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Visual uncertainty may affect saccade adaptation in two complementary ways. First, an

ideal adaptor should take into account the reliability of visual information for determining

the amount of correction, predicting that increasing visual uncertainty should decrease

adaptation rates. We tested this by comparing observers’ direction discrimination and

adaptation rates in an intra-saccadic-step paradigm. Second, clearly visible target steps

may generate a slower adaptation rate since the error can be attributed to an external

cause, instead of an internal change in the visuo-motor mapping that needs to be

compensated. We tested this prediction by measuring saccade adaptation to different

step sizes. Most remarkably, we found little correlation between estimates of visual

uncertainty and adaptation rates and no slower adaptation rates with more visible step

sizes. Additionally, we show that for low contrast targets backward steps are perceived

as stationary after the saccade, but that adaptation rates are independent of contrast. We

suggest that the saccadic system uses different position signals for adapting dysmetric

saccades and for generating a trans-saccadic stable visual percept, explaining that

saccade adaptation is found to be independent of visual uncertainty.

Keywords: sensorimotor adaptation, saccade adaptation, saccadic suppression of displacement, visual

perception, eye movements

INTRODUCTION

The visuo-motor transformation between a goal in the visual field and a movement plan is plastic,
meaning that we can adapt to alterations of the visual feedback, e.g., as after wearing new glasses, or
to alterations of the effect of motor commands due to growth, fatigue, injury, or perhaps changes in
neural transmission. One of the most studied types of visuo-motor adaption is saccade amplitude
adaptation (for a review see Hopp and Fuchs, 2004; Iwamoto and Kaku, 2010; Pélisson et al., 2010;
Herman et al., 2013a), which is typically studied with the intra-saccadic step paradigm, in which a
saccade target steps during the saccade (McLaughlin, 1967). This shift in visual feedback induces
a post-saccadic visual error, or mismatch between the predicted and actual location of the target.
This error is corrected gradually, reaching in humans a plateau over the course of some 20–100
saccades.

One major motivation for using intra-saccadic steps to study oculomotor plasticity is that
the target step is masked by saccadic suppression of displacement (Stark et al., 1976). One
advantage is that if the manipulation is truly invisible, it is also immune to the observer’s cognitive
strategies. Although cognitive strategies for coping with dysmetria can be interesting in themselves,
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researchers are more often interested in the gradual and possibly
automatic changes of motor commands induced by alterations of
visual feedback, as they are possibly more revealing about natural
behavior. By the same token, the motor system may be more
likely to attribute unseen steps as variability in the motor system
and correct the visuo-motor mapping accordingly (e.g., Collins,
2014). Although it is typically assumed that the intra-saccadic
step in saccade adaptation paradigms is hardly noticed because
of saccadic suppression of displacement, it is not clear whether
saccade adaptation is sensitive to the visibility of the error signal.
Observers may be uncertain about having seen a step on any
given trial and nonetheless detect changes above chance (Morgan
et al., 1997). Therefore, the relation between the perception of
the intra-saccadic step and adaptation is better conceived in a
probabilistic framework.

Recently, two complementary probabilistic ideal adaptor
models prescribing how visual uncertainty should affect
adaptation have been put forth. We refer to these as the Kalman
filter and the contextual relevance models. Burge et al. (2008)
manipulated visual uncertainty and showed that an ideal
adapter fits reasonably well to manual pointing adaptation
data, indicating that visual uncertainty and visuo-motor
transformation uncertainty are taken into account in a near
optimal way for correcting constant visual errors (see also
Wei and Körding, 2010). This prediction is derived from a
Kalman filter model, which has proved useful in understanding
sensorimotor learning in a range of tasks (Wolpert et al., 1995,
2011; Krakauer and Mazzoni, 2011). In short, the model predicts
that the speed at which we should correct for an error should
depend on how reliable the visual feedback is relative to the
variability of the internal state estimate, which might be derived
from an efference copy signal (Wei and Körding, 2010). In
particular, the model predicts that a clearly seen visual error
should be corrected faster than a poorly seen visual error;
conversely a noisier visuo-motor transformation should yield
faster corrections, because in both cases the visual feedback is in
relative terms more trustworthy.

The Kalman filter model is linear, meaning that the adaptation
rate parameter does not depend on error-size, which under
some situations is a reasonable assumption (Baddeley et al.,
2003). However, recent studies have challenged this model by
suggesting that adaptation depends on the relevance of the error
to the motor system (Berniker and Kording, 2008, 2011; Wei
and Körding, 2009). By a process of causal inference, large errors
should provide strong evidence for an external perturbation—
such as a target step during a saccade—and therefore adaptation
should be slower. Generalization should justify this behavior,
since adaptation for a genuine internal perturbation should
generate more accurate saccades toward the same location,
whereas adaptation to an external event would generate more
inaccurate saccades in the absence of this event.

