Nonetheless, we believe that such a limitation will be
alleviated when the PBM technology is improved (i.e. a
higher value of k can be used) in the future.

Sensitivity analysis

To be comparable with the past results, the positive k-mers
are defined as the k-mers y whose median signal intensity
my > mi+4� where mi and s are the median and the MAD
of the normalized intensities fi1,i2,:::,ing divided by 0.6745
(the MAD of the unit normal distribution), respectively. It
is also the threshold to define the positive probes in this
study. Nonetheless, the condition may be too stringent;
therefore, we have conducted a sensitivity analysis on the
condition from my > mi+2� to my > mi+7� to have a
better understanding on kmerHMM. The results are
depicted in Supplementary Figures S1 and S2. It can be
observed that the area under curve values decrease as the
condition becomes more stringent, whereas the spearman
rank correlation appears to be fairly stable. Last but not
least, the true positive rate also appears to be stable until
the condition my > mi+5�, after which the true positive
rate drops sharply.

Positional bias

It has been reported that, in a PBM experiment, the k-mer
position on a probe may affect the protein–DNA-binding
efficiency (7). Zhao and Stormo proposed a method to
take into account the positional bias (60). In
kmerHMM, we have adopted the median intensities of
the probes containing a k-mer to average out the pos-
itional bias. To examine how well such a strategy can
deal with the positional bias, we have also implemented
and calculated the positional bias coefficients FposðjÞ where
j is the position index (60) for each array and incorporated
it into the kmerHMM framework (as shown in
Supplementary Figures S3 and S4). It is actually straight-
forward to integrate it into our kmmHMM framework, as
we only need to modify the original B(D) function to a
new function B0ðDÞ as follows:

B0ðDÞ ¼ 1�
YT�L+1

p¼1

ð1� FposðpÞPðdpdp+1dp+2:::dp+L�1; �ÞÞ

Semantically, the function B0ðDÞ considers all the binding
events across the probe and calculate the probability that
at least one binding event occurs; each binding event is
weighted by the corresponding positional bias coefficient
FposðpÞ.
After the positional bias has been taken into account

explicitly, we ran kmerHMM on the data set again. The
results are depicted in Supplementary Figure S5. It can be
observed that there is a slight improvement on the Cbf1,
Ceh-22 and Oct-1 data, whereas slight performance deg-
radation can be seen on the Rap1 and Zif268 data. It is
not surprising because Cbf1, Ceh-22 and Oct-1 data have
clear and consistent trends in positional bias between
Array #1 and #2, which Rap1 and Zif268 do not have
(as shown in Supplementary Figures S3 and S4).

State transition path analysis

Max-Product algorithm
In recent years, probabilistic graphical models have been
successfully applied to biological problems such as gene
clustering and alternative splicing (66–68). In this work,

Table 1. Spearman rank correlation coefficients

TF Array 8-mer MatrixREDUCE MDScan PREGO RankMotif++ Seed and Wobble kmerHMM

Cbf1 #1 0.647 0.634 0.512 0.61 0.636 0.527 0.660

#2 0.657 0.604 0.496 0.58 0.64 0.49 0.647

Ceh-22 #1 0.487 0.373 0.36 0.366 0.485 0.304 0.447
#2 0.408 0.3 0.324 0.278 0.427 0.275 0.313

Oct-1 #1 0.327 0.263 0.286 0.281 0.244 0.315 0.302
#2 0.446 0.308 0.264 0.272 0.291 0.213 0.359

Rap1 #1 0.238 0.273 0.338 0.261 0.382 0.372 0.334
#2 0.275 0.239 0.254 0.205 0.359 0.357 0.270

Zif268 #1 0.421 0.293 0.265 0.292 0.336 0.276 0.338

#2 0.346 0.279 0.246 0.196 0.308 0.25 0.336

The rank correlations were computed between the median intensities of the positive probes and the binding preferences predicted by each motif
model. The performance values of all the methods except kmerHMM are adopted from Table 1 on the RankMotif++manuscript (57). The highest
values (except the 8-mer gold standard) are highlighted in bold. The 8-mer gold standard is the method in which the maximum of the median binding
intensities of the 8-mers on a testing probe (60 bp) is used as the predicted binding preference of the testing probe (60 bp).
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our probabilistic graphical models (i.e. HMM) are learned
from the PBM data, which may contain valuable motif
information. In particular, we are interested in the most
probable path encoded in each HMM trained, as such
paths could represent multiple binding modes of a given
DNA-binding protein. To solve such a problem, the max-
product algorithm (belief propagation) can be used, as it

provides us a computationally effective way to avoid the
exponential enumerations of the possible state paths using
dynamic programming. In addition, its optimality condi-
tion has been well studied (69). In this work, we imple-
mented and applied the max-product algorithm to the
discrete Markov Chain of each HMM trained. In other
words, the most probable state transition path is

