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Abstract

Background/Aims: Free radical scavenger tempol is a protective antioxidant against ischemic 

injury. Tubular epithelial apoptosis is one of the main changes in the renal ischemia/reperfusion 

(I/R) injury. Meanwhile some proteins related with apoptosis and inflammation are also involved 

in renal I/R injury. We tested the hypothesis that tempol protects against renal I/R injury by 

activating protein kinase B/mammalian target of rapamycin (PKB, Akt/mTOR) and glycogen 

synthase kinase 3β (GSK3β) pathways as well as the coordinating apoptosis and inflammation 

related proteins.

Methods: The right renal pedicle of C57Bl/6 mouse was clamped for 30 minutes and the left 

kidney was removed in the study. The renal injury was assessed with serum parameters by an 

automatic chemistry analyzer. Renal expressions of Akt/mTOR and GSK3β pathways were 
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measured by western blot in I/R mice treated with saline or tempol (50mg/kg) and compared with 

sham-operated mice.

Results: The levels of blood urea nitrogen (BUN), creatinine and superoxide anion (O2
.-) 

increased, and superoxide dismutase (SOD) and catalase (CAT) decreased significantly after renal 

I/R injury. However, tempol treatment prevented the changes. Besides, I/R injury reduced renal 

expression of p-Akt, p-GSK3β, p-mTOR, Bcl2 and increased NF-κB, p-JNK and p53 in kidney, 

tempol significantly normalized these changes. In addition, renal I/R injury reduced the response 

of afferent arteriole to Angiotensin II (Ang II), while tempol treatment improved the activity of 

afferent arteriole.

Conclusion: Tempol attenuates renal I/R injury. The protective mechanisms seem to relate with 

activation of PI3K/Akt/mTOR and GSK3β pathways, inhibition of cellular damage markers and 

inflammation factors, as well as improvement of afferent arteriolar activity.
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Introduction

Acute kidney injury (AKI) is a common and severe clinical disease. AKI occurs in 

approximately 5% of hospitalized patients and the overall mortality of AKI is estimated to 

range between 45–70%[1–3]. AKI is responsible for approximately 2 million deaths 

annually worldwide [2, 4, 5]. Renal ischemia/reperfusion (I/R) injury is one of the major 

causes of AKI in clinics which could be happen in patients with kidney transplantation, 

crossclamping surgery, embolism in renal arteries and shock [6–8]. Although AKI has been 

studied extensively, the molecular mechanisms involved in renal injury are not fully 

addressed. Intracellular reactive oxygen species (ROS], pro-inflammatory cytokines and pro-

apoptotic elements have been demonstrated to play an essential role in the development of 

AKI[9, 10].

The phosphoinositide 3-kinase/protein kinase B (PI3K/PKB, Akt) pathway has been shown 

to play a critical role in regulating mitogenic signaling, apoptosis, cell proliferation and 

survival in different systems [11, 12]. PI3K/Akt pathway mediates cell survival in renal cells 

[13], in which mammalian target of rapamycin (mTOR) and glycogen synthase kinase 

3β(GSK-3β) have been reported to play key role in Akt-mediated cell survival. The mTOR 

is an ubiquitously expressed intracellular serine/threonine protein kinase that plays a crucial 

role in regulating cell proliferation and organ growth by affecting many cellular processes 

[14]. GSK-3β is a serine/threonine kinase that participates in the regulation of cellular 

function [15]. GSK3β controls several extra-metabolic processes that are impaired in AKI 

and diabetes, including cytoskeletal dynamics, gene expression, proliferation, and apoptosis 

[16–18].

Oxidative stress caused by increased production of ROS leads to necrosis, apoptosis, 

inflammation and other disorders in AKI [19]. ROS could cause damage of renal tubular 

epithelial cells [20]. The redox-cycling antioxidant tempol can act as a superoxide dismutase 
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(SOD) and a catalase member [21], thereby reducing tissue levels of both superoxide (O2
-) 

and hydrogen peroxide (H2O2). It has been demonstrated to reduce the renal dysfunction 

caused by I/R injury, mainly through its free radical scavenging activity [22, 23] and 

improve the post-ischemic renal injury by inhibiting the neural activity of renal sympathetic 

nerve and ET-1 overproduction [24]. However, the detailed mechanism has not been fully 

elucidated. Thus, the aim of the present investigation is to study the detail protective 

mechanisms of tempol in renal I/R injury and its interaction with PI3K/Akt/mTOR and 

GSK3β pathways.

Materials and Methods

Reagents

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich (St Louis, MO, 

USA).