Wei and Körding (2009) found support for the contextual
relevance model in a pointing task in which corrections could
be estimated based on visual error feedback and proprioceptive
information. A Bayesian ideal observer model was fit to the data,
essentially depending on the likelihood that the visual error is
relevant given visual uncertainty (see also Berniker and Kording,

2008, 2011). Interestingly, Wei and Körding (2009) show that
a contextual relevance model can fit the results of Robinson
et al. (2003) on the effects of error size on the amount (gain)
of adaptation achieved in monkeys, increasing linearly for small
errors then saturating with large errors.

In the context of saccades, evidence that adaptation-rates
depend on causal inference of errors was recently provided
by Collins (2014), by showing in a random intra-saccadic step
paradigm that the amount of correction from one trial to the
other depends on whether the step was correctly detected or
discriminated—and therefore was likely to be attributed to an
external event—or not. Another indication of the influence of
perturbation visibility during the saccade comes from the finding
that a gradual adaptation paradigm, in which the step increases
across trials, generates a greater extent of adaptation than the
classical paradigm, either with adaptation of arm movements or
saccades (Wong and Shelhamer, 2011a,b). Because the gradual
manipulation is presumably more likely to go unnoticed this
could support the role of contextual relevance.

We were interested in contrasting the predictions of the
Kalman filter model with the predictions of the contextual
relevance model in a saccade adaptation paradigm. In a first
experiment we exploited between subject variability to evaluate
whether adaptation rates depend on visual uncertainty as
predicted by the Kalman filter model. In a second experiment,
we tested the effect on adaptation rate of different step sizes,
which is a critical test of the contextual relevance model since the
Kalman filter model predicts no effect of step size. In particular
we expressed step size relative to individual’s visual uncertainty,
predicting a lower adaptation rate with increased visibility of the
step.

To preview on the results we show that none of the models
conforms well to the data, which suggests independence of visual
signals used to drive saccade adaptation and to integrate position
across saccades.

METHODS

Observers
One author (DS) and 19 undergraduate students from Giessen
University (of which 13 were female; mean age of 24 years,
ranging from 21 to 35, SD = 4.25 years) participated in the
first experiment, 14 in the second experiment (mean age of 26
years, ranging from 18 to 35, SD = 3.45; 12 were female). Eight
participated in both experiments. Experiments complied with
the principles of the Declaration of Helsinki and were approved
by the local ethics committee LEK FB06 at Giessen University
(Proposal Number 2013-0020). Written informed consent was
obtained prior to the experiment. Students were naïve regarding
the purpose of the manipulation.

Materials
Stimuli were displayed on a 10-bit depth 32-inch Display++
monitor (Cambridge Research Systems, Ltd., Rochester, UK)
with a refresh rate of 120 Hz and 1920 × 1080 pixels spatial
resolution. The display area subtended 44.4◦ horizontally and
24.8◦ vertically at a viewing distance of 90 cm, resulting in 43

Frontiers in Human Neuroscience | www.frontiersin.org 2 May 2016 | Volume 10 | Article 227

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Souto et al. Saccade Adaptation and Visual Uncertainty

pixels per degree. We controlled the stimulus presentation with
Matlab (MathWorks, Natick, USA) via the Psychophysics toolbox
(Brainard, 1997; Pelli, 1997).

Experimental Procedure
Experiments took place in a dimly lit room. Visual stimuli are
shown in Figure 1A. Trials were self-paced. After a key press,
a 0.3◦ black fixation dot was displayed for a random interval
between 0.5 and 1.5 s, followed by the presentation of the saccade
target 12◦ rightward of the fixation location. The fixation location
was varied between 0 and −5◦ leftward off the screen center to
impede the use of screen edges as a reference. The target was
either displaced or displayed at the same location during the
saccade for 150 ms. The targets were Gaussian patches of 0.5◦

standard deviation and had a Weber contrast of 10 or 100%. The
background was gray, of luminance 95 cd/m2.

In the first experiment, participants took part in two sessions.
In each session there was a perception block and adaptation
block. The order of perception and adaptation blocks, and of
contrast (10% or 100%) in adaptation blocks was balanced across
subjects. In the perceptual task observers had to saccade to a
target and report whether they saw it step leftward or rightward
(2AFC). The next stimulus level was determined by an “updated
maximum-likelihood procedure” as implemented in the UML
Matlab toolbox (Shen et al., 2015). According to this procedure,
on a particular trial, the parameters of a psychometric function

(here Weibull) are selected to maximize likelihood. Then, the
sweet points for every parameter are calculated. The sweet point
of a psychometric function is the point that minimizes expected
variance for a particular parameter. An analytical solution for the
calculation of sweet points for the slope, threshold and lapse rate
is given by Shen and Richards (2012). To go through the different
sweet points an up-down procedure is then used. We used a 2-
down 1-up rule—i.e., select a lower sweet point (step size) after
two correct responses and a larger one after only 1 incorrect
response. The sign of the step was randomized. The step size was
limited to −4 to 4◦. There were 4 perception blocks of 40 trials
per session, preceded by 10 training trials, corresponding to 160
trials per psychometric function. Target contrast was alternated
by block. No feedback regarding response accuracy was provided.