Figure 2. Receiver Operating Characteristic (ROC) curves on array #1. The positive (bound) DNA probe sequences in each data set are defined
using the robust estimate in RankMotif++(57). In other words, we define the positive probes to be the probes seqi, which normalized signal intensity
ii > mi+4� where mi and s are the median and the MAD of all the probe normalized intensities fi1,i2,:::,ing divided by 0.6745 (the MAD of the unit
normal distribution), respectively. The remaining ones are defined as the negative ones that accounts for 94.6–99.1% of the data set. Given such a
two-class classification setting, the predicted binding preference BðseqjÞ of each probe sequence seqj is thresholded to estimate the true positive rates at
different level of false-positive rates for kmerHMM. The performance values of the other methods are adopted from the RankMotif++manuscript
(57). AUC vstands for the Area Under Curve.

Table 2. True positive rates at 1% false positive rate

TF Array 8-mer MatrixREDUCE MDScan PREGO RankMotif++ Seed and Wobble kmerHMM

Cbf1 #1 0.515 0.39 0.231 0.362 0.493 0.383 0.515

#2 0.459 0.348 0.202 0.336 0.424 0.284 0.462

Ceh-22 #1 0.37 0.26 0.316 0.225 0.427 0.254 0.380
#2 0.257 0.226 0.293 0.2 0.332 0.251 0.317

Oct-1 #1 0.474 0.365 0.274 0.339 0.315 0.239 0.440

#2 0.382 0.31 0.213 0.274 0.24 0.202 0.314

Rap1 #1 0.257 0.197 0.213 0.197 0.247 0.226 0.274

#2 0.277 0.171 0.32 0.179 0.325 0.28 0.243
Zif268 #1 0.449 0.332 0.335 0.328 0.33 0.336 0.439

#2 0.431 0.297 0.314 0.301 0.389 0.313 0.413

Given the binding preferences of each method on different data sets, their sensitivities (true-positive rates) were computed at the 99% specificity level
(false-positive rate). The performance values of all the methods except kmerHMM are adopted from Table 1 on the RankMotif++manuscript (57).
The highest values (except the 8-mer gold standard) are highlighted in bold. The 8-mer gold standard is the method in which the maximum of the
median binding intensities of the 8-mers on a testing probe (60 bp) is used as the predicted binding preference of the testing probe (60 bp).
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calculated for each HMM trained. The mathematical for-
mulation can be found in the ‘Materials and Methods’
section.

After the most probable state transition path was
calculated for each HMM, we mapped the corresponding
emission distribution to each state in the state transition
path, resulting in a path model similar to PWM for
each HMM. Nonetheless, such a path model is not
meant to be equivalent to a PWM, as it only represents
the most probable emissions in an HMM, given a fixed
path length. The resultant path models are depicted
in Figures 3 and 4 for Array #1 and #2, respectively.
Comparing them with those past PWM models (57),
it can be observed that the most probable paths
encoded in kmerHMM are similar to those discovered
by the existing PWM-based methods (see Supplementary
Figure S6).

N-Max-Product algorithm
It has been reported that some DNA-binding proteins
could bind to more than one motif models (56). To
tackle this, we need to add an additional step to elucidate
different motif models from each HMM trained. We
herein propose N-Max-Product algorithm to solve the
problem. Although the most intuitive solution is to add
a sequence clustering step to separate the set of k-mers
before the multiple sequence alignment step, such a pre-
processing clustering step may lose motif information if
the motif models overlap with each other.
To extract the multimodal motif information from the

HMMs trained, the N-max-product algorithm (70) is im-
plemented and applied to find the top N most probable
state transition paths from the state transition Markov
chain in each trained HMM. Using the same method
described in the previous section, each state transition

Figure 5. Comparison of PWMs of Oct-1 as predicted by different methods. For the left-most column, the top entry is the silhouette plot for cluster
analysis, whereas the other two entries indicate the two centroid path models of the HMMs trained by kmerHMM on the Oct-1 Array #1 data set.
The first row shows the sequence logos for the PWMs learned by different methods on the Oct1 Array #1 data set [conducted by Chen et al. The
figures are edited from (57)]. The remaining numeric entries are the expected values for the pair-wise motif matrix comparisons by STAMP (70).
Those two centroids have been confirmed by the independent wet-lab experiments by Verrijzer et al. (71).