Animals

Male C57Bl/6 mice (25–28 g, SLAC laboratory animal company, Shanghai, China) were 

housed under climate-controlled condition with a 12 h light/dark cycle and provided with 

standard diet and water. An acclimation period of at least 1 week was provided before 

initiating experimental protocols. All protocols and animal handling procedures were 

performed in accordance with the National Institutes of Health (NIH, USA) guidelines for 

the care and use of laboratory animals and were approved by the Institute Animal Care and 

Ethical Committee of Zhejiang University School of Medicine.

Renal ischemia/reperfusion model

Tempol (50 mg/kg, intraperitoneal injection) [25] was administered at 1 hour prior to the 

renal I/R injury. Mice were randomly divided into three groups (n=8 per group): sham, I/R 

and tempol+I/R group. Each mouse was anaesthetized with inhaled isoflurane. The right 

renal pedicle was clamped for 30 minutes and left nephrectomy performed to induce renal 

injury. After ischemia, the clamp was released for reperfusion. After the abdominal wounds 

being sutured, the mice were kept on a heating pad until its full consciousness. Sham group 

was dissected as above without clamping of the renal pedicle and left nephrectomy. The 

mouse temperature was monitored and maintained at 37 ± 0.5°C throughout the experiment 

with a heating pad. Mice were decapitated at 24 h after reperfusion, and the kidneys were 

harvested for further analysis.

Measurement of renal injury markers

Blood was collected from the inferior vena cava and centrifuged at 3000 rpm, 4°C for 15 

min. Serum creatinine and blood urea nitrogen (BUN) were tested by an automatic 

biochemical analyzer. The tissue concentrations of superoxide dismutase (SOD), catalase 

(CAT) and O2’ were measured by using standard assays according to manufacture 

instructions (SOD and CAT Assay Kit were purchased from Beyotime Biotechnology and 

O2’ Assay Kit from Najing Jiancheng Bioengineering Institute, Nanjing, China).
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Histological study

The kidney samples were harvested and fixed in 4% paraformaldehyde solution 24 h after 

renal I/R injury. Fixed kidney tissues were embedded in paraffin and were sliced and stained 

with Periodic Acid Schiff (PAS). Ten randomly chosen fields in cortex were captured under 

×200 magnification. The percentage of necrotic tubules in each image was quantified as 

reported [8, 26, 27]. All morphometric analyses were performed in a blinded manner.

Protein extraction and Western blotting

After euthanatized, the kidneys were collected and stored at −80°C. Frozen kidney tissue 

samples were homogenized in buffer containing 50 mM Tris-HCl, 0.5% Triton, 4mM 

EGTA, 10mM EDTA, 1mM Na3VO4, 30mM sodium pyrophosphate, 50 mM NaF, 1 mM 

phenylmethylsulfonyl fluoride, 50 μg/ml leupeptin, 25 μ/ml pepstatin A, 50μg/ml trypsin 

inhibitor and 1mmol/L dithiothreitol. The homogenate was centrifuged 10min at 13, 000g at 

4°C. After determining supernatant protein concentration using Bradford’s solution, samples 

were boiled for 3 min in Laemmli’s sample buffer as described previously [28–30]. Samples 

containing equivalent amounts of protein were analyzed by 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis as described previously [31, 32]. Proteins were 

transferred to the immobile PVDF transfer membrane for 1h at 50V. Membranes were 

blocked in 20 mM Tris-HCl, 150mM NaCl and 0.1% Tween 20 containing 5% fat-free milk 

powder at room temperature for 1 h and immunodetected with antibodies to β-actin, p53, 

Bcl2, NF-κB, mTOR, p-mTOR (Abcam Cambridge), Akt, p-Akt (Ser473), GSK3β, p-

GSK3β (Ser9), JNK and p-JNK (Cell Signaling Technology). Membranes were incubated 

with the appropriate horseradish peroxidase conjugated secondary antibody (1:5000). 

Immunoreactivity was incubated by enhanced chemiluminescence and visualized in an 

automated imaging analysis system (Tanon 5200 Multi, Tanon Science & Technology, 

Shanghai).

Isolation and microperfusion of afferent arterioles

The isolation and perfusion of the afferent arterioles were similar as described previously 

[33, 34]. Briefly, mice were anesthetized with inhaled isoflurane and kidneys were removed 

and sliced quickly. Kidney slice was placed in ice-cold DMEM. Glomerulus with afferent 

arteriole was dissected under a microscope and transferred to a temperature-regulated 

chamber mounted on an inverted microscope (SZX16, Olympus, Japan) with DMEM (Fig. 