In the adaptation block (Figures 1B,C) observers’ task was
only to saccade to the target. As for the perceptual-task blocks
they were instructed to saccade toward the target as soon as the
target appeared, but not before, while trying to be accurate. In the
50 trials of the pre- and post-adaptation phase the target did not
change position. During the 150 trials of the adaptation phase the
target stepped backwards of 1.5◦, mid-flight during the saccade
(cf. Figure 1B).

In the second experiment the same adaptation paradigm was
used. Five step sizes (−1.25, −1.00, −0.75, −0.50, and −0.25◦)
were tested on different sessions and the target was always
100% contrast in the perceptual task and adaptation blocks

FIGURE 1 | Experimental methods. (A) Visual stimuli. Trials started with a black fixation dot at a random location within 0 to −5◦ (leftward) of the screen center.

After a random temporal interval within 0.5–1.5 s, the saccade target appeared 12◦ rightward from the fixation point. After saccade onset, the target was displaced.

(B) Time course of one sample trial. Horizontal eye position relative to the screen center as a function of time relative to target onset is shown in blue. The target

position and duration during the pre-adaptation and post-adaptation phase is represented by a solid red line. During the adaptation phase the target position is the

same before the saccade, but jumps by 1.5◦ backwards after the saccade—the dashed line in this example. The time at which the target steps is indicated by a

vertical black line (C) Adaptation data from a sample participant in Experiment 1. Dots show saccade amplitudes in all trials. The best fitting exponential is shown in

red. The solid horizontal lines indicate the post-saccadic target position in pre- and post- adaptation phases. The dashed horizontal line indicates the post-saccadic

target position in the adaptation phase.
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(Figure 2B). Sessions took place at least 1 day apart. We used
a latin-square design for balancing step size transitions across
subjects, thus controlling for carry-over effects. In a latin square
any condition pair is represented as often as any other and
appears only once at a particular session number (Krauth, 2000).

Eye Movement Recording
Eye movements were recorded with an Eyelink 1000 (SR-
research, Ltd., Osgoode, Canada), video-based eye tracker. The
eye tracker was controlled by the Eyelink toolbox port for Matlab
(Cornelissen et al., 2002). We did a standard 9-point calibration
at the beginning of each perception or adaptation block. For
detecting a saccade online, horizontal velocity had to exceed 100
deg/s for two consecutive samples and the eye had to rotate
by 3.6◦ toward the target. This ensured that the target step
occurred during the saccade around the time of peak velocity,
given saccade durations of about 50–60 ms and a screen update
every 8.33 ms.

Data Analysis
We fitted an exponential model to the data with three free
parameters: the amplitude of the decay ( β ), the decay-rate or
adaptation rate (λ), and the asymptotic level ( α ):

S (t) = α + βe−λt (1)

The parameter λ is the adaptation rate parameter and 1/λ
corresponds to the exponential time constant. The fit of the
adaptation rate parameter was constrained to 0.001 and 1 to
avoid infinite values by taking the log of the adaptation rate

and very fast adaptation rates, the estimate of which will be
very sensitive to error variability in the first trials. We used a
nonlinear least-squares fitting procedure to fit the exponential
model (OPTI toolbox for Matlab, Currie and Wilson, 2012). The
psychometric data were fit with a cumulative Gaussian function
using constrained maximum likelihood estimation with Psignifit
3.0 (Fründ et al., 2011).

When correlating adaptation parameters and psychometric
function parameters we weighted data by the root mean square
error (RMS) of the residuals normalized by total RMS across
subjects ( j index) for that condition ( i index):

wij =
RMSij
n
∑

j=1
RMSij

(2)

We used paired t-tests for testing for statistical significance,
unless there were differences in variability between conditions, in
which case we used Wilcoxon signed-rank non-parametric tests.