Figure 4. The motif logos mapped and plotted from the most probable state transition paths of the HMMs trained by kmerHMM on Array #2.
Those most probable state transition paths are found using the max-product algorithm. The trailing gaps are trimmed.

Figure 3. The motif logos mapped and plotted from the most probable state transition paths of the HMMs trained by kmerHMM on Array #1.
Those most probable state transition paths are found using the max-product algorithm. The trailing gaps are trimmed.
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path can become an individual path model but, owing to
the probabilistic locality, it is likely that those top paths
may just be the ones with small variations from the most
probable path. Thus, a large value of N needs to be
chosen. A clustering step is also needed to summarize
them. Specifically, after the top N most probable state
transition paths are found, we can map the emission prob-
ability distribution to each state in each path. By doing so,
we can apply a clustering method to cluster the paths and
get a consensus state path model for each cluster.
As an illustrative example, such a procedure was imple-

mented and applied to the Oct-1 Array#1. In the imple-
mentation level, we set the value of N such that the
(N+1)-th path occurring probability is numerically negli-
gible (i.e. <0:001). The single-linkage hierarchical cluster-
ing was applied to the top N most probable state

transition paths to build a cluster dendrogram. To deter-
mine the number of clusters, a dendrogram cutoff was
chosen such that the mean of the silhouette values was
the highest, resulting in two clusters. Their centroids are
extracted and depicted with the other sequence logos
obtained by the other methods in Figure 5. To quantify
their similarities, STAMP was used to calculate the
expected value for pair-wise comparisons (71). It can be
observed that the first centroid path model is most similar
to the one obtained by Seed & Wobble, whereas the
second centroid path model is most similar to the one
obtained by MatrixREDUCE. Those two motifs have
been confirmed by the previous independent wet-lab
experiments by Verrijzer et al. (72).

We used the two centroid path models to scan the probe
sequences in the Oct-1 Array#2 again, following the

Table 3. Comparisons between kmerHMM and RankMotif++ on the mouse data set (56)

SR TPR AUC SR TPR AUC

TF HMM RM HMM RM HMM RM TF HMM RM HMM RM HMM RM

Arid3a 0.34 0.13 0.30 0.13 0.91 0.86 Osr2 0.20 0.10 0.77 0.07 0.92 0.71
Ascl2 0.42 0.15 0.52 0.07 0.90 0.71 Plagl1 0.36 0.39 0.51 0.27 0.95 0.89
Bcl6b 0.27 �0.10 0.17 0.06 0.69 0.63 Rfx3 0.25 0.30 0.29 0.27 0.86 0.90

Bhlhb2 0.60 0.46 0.57 0.35 0.92 0.92 Rfx4 0.24 0.15 0.20 0.11 0.80 0.77
E2F2 0.43 0.23 0.40 0.23 0.94 0.88 Rfxdc2 0.31 0.20 0.42 0.15 0.87 0.79
E2F3 0.42 0.20 0.58 0.26 0.98 0.91 Rxra 0.38 0.03 0.30 0.02 0.72 0.53
Egr1 0.36 0.27 0.57 0.24 0.93 0.84 Sfpi1 0.13 0.19 0.31 0.14 0.90 0.83
Ehf 0.09 0.24 0.79 0.12 0.99 0.77 Sox11 �0.10 0.12 0.25 0.14 0.71 0.83

Elf3 0.37 0.23 0.20 0.13 0.85 0.86 Sox14 0.08 0.08 0.25 0.11 0.84 0.82
Eomes 0.38 0.25 0.16 0.29 0.78 0.87 Sox15 0.15 0.02 0.13 0.25 0.79 0.94