1). The glomerulus was held with micropipette and afferent arteriole was cannulated and 

perfused with a set of micropipettes. The intraluminal pressure of the perfused afferent 

arteriole was maintained at 60 mmHg during experiment.

Statistical analysis

The significance between the different groups was determined using a one-way ANOVA and 

accepted as statistically significant at p<0.05. All the results were presented as mean ± SEM.
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Results

Effects of tempol on renal function after I/R injury

The serum creatinine and BUN increased after renal I/R injury in mice and reduced by 

tempol (Fig. 2).

Effect of tempol on oxidative stress related indicator levels after I/R injury

SOD is an oxidoreductase that catalyzes the reaction between superoxide anions and 

hydrogen to yield molecular oxygen and hydrogen peroxide. Large numbers of oxygen free 

radicals are generated during periods of ischemia followed by reperfusion, leading to 

excessive SOD consumption [35]. CAT catalyzes the decomposition of hydrogen peroxide to 

water and oxygen [36]. They are very important enzymes in protecting the cell from 

oxidative damage by ROS. Surprisingly, I/R injury resulted in a significant reduction of SOD 

and CAT activity in kidney tissues and a significant increase of O2
-, while tempol prevented 

the decrease of SOD and CAT activity and the increase of O2
-(Fig. 3). These results 

suggested that tempol represses ROS accumulation by enhancing SOD and CAT activity and 

eliminate O2
- level.

Effects of tempol on renal morphology after I/R injury

PAS staining of kidney sections in I/R group exhibited wide spread necrosis of tubular 

epithelial cells, with a large number of tubular and necrotic cells found inside the tubular 

cavity. The tempol pretreatment group only showed focal tubular necrosis and edema 

significantly reduced. The control group showed normal renal tissue structures (Fig. 4 A, B, 

C and D).

Effect of tempol on the expression of PI3K/Akt/mTOR and GSK3βpathways after I/R injury

Renal I/R injury reduced p-Akt (Fig. 5 A and B], p-mTOR (Fig. 5 C and D] and p-GSK3β 
expression (Fig. 5 E and F). Pretreatment with tempol reversed the reduction of p-Akt, p-

mTOR and p-GSK3β expression.

Effect of tempol on the expression of apoptosis and inflammation related proteins after I/R 
injury

JNK/phosphorylated-JNK (JNK/p-JNK) regulates several important cellular functions 

including cell growth, differentiation, survival and apoptosis [37]. Bcl-2 is a kind of inhibitor 

of the cell apoptosis and could prevent the apoptosis induced by free radicals and lipid 

peroxidation [38, 39]. Bcl-2 has the antioxidative characteristics in cells through 

participating the reduction action and inhibiting the formation of ROS [40]. The p53 is a 

tumor suppressor gene that plays an important role in cell cycle control and apoptosis. When 

tissue is exposed to I/R injury, the p53 activates the apoptotic pathway and directs cell death 

via apoptosis in order to protect the genome [41]. NF-κB is a protein complex that controls 

transcription of DNA, cytokine production and cell survival. NF-κB is recognized to have a 

potential role in apoptosis and the adaptive response to stress [42, 43].
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Our data showed that the expression of Bcl2 was reduced, but p-JNK, p53 and NF-κB were 

increased after renal I/R injury. These changes were reduced in mice pretreated with tempol 

(Fig. 6).

Effect of tempol on afferent arteriolar contraction to Ang II in different groups

After 30 min equilibration period, cumulative dose response curves of Ang II (10−12 to 10−6 

mol/L) were obtained. Each concentration of Ang II was perfused for 2 minutes and 

recorded the constrictive response. In the sham group, Ang II at concentration of 10−9 mol/L 

and above induced dose-dependent contraction of afferent arteriole. However, this was 

reduced significantly in the afferent arteriole after I/R injury. Pretreatment with tempol 

significantly reversed the reduction of afferent arteriolar contraction (Fig. 7).

Discussion

The important findings of the present study include: (1) I/R renal injury decreased SOD and 

CAT enzymatic activities and tempol improved these changes. (2) tempol corrected the 

expression of the apoptosis and inflammation pathway related proteins of Bcl-2, p53 p-

JNK/JNK and NF-κB. (3) tempol restored p-mTOR, p-GSK3β and p-Akt activation. (4) 

tempol improved the afferent arteriolar contraction to Ang II.

It is well-known that NO participates in the pathophysiology of AKI and plays a great role in 

renal I/R injury. Imbalance between