Candidate Models
A statistically optimal way of correcting errors across trials is
to determine the adaptation rate λ by the relative uncertainty
of visual information and uncertainty of the state estimate, as
obtained by applying a Kalman filter (Kalman, 1960). Hence,
the steady-state Kalman gain parameter determining adaptation
rate (see Burge et al., 2008; Shadmehr and Mussa-Ivaldi, 2012)
is derived from uncertainty of the state estimate σm and of the

FIGURE 2 | (A) Psychometric functions in Experiment 1, for one subject under two contrast conditions. Blue dots represent proportion forward responses with binned

step levels for illustration purposes. The presented stimulus levels are indicated by open dots. (B) Saccade amplitude in Experiment 2 for one subject for five different

step sizes. Same conventions as in Figure 1C.
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sensory information σs:

K = σ 2
m/

(

σ 2
m + σ 2

s

)

(3)

The adaptation rate parameter of the exponential describing
adaptation is then derived by (see the Appendix for a
demonstration):

λ = −log (1− K) (4)

This model makes simplifying assumptions. It supposes a
complete exponential decay of the retinal or saccade end-point
error, ignoring that adaptation does not asymptote toward zero
or even toward the pre-adaptation baseline. Furthermore, several
studies indicate that the predicted error rather than retinal error
drives adaptation (e.g., Bahcall and Kowler, 2000; Collins and
Wallman, 2012; Wong and Shelhamer, 2012).

Figure 3B shows that by applying Equations (3, 4) the log
of sensory uncertainty and the log of the adaptation rate are
predicted to be in a close to linear (negative) relationship for
a wide range of state-uncertainty values. To estimate visual
uncertainty σs underlying visual discrimination judgments we
calculated the just-noticeable-difference (JND) as the difference
between the step size yielding 84% correct and the one yielding
50% correct. Then σs = JND/

√
2 (Ernst et al., 2004; Burge et al.,

2008). One of the observers’ psychometric functions were flat
within the range of steps displayed, and therefore their data is
not included. In another participant this was only the case for the
100% contrast condition.

As a measure of the proportion of adaptation we took the
difference between themedian amplitude over 50 trials in the pre-
adaptation phase and over 50 trials at the end of the adaptation
phase, divided by the step size. The 1s parameter—or starting

FIGURE 3 | (A) Experiment 1, relation between log of visual uncertainty, σs,

estimated by JND/
√
2, and the log of adaptation rate λ. Observers were

tested with 10%, and 100% contrast targets. The red lines represent the best

weighted (see text) linear fits. Dashed lines represent the 95% confidence

interval for those fits. (B) The relation between the logs of visual uncertainty σs

and adaptation rate λ is nearly linear for a wide range of visual uncertainties

and visuomotor mapping uncertainties σm shown in a color scale.

point—corresponds to the difference between the amplitude
in the pre-adaptation phase and the amplitude at which the
fitted exponential starts. The 1s parameter informs about rapid
learning, indicative of the use of cognitive strategies, which might
be more prevalent with more visible steps. This parameter should
hover around zero if participants do not behave differently when
steps exceed perceptual threshold.

RESULTS

In two experiments we tested observers’ perceptual thresholds
and adaptation rates, asking how visual uncertainty relates to
saccade amplitude adaptation. In a first experiment we varied
the target contrast between subjects. In a second experiment
we varied step size between subjects. Individual data, including
untransformed adaptation rates and thresholds, can be found in
Tables 1, 2.

Adaptation Rate and JND
In the first experiment we aimed to manipulate visual JNDs
by having 10% and 100% contrast targets (Zimmermann et al.,
2013). Figure 2A and Figures 4A,B compares PSEs and JNDs
of the psychometric functions obtained from the step direction
discrimination task for low and high contrasts in individual
subjects. On average, PSEs are shifted backwards by −0.9◦ (SD
± 0.43) with a low contrast, whereas PSEs for high contrast
targets are nearer to veridical, −0.31◦ (SD ± 1.1). Between-
subjects variance was more than twice as large for the 100%
contrast targets compared to 10% contrast targets (0.13 and 0.30,
respectively), Levene’s test, F(1, 34) = 6.163, p < 0.018. The
effect of contrast on PSEs was statistically significant, Wilcoxon
signed-rank test W(17) = 6, p < 0.0001. However, the JNDs
were similar with the 10% (1.46 ± 0.62) and 100% (1.37 ± 0.40)
contrast targets and not statistically different from each other,
t(17) = 1.008, p = 0.328, as shown in Figure 4A. Although our
explicit manipulation of visual uncertainty was not successful,
we can compare visual uncertainty and adaptation rates across
observers.

Learning-rates (in log units, Figure 4C) were on average
−3.67 in log units (SD ±1.09). In more relatable terms, this
corresponds to an exponential time constant of about 39 trials
(1/λ)—i.e., the time it takes the function to reach about a third of
the initial value—going from some 14 to 106 trials (±1 log unit).

In Figure 3 we show the relation between log of adaptation
rate λ and the log of JND/

√
2 as an estimate of visual uncertainty,

σs (Burge et al., 2008), in relation to the predictions of a
Kalman filter model (Figure 3B). The red line represents the
least-squares fit, weighted by a function of RMS of residuals.
For both contrasts the relation is flatter than predicted. In
particular, the slope predicted by the integration model (of −2:
an increase in 1 log unit of visual uncertainty reduces λ by 2
log units) is outside the 95% confidence interval for the slope
of the weighted linear regression for the low contrast (−0.23,
CI: −1.33 to 0.85) and high contrast targets (0.94, CI: −1.60
to 2.74). Both intervals contain zero1. Niemeier et al. (2003)

1A regression model supposes that there is no error in estimating visual

uncertainty. However, we also tested an orthogonal regression model. The slope
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TABLE 1 | Individual data in Experiment 1 showing original and log-transformed values.