Esrra 0.43 0.26 0.39 0.21 0.90 0.78 Sox17 �0.24 0.00 0.21 0.10 0.85 0.74
Foxa2 0.29 �0.01 0.74 0.09 0.97 0.78 Sox18 0.20 0.19 0.21 0.14 0.88 0.85
Foxj1 0.06 0.20 0.45 0.13 0.79 0.84 Sox21 0.03 0.02 0.15 0.13 0.76 0.83

Foxj3 0.46 0.21 0.35 0.20 0.91 0.86 Sox30 0.06 0.09 0.24 0.10 0.76 0.82

Foxk1 0.23 0.02 0.48 0.09 0.92 0.76 Sox4 0.02 0.11 0.35 0.13 0.81 0.82

Foxl1 0.47 0.17 0.57 0.17 0.94 0.87 Spdef 0.33 0.26 0.30 0.25 0.92 0.88
Gabpa 0.41 0.19 0.33 0.18 0.87 0.86 Srf 0.28 0.23 0.21 0.01 0.86 0.70
Gata3 0.26 0.15 0.31 0.14 0.87 0.88 Sry 0.15 �0.02 0.11 0.10 0.90 0.80
Gata5 �0.15 �0.18 0.44 0.15 0.90 0.73 Tbp 0.16 0.31 0.38 0.14 0.90 0.95

Gata6 0.00 0.31 0.41 0.14 0.97 0.83 Tcf1 0.14 0.04 0.41 0.09 0.93 0.79
Gcm1 0.35 0.26 0.35 0.14 0.90 0.73 Tcf3 0.36 �0.16 0.69 0.14 0.93 0.66
Gm397 0.34 0.20 0.62 0.13 0.96 0.79 Tcf7 0.26 0.10 0.64 0.10 0.92 0.71
Gmeb1 0.36 0.12 0.26 0.14 0.88 0.84 Tcf7l2 0.50 0.22 0.93 0.07 1.00 0.74
Hic1 0.46 0.24 0.41 0.08 0.91 0.75 Tcfap2a 0.40 0.31 0.37 0.27 0.91 0.90
Hnf4a 0.07 0.21 0.50 0.18 0.94 0.83 Tcfap2b 0.30 0.25 0.58 0.43 0.98 0.94
Hoxa3 0.40 0.21 0.37 0.21 0.94 0.86 Tcfap2c 0.49 0.28 0.28 0.27 0.87 0.90

Irf3 0.23 0.16 0.24 0.14 0.84 0.82 Tcfap2e 0.54 �0.08 0.52 0.07 0.84 0.68
Irf4 0.40 0.21 0.20 0.13 0.82 0.82 Tcfe2a 0.69 0.37 0.72 0.28 0.93 0.90
Irf5 0.41 0.10 0.29 0.16 0.87 0.83 Zbtb12 0.32 �0.10 0.31 0.04 0.71 0.64
Irf6 0.39 0.17 0.27 0.11 0.83 0.81 Zbtb3 0.33 �0.02 0.65 0.07 0.97 0.72
Isgf3g 0.29 0.07 0.36 0.11 0.90 0.84 Zbtb7b 0.04 0.04 0.39 0.42 0.89 0.97

Jundm2 0.50 0.03 0.73 0.06 0.88 0.71 Zfp105 0.27 0.20 0.32 0.19 0.91 0.84
Klf7 0.01 0.08 0.77 0.24 0.97 0.82 Zfp128 0.20 0.10 0.74 0.00 0.92 0.74
Mafb 0.11 0.07 0.15 0.06 0.71 0.70 Zfp161 0.36 0.29 0.67 0.38 0.98 0.94
Mafk �0.05 �0.12 0.25 0.13 0.86 0.81 Zfp281 0.47 0.45 0.70 0.39 0.95 0.88
Max 0.55 0.33 0.50 0.15 0.93 0.85 Zfp410 0.19 �0.05 0.23 0.04 0.72 0.62
Myb �0.26 0.13 0.50 0.15 0.86 0.79 Zfp691 0.22 0.13 0.76 0.14 0.95 0.83
Mybl1 0.37 0.21 0.37 0.17 0.88 0.82 Zic1 0.27 0.18 0.25 0.16 0.86 0.81
Myf6 0.29 0.22 0.64 0.03 0.98 0.61 Zic2 0.31 0.22 0.21 0.17 0.87 0.82
Nkx3-1 0.30 0.18 0.21 0.21 0.87 0.82 Zic3 0.29 0.18 0.14 0.21 0.77 0.85