JND log(JND/
√
2) PSE λ log (λ) 1 s Proportion change

Contrast Contrast Contrast Contrast Contrast Contrast Contrast

Obs. 10% 100% 10% 100% 10% 100% 10% 100% 10% 100% 10% 100% 10% 100%

1 0.74 0.55 −0.28 −0.41 −0.90 −0.77 0.010 0.079 −4.61 −2.54 0.15 0.43 0.74 0.55

2 0.54 0.61 −0.42 −0.36 −1.14 −0.98 0.039 0.003 −3.25 −5.96 0.07 0.71 0.54 0.61

3 0.60 0.94 −0.37 −0.18 −0.75 −0.25 0.029 0.017 −3.54 −4.06 0.11 0.49 0.60 0.94

4 1.40 0.99 0.00 −0.16 −0.12 0.52 0.025 0.030 −3.68 −3.51 0.43 0.13 1.40 0.99

5 0.74 0.67 −0.28 −0.32 −0.58 0.60 0.053 0.161 −2.93 −1.83 0.17 −0.35 0.74 0.67

6 1.48 1.08 0.02 −0.12 −1.63 −1.13 0.007 0.009 −4.97 −4.71 0.72 0.52 1.48 1.08

7 0.68 0.97 −0.32 −0.16 −0.83 0.12 0.112 0.018 −2.19 −4.04 −0.35 0.59 0.68 0.97

8 0.75 1.35 −0.28 −0.02 −0.63 −0.71 0.066 0.006 −2.71 −5.11 0.15 0.52 0.75 1.35

9 0.57 0.89 −0.39 −0.20 −0.69 −0.24 0.074 0.029 −2.60 −3.53 −0.01 0.16 0.57 0.89

10 2.07 1.75 0.17 0.09 −1.25 0.32 0.015 0.009 −4.18 −4.70 1.30 0.56 2.07 1.75

11 1.31 0.69 −0.03 −0.31 −0.92 −0.32 0.008 0.018 −4.80 −4.01 −0.06 −0.03 1.31 0.69

12 1.15 1.26 −0.09 −0.05 −0.57 0.34 0.023 0.005 −3.78 −5.25 0.62 0.85 1.15 1.26

13 0.56 0.45 −0.40 −0.50 −1.96 − 0.052 0.149 −2.95 −1.91 0.24 −0.29 0.56 0.45

14 1.12 0.70 −0.10 −0.31 −0.94 −0.67 0.023 0.453 −3.78 −0.79 −0.18 0.19 1.12 0.70

15 0.82 0.60 −0.24 −0.38 −0.62 −0.65 0.056 0.102 −2.87 −2.28 0.37 −0.09 0.82 0.60

16 0.95 0.80 −0.17 −0.25 −0.92 −0.13 0.053 0.038 −2.93 −3.28 −0.25 0.20 0.95 0.80

17 0.82 1.49 −0.24 0.02 −0.88 −0.89 0.088 0.007 −2.43 −4.91 0.11 0.55 0.82 1.49

18 0.82 0.47 −0.24 −0.48 −1.51 −0.91 0.013 0.024 −4.31 −3.74 0.36 −0.01 0.82 0.47

19 0.94 0.76 −0.18 −0.27 −0.74 0.07 0.010 0.024 −4.60 −3.72 0.16 0.47 0.94 0.76

Mean 0.95 0.90 −0.20 −0.23 −0.92 −0.32 0.040 0.062 −3.53 −3.68 0.22 0.30 0.95 0.90

SD 0.38 0.35 0.16 0.16 0.42 0.53 0.03 0.10 0.84 1.30 0.37 0.33 0.38 0.35

JND, just noticeable difference (85% threshold); PSE, point of subjective equality; λ, adaptation rate;∆s, difference between the exponential fit starting point amplitude and pre-adaptation

median amplitude; proportion change, refers to the amplitude change between pre-and end of adaptation trials normalized by the size of the step.

showed that saccade endpoint variability is positively correlated
with the amount of saccadic suppression of displacement, and
proposed that endpoint variability indicates uncertainty of visual
and extra-retinal signals necessary to maintain spatial constancy
after the saccade. Visual and motor uncertainty should affect
adaptation rates according to the Kalman filter model, but we
do not know to what extent saccade endpoints reflect one or
the other. Nonetheless, to know whether there is a relationship
between visual uncertainty and learning unmediated by saccade
endpoint variability we calculated the partial correlation between
the log of λ and the log of visual uncertainty, controlling
for endpoint variability. This correlation was not significant
(all p > 0.58) and the slope estimate was again near to
0 (low contrast: 0.14; high contrast: −0.09). However, we
confirmed the findings of Niemeier et al. (2003), that is
a correlation between endpoint variability and log of visual
uncertainty (σs) for low contrast, r(17) = 0.58, t(17) = 2.922, p
= 0.009, and high contrast targets, r(16) = 0.66, t(16) = 3.573,
p= 0.003.

was obtained by doing a principal component analysis on the log of adaptation

rate against the log of visual uncertainty. The slope of the first component is the

one that minimizes the orthogonal error. Confidence intervals (95% percentiles)

for the slope were obtained by bootstrapping (Efron and Tibshirani, 1994): −0.11

to 0.10 for 10% contrast targets and−0.06 to 0.07 for 100% contrast targets.

Adaptation Rate and Step Size
In a second experiment we calculated observers’ visual JNDs
and learning rates for different step sizes (0.25–1.5◦). Adaptation
rates were on average −3.53 in log units (SD ± 1.49). Figure 2B
shows a great deal of variability in learning rates within the same
observer. Figure 5 shows how adaptation parameters depend
on step size. The ratio between step size and individual JND
gives a measure of how likely an observer is to see the target
jump. Therefore, we calculated linear regressions to individual
data to test whether adaptation rate is lower for more visible
target steps—as predicted by the contextual relevance model—or
the same—as predicted by the Kalman filter model or by a
model assuming independent position signals for perception and
oculomotor control.

Adaptation rates were similar across step size, as tested with a
one-way ANOVA, F(4, 55) = 1, p= 0.416 (Figure 5A). Variability
for other parameters was also very high, especially for the percent
adaptation measure (Figure 5C)2. Other parameters tested were
the starting point of the exponential (1s) and the proportion
adapted. A t-test on the slope of the individual linear regressions
between step size/JND and adaptation parameters showed that

2Instead of using the raw data to estimate proportion adapted we also used the

parameter β (scale) of the best fitting exponential and calculate its ratio to step

size. However, the fitted slopes were just as variable with this measure.
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none were significantly different from zero (ps > 0.14; 95% C.I.:
log of adaptation rate: −2.5 to 1.9; 1s: −0.44 to 0.14, proportion
adapted: −0.58 to 1.33). Untransformed adaptation rates ( λ )
were also independent of step size (0.002, C.I: −0.12 to 0.12) or
step-size/JND (0.043, C.I.:−0.13 to 0.21).

DISCUSSION

We tested the influence of visual uncertainty and error-size on
saccade adaptation parameters. Visual uncertainty was evaluated
in a separate block in which observers had to discriminate the
direction of the step. We found that:

(1) The point of subjective stationarity is shifted to inward steps
in low contrast targets compared to high contrast targets.

(2) Adaptation rate is unrelated to visual uncertainty (JNDs)
across subjects.

(3) Adaptation parameters are unrelated to error-size
manipulated within subjects.

We observed a shift in PSEs for low-contrast targets: some
backward changes in position were perceived as stationary
and no change in position was perceived as forward step.
PSEs for high contrast targets were closer to zero such that
judgments were more veridical. Despite these large differences
in perceived stationarity, there were no systematic differences
in the adaptation rates in the two contrast conditions. This
is clear evidence for a dissociation between perception and
adaptation. The origin of this shift in PSEs for low contrast
targets is unclear. One explanation could be that for low contrast
targets, there is a stronger reliance on prior knowledge that
visible targets are likely to be presented near the fovea. If
the eccentricity is underestimated, a backward step should be
perceived as stationary, and no step perceived as a forward
step. If error-correction was based on this information too, we
should have observed a difference in the amount of adaptation,
between low and high contrast targets, which was not the case. A
foveal localization bias in the relative localization of peripheral
stimuli has been observed before. It was shown to increase
with shorter presentation times and lowered discrimination
thresholds, consistent with the reliance on prior knowledge
(Müsseler et al., 1999; Brenner et al., 2008). Incidentally, we
did not find the effect of contrast on JNDs that we expected.
Zimmermann et al. (2013) showed slightly higher sensitivity to
displacements in 97% compared to 10% contrast targets, but
they used rather different stimuli, differing in polarity and spatial
frequency content. A manipulation of post-saccadic error timing
might prove as a more robust way of manipulating adaptation
(Shafer et al., 2000) and visual uncertainty within participants
(e.g., Zimmermann et al., 2013) in the future.