Nr2f2 0.53 0.28 0.57 0.19 0.93 0.76 Zscan4 0.31 0.18 0.75 0.20 0.96 0.83
Osr1 0.13 �0.02 0.52 0.07 0.79 0.67

They have been trained on Array #1 and tested on Array #2 where SR denotes Spearman Rank Correlation, TPR denotes True Positive Rate, AUC
denotes Area Under ROC Curve, HMM denotes kmerHMM and RM denotes RankMotif++. The bold values indicate which method (HMM v.s.
RM) performs better at a particular test.
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previous evaluation procedure style. The maximal prob-
ability of either path model was taken as the predicted
binding preference for each probe sequence. The resultant
correlation coefficient between the predicted binding pref-
erences (i.e. ranks) and the measured binding preferences
is 0.3264, which is the highest among all the PWM-based
methods shown in Table 1. It reflects that kmerHMM can
capture multimodal motifs using the HMM modeling and
training, explaining why it could perform better than the
others in some cases.

We have examined the modes of the state transition
paths for the two clusters. Interestingly, we observe that
they have different state transition paths, independent of
each other. It reflects that HMM modeling is necessary for
multimodal motifs, comparing with other modeling in

which state transition path topology is restricted to a prin-
cipal state transition path manually.

Further evaluation on mouse PBM data

To evaluate kmerHMM further, kmerHMM and
RankMotif++ were run and tested on the PBM micro-
array data provided in the comprehensive mouse data
set (56). The results are tabulated in Tables 3 and 4;
array #1 is used as training data in Table 3 and array #2
is used as training data in Table 4. Interestingly, it can be
observed that kmerHMM can consistently achieve higher
true positive rates than RankMotif++, which was specif-
ically designed to analyze PBM data (57).
Motivated by the good performance of kmmHMM in

discovering multimodal binding of DNA-binding

Table 4. Comparisons between kmerHMM and RankMotif++ on the mouse DNA-binding TF data set (56)

SR TPR AUC SR TPR AUC

TF HMM RM HMM RM HMM RM TF HMM RM HMM RM HMM RM

Arid3a 0.29 0.17 0.21 0.18 0.94 0.88 Osr2 0.40 0.10 0.46 0.07 0.90 0.71
Ascl2 0.27 0.15 0.62 0.07 0.89 0.71 Plagl1 0.49 0.39 0.57 0.27 0.95 0.89
Bcl6b 0.12 �0.10 0.10 0.06 0.77 0.63 Rfx3 0.25 0.30 0.36 0.27 0.90 0.90

Bhlhb2 0.55 0.46 0.58 0.35 0.92 0.92 Rfx4 0.29 0.15 0.24 0.11 0.85 0.77
E2F2 0.36 0.23 0.39 0.23 0.95 0.88 Rfxdc2 0.23 0.20 0.43 0.15 0.85 0.79
E2F3 0.32 0.20 0.50 0.26 0.96 0.91 Rxra 0.29 0.03 0.17 0.02 0.81 0.53
Egr1 0.10 0.27 0.31 0.24 0.84 0.84 Sfpi1 0.10 0.19 0.24 0.14 0.80 0.83

Ehf 0.27 0.24 0.32 0.12 0.88 0.77 Sox11 �0.07 0.12 0.28 0.14 0.74 0.83

Elf3 0.15 0.23 0.55 0.13 0.97 0.86 Sox14 �0.15 0.08 0.16 0.11 0.76 0.82

Eomes 0.22 0.25 0.67 0.29 0.98 0.87 Sox15 0.06 0.02 0.09 0.25 0.75 0.94

Esrra 0.50 0.26 0.42 0.21 0.94 0.78 Sox17 �0.05 0.00 0.13 0.10 0.74 0.74

Foxa2 0.37 �0.01 0.52 0.09 0.96 0.78 Sox18 �0.04 0.19 0.04 0.14 0.74 0.85

Foxj1 0.01 0.20 0.22 0.13 0.87 0.84 Sox21 �0.01 0.02 0.14 0.13 0.74 0.83

Foxj3 0.33 0.21 0.32 0.20 0.91 0.86 Sox30 �0.13 0.09 0.18 0.10 0.74 0.82

Foxk1 0.40 0.02 0.33 0.09 0.87 0.76 Sox4 0.20 0.26 0.45 0.26 0.82 0.85

Foxl1 0.40 0.17 0.55 0.17 0.94 0.87 Spdef 0.24 0.26 0.30 0.25 0.85 0.88

Gabpa 0.38 0.19 0.47 0.18 0.93 0.86 Srf 0.11 0.23 0.02 0.01 0.73 0.70
Gata3 0.19 0.15 0.30 0.14 0.89 0.88 Sry �0.21 �0.02 0.15 0.10 0.70 0.80