The contextual relevance model (e.g., Wei and Körding,
2009; Collins, 2014) makes testable predictions, especially when
comparing the effect of different step sizes on adaptation rates,
since the Kalman filter model predicts that adaptation rates
are independent of step size. The contextual relevance model
supposes that the amount of adaptation is proportional to the
likelihood that an event is relevant to the motor system given
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FIGURE 4 | Individual comparison of 10% and 100% contrast conditions in Experiment 1 for: (A) the log of visual uncertainty (log of JND/
√
2 ) (B) PSE

and (C) log of adaptation rate. Red dots and error bars represent averages and 95% confidence intervals.

sensory data. This likelihood is higher for smaller steps and
higher sensory uncertainty (Wei and Körding, 2009). An extreme
case would be that this likelihood is estimated to be close to one,
either because visual uncertainty is very high (i.e., low visual-to-
noise ratio for the sensory information) or because prior evidence
for an external perturbation is very low, or a combination of the
two. In this case adaptation rates should follow the predictions
of the Kalman filter model. However, when uncertainty is small
and steps get larger we should observe less adaptation as the
likelihood of being relevant gets lower. Therefore, according to
this model the relationship between target location uncertainty
and the log of the adaptation rate parameter should be flatter
than predicted by the Kalman filter model, or even be in a positive
relationship as there should be no adaptation at all when there is
certainty that the error signal is irrelevant to the motor system.
In the second experiment, we should see that adaptation rates
decrease with step size.

Our results show that the Kalman filtermodel does not explain
saccadic adaptation rate when estimating visual uncertainty by
step discrimination. If anything, we observed slightly faster
learning rates with more visible targets. The results cannot be
explained by the effect of contextual relevance either, since error-
size had no effect on adaptation rates. It remains a possibility
that larger errors would show a non-linear relationship (see Wei
and Körding, 2009; Collins, 2014). However, with the range of
steps we used, from 0.1 to up to 2.5 times the JND values, we
should expect attribution to an external event with certainty for
the larger steps and therefore observe little adaptation. We do
not question that an effect of step size could be found with even
larger steps, as it was shown by others (Collins, 2014). However,
the results from Herman et al. (2013b) are clearly contradicting
ours as they found that adaptation rates strongly depend on step
size in a similar range of step sizes to ours. We think that the
difference between our results and the results by Herman et al. is
due to different fitting procedures. While Herman et al. used an
exponential fit with only two free parameters for the amplitude
and rate of adaptation, we have an additional parameter for the
asymptotic value. Without this additional parameter, adaptation
rate also reflects differences in the asymptotic value of adaptation,

such that it artificially scales with step-size. As the exponential
is not allowed to plateau and therefore to fit the data at the end
of the adaptation phase, the best fitting function is one having
a very low adaptation rate parameter that scales to the adapted
amplitude—and therefore step size. With a high adaptation
rate parameter the function would reach zero before the end
of the adaptation trials. Accordingly, Herman et al. adaptation
rate estimates are two orders of magnitude smaller than ours
and those reported in the literature (e.g., Srimal et al., 2008).
Therefore, their study can inform about whether adaptation
took place with different steps, but not about differences in
adaptation rates. Nonetheless, Herman et al. found that the
proportion of adaptation, the ratio of adaptation to step-size,
is fairly constant across step-sizes, which is consistent with our
results.

Our results may appear to be also directly at odds with those
of Collins (2014), showing smaller corrections from one trial
to the other when a step was correctly detected. In that study,
random steps were applied during the saccade. Although it is
unclear whether random-adaptation paradigms imply similar
mechanisms to adaption with constant steps, Srimal et al.
(2008) found similar adaptation rates under both paradigms. The
method used by Collins (2014) may have been more sensitive
in detecting small changes in adaptation rate, however, a large
effect of step size was also found. This may not necessarily
be understood in terms of causal attribution. An alternative
explanation can be that it is the size of the error that matters
in the process of binding the post-saccadic target location to the
expected target location, instead of the likelihood of the error
being relevant to the motor system. Detection of the step in a
random adaptation paradigm is necessarily positively correlated
with the size of the step, and therefore the finding that the amount
of adaptation on the next trial depends on the target being
detected could be mediated by the effect of step size. For instance,
adaptation could be slower if the error is larger than a critical
value. Further research would be needed to examine a critical
error hypothesis as opposed to contextual relevance defined by
the computation of likelihoods. Spatial attention could be such an
error bindingmechanism. The critical error would be determined
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FIGURE 5 | Experiment 2, relation between step size and adaptation

parameters. (A) Relation between step size and log of adaptation rate λ.

Error bars represent the weighted (see text) average and confidence interval

for every step. To take into account individual JNDs we show in (B–D) how

different fit parameters are related to the ratio of step size to JND. 1s refers to

the difference between the starting point measured by the pre- adaptation

median and the starting point determined by the exponential fit. In (B–D) we fit

a weighted linear function to individual data, giving the red shaded lines. Every

subject’s data is connected by a gray line.

by the size of the attention focus. Accordingly, saccade adaptation
has been shown to be modulated by attentional load (Gerardin
et al., 2015).