Gata5 �0.28 �0.18 0.62 0.15 0.91 0.73 Tbp �0.12 0.31 0.50 0.14 0.94 0.95

Gata6 0.33 0.31 0.30 0.14 0.83 0.83 Tcf1 �0.08 0.07 0.26 0.17 0.83 0.87

Gcm1 0.51 0.26 0.38 0.14 0.90 0.73 Tcf3 0.21 �0.16 0.38 0.14 0.76 0.66
Gm397 0.30 0.20 0.49 0.13 0.86 0.79 Tcf7 0.16 0.10 0.66 0.10 0.89 0.71
Gmeb1 0.23 0.12 0.17 0.14 0.90 0.84 Tcf7l2 0.32 0.22 0.43 0.07 0.92 0.74
Hic1 0.42 0.24 0.34 0.08 0.87 0.75 Tcfap2a 0.39 0.31 0.41 0.27 0.93 0.90
Hnf4a 0.17 0.21 0.50 0.18 0.93 0.83 Tcfap2b 0.30 0.25 0.54 0.43 0.96 0.94
Hoxa3 0.48 0.21 0.39 0.21 0.93 0.86 Tcfap2c 0.37 0.28 0.45 0.27 0.94 0.90
Irf3 0.25 0.16 0.14 0.14 0.80 0.82 Tcfap2e 0.42 �0.08 0.59 0.07 0.91 0.68
Irf4 0.38 0.21 0.26 0.13 0.85 0.82 Tcfe2a 0.53 0.37 0.61 0.28 0.94 0.90
Irf5 0.45 0.10 0.33 0.16 0.88 0.83 Zbtb12 0.35 �0.10 0.50 0.04 0.85 0.64
Irf6 0.36 0.17 0.39 0.11 0.90 0.81 Zbtb3 0.27 �0.02 0.27 0.07 0.83 0.72
Isgf3g 0.37 0.07 0.45 0.11 0.94 0.84 Zbtb7b 0.19 0.04 0.46 0.42 0.92 0.97

Jundm2 0.42 0.03 0.58 0.06 0.96 0.71 Zfp105 0.29 0.20 0.21 0.19 0.85 0.84
Klf7 0.17 0.08 0.56 0.24 0.94 0.82 Zfp128 �0.20 0.10 0.60 0.00 0.80 0.74
Mafb �0.03 0.07 0.08 0.06 0.56 0.70 Zfp161 0.43 0.29 0.54 0.38 0.97 0.94
Mafk 0.27 �0.12 0.37 0.13 0.87 0.81 Zfp281 0.65 0.45 0.60 0.39 0.91 0.88
Max 0.53 0.33 0.52 0.15 0.95 0.85 Zfp410 0.26 �0.05 0.25 0.04 0.75 0.62
Myb 0.21 0.13 0.23 0.15 0.82 0.79 Zfp691 0.39 0.13 0.41 0.14 0.82 0.83

Mybl1 0.27 0.21 0.36 0.17 0.92 0.82 Zic1 0.23 0.18 0.17 0.16 0.80 0.81

Myf6 0.40 0.22 0.20 0.03 0.74 0.61 Zic2 0.24 0.22 0.17 0.17 0.78 0.82

Nkx3-1 0.17 0.18 0.65 0.21 0.99 0.82 Zic3 0.25 0.18 0.25 0.21 0.88 0.85
Nr2f2 0.44 0.28 0.43 0.19 0.88 0.76 Zscan4 0.08 0.18 0.80 0.20 0.99 0.83
Osr1 0.47 �0.02 0.27 0.07 0.81 0.67

They have been trained on Array #2 and tested on Array #1 where SR denotes Spearman Rank Correlation, TPR denotes True Positive Rate, AUC
denotes Area Under ROC Curve, HMM denotes kmerHMM and RM denotes RankMotif++. The bold values indicate which method (HMM v.s.
RM) performs better at a particular test.
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proteins, we next used it on all the mouse PBM data to
discover how frequently a mouse TF can bind to multiple
motifs. Thus, we repeated the previous state transition
path analysis using the N-Max-Product algorithm on all
the DNA-binding proteins we have studied. After we have
removed similar matrix models at different thresholds
using DðA,BÞ (mathematical details can be found in the
Supplementary Data), we have obtained the results
depicted in Figure 6. To quantify the statistical signifi-
cance, we generated two thousand random motif matrix
models of width from 5 to 15 uniformly. Nearly 2 million
random pair-wise distances have been calculated to
estimate the empirical P-value distribution for each
distance threshold DðA,BÞ as depicted in Supplementary
Figure S7. It can be observed that the distance threshold
DðA,BÞ becomes statistically significant at 0.5. At the
estimate at DðA,BÞ � 0:5 (P=0.003), �17% of the
mouse DNA-binding proteins we have studied have
more than one motif matrix model. Interestingly, it is
similar to the estimate in the yeast DNA-binding protein
collection, which 26% (39 of 150) proteins have more than
one motif matrix model (73).

DISCUSSION

In this study, we proposed a computational pipeline for
PBM motif discovery in which HMMs are trained to
model DNA motifs, and Belief Propagation is used to
elucidate multiple motif models from each trained
HMM. We compared it with other existing methods on
benchmark PBM data sets and demonstrated its effective-
ness and uniqueness (Tables 1–4 and Figure 5). The
novelty of the method lies in two aspects. First, it outper-
forms the existing method in using HMM to derive an
HMM model to represent PBM data. In our knowledge,
this is the first instance that HMM is used in representing
PBM data. Second, kmerHMM incorporates N-max algo-
rithm and can derive multiple motif matrix models to rep-
resent PBM data.
In particular, we implemented a belief propagation

method (max-product algorithm) and applied it to the
HMMs trained. It can find the most probable state tran-
sition paths from the HMMs, representing the DNA-
binding preference of the proteins in study. Moreover,
the generalized method (N-Max-Product algorithm) has
also been implemented and applied. The resultant case
study also gave us insights into the multimodal pattern

recognition ability of the method proposed. To the best
of the authors’ knowledge, this work is the first study
incorporating HMMs into the PBM motif discovery
problem. In a broader sense, this work is also the first
study incorporating max-product algorithms (belief
propagations) into the general motif discovery problem
explicitly.

The implication of such a study is not limited to motif
discovery. From the state transition path analysis, we can
observe that HMM training is effective in handling multi-
modal pattern recognitions, which other modeling
methods may not be able to handle. We believe that
HMMs should be examined further in other multimodal
signal recognition domains. The potential drawback of the
proposed approach is that it relies on a sliding window to
segment DNA probe sequences into individual k-mers,
which may lose the sequence context information. We
expect such a limitation will be alleviated when a future
improved PBM technology can generate binding affinity
for longer probes (i.e. higher k value).

It has been recently intensively debated in the literature
that, in light of the availability of high-throughput
protein–DNA-binding affinity data, whether there is a
need to develop more sophisticated models or simpler
position weight matrices are sufficient to capture such
binding landscape (60,74). In this work, we demonstrated
that kmerHMM can capture multiple binding modes of a
DNA-binding protein, for which a single position weight
matrix model is unable to do. Nevertheless, we showed
that decomposition of the trained HMM into two
distinct position weight matrices did show comparable per-
formance to the trained HMM itself on the Oct-1 data set
(Spearman rank correlation 0.326 versus 0.359), suggesting
that a more sophisticated model such as kmerHMM can
achieve better performance, but the overall improvement is
likely subtle. However, the strength of the kmerHMM is
that it can distinguish distinct binding modes between a
DNA-binding protein and its target sequence, which
could provide biological insights on the subtlety of the
gene regulation. We foresee that a method like
kmerHMM is useful in this arena.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–10 and Supplementary Methods.

Figure 6. Percentage of multimodal DNA-binding proteins at different distance thresholds DðA,BÞ on Array #1 and #2. Blue/Green/Red denote the
DNA-binding proteins, which have one/two/three motif matrix model(s), respectively.
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