An interesting suggestion of our results is that spatial
constancy across saccades, our ability to judge the displacement
of a target across a saccade, does not involve the same

visual signals as those driving saccade adaptation. Collins
(2014) arrived to a similar conclusion by noting substantial
saccade adaptation for target steps that were not correctly
detected or discriminated. By showing that visual uncertainty
and PSE are poorly related to saccade adaptation we suggest
that there is an even deeper dissociation. Then, in what way
is the use of visual information for oculomotor adaptation
and perception different? A recent study, showing saccade
adaptation for steps presented during the saccade (Panouillères
et al., 2013), suggests a much earlier time-window over which
visual signals can drive adaptation than previously known.
Perceptual judgments might include information acquired
over a larger time-window, potentially explaining a lack
of correlation between perceptual performance and motor
adaptation.

Movement variability (i.e., saccade endpoints) has been shown
to be strongly related to suppression of displacement (Niemeier
et al., 2003). However, we found that movement variability did
notmediate adaptation rate. Given that both eye state uncertainty
and visual uncertainty should contribute to saccade endpoint
variability, this seems surprising. However, if we assume that
a large part of saccade endpoint variation has a perceptual
origin (van Beers, 2007), not only is a large correlation between
movement variability and saccadic suppression of displacement
unsurprising, but also a lack of correlation between movement
variability and adaptation rate, since it should be driven by the
uncertainty about the state of the eye, e.g., as derived from
an efference copy signal. Collins et al. (2009) showed that the
discrimination of intrasaccadic steps is independent of saccade
landing position, indicating that the efference copy is accurate,
even though the target is perceptually remapped after saccade
adaptation.

A last point is that there is no indication that the observers
use cognitive strategies when they are aware of the manipulation.
For instance, the subject could target a different location than the
target location knowing that the target would step. Interestingly
we show no evidence that perception of the step matters for
measuring saccade adaptation, as we see no trace of faster
adaptation rates for clearly visible targets, especially looking at
the presence of an immediate error-correction at the beginning
of the adaptation phase. Overall, correction is gradual and
independent of step visibility. This concurs with hand movement
studies showing that explicit strategies hardly overrule implicit
corrections (Mazzoni and Krakauer, 2006). Similarly, we showed
that even when observers are instructed to process information
at a specific location within a target object they still show gradual
saccadic adaptation (Schütz et al., 2014; Schütz and Souto,
2015).

In conclusion, saccadic suppression of displacement and
saccade adaptationmay rely on signals that are independent. This
strengthens the reported observation that saccade adaptation
occurs even when observers are unaware of the intra-saccadic
step. We propose that the detection of mismatches across
saccades and oculomotor control rely on different signals. On
the one hand the detection of intra-saccadic steps requires a
comparison of pre- and post-saccadic position signals which
could be hampered by trans-saccadic integration. On the other

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2016 | Volume 10 | Article 227

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Souto et al. Saccade Adaptation and Visual Uncertainty

hand saccadic adaptation requires the comparison of post-
saccadic error to a prediction of the saccade endpoint given
the target goal, this mismatch with the actual landing position
may be used to modify the sensorimotor transformation. A
fundamental difference between our results and those obtained
by Burge et al. (2008) with pointing movements is that the
hand movement does not modify the visual input, whereas
vision across saccades requires an efference copy signal to
recover position in spatial coordinates (e.g., Collins, 2014).
Experiencing a stable visual world across saccades requires
a conservative bias, whereas the oculomotor system benefits
from keeping sensitive to spatial errors. Finally, there was
no sign of the use of cognitive strategies neither when the
target was well over perceptual threshold nor when it was not,
which is good news for the use of the saccadic adaptation
paradigm.
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APPENDIX

Here we give a demonstration for Equation (4), λ = −log(1−K),
relating the exponential time constant λ and the Kalman filter
constant K (Equation 4 of Burge et al., 2008), as we failed to
find a clear demonstration elsewhere. K represents the amount
of error on the previous trial that is corrected on the current trial
(Equation 3 of Burge et al., 2008), x(t) is the saccade amplitude
on trial t:

x(t + 1) = x(t)+ Kε(t) (A1)

Error is simply the target amplitude T minus saccade amplitude:

ε(t) = T − x(t) (A2)

As error is known to decay exponentially, we have that:

ε(t) = e−λt (A3)

From Equations (A1) and (A2), it follows that:

ε(t)− ε(t + 1) = x(t + 1)− x(t) = Kε(t) (A4)

Given Equation (A3) this can be rewritten as:

e−λt − e−λ(t+1) = e−λt − e−λte−λ = e−λt(1− e−λ) (A5)

Therefore, using the identity in Equation (A4):

Ke−λt = e−λt(1− e−λ) (A6)

Meaning K = 1 − e−λ or e−λ = 1 − K. Taking −log on both

sides gives λ = −log(1− K).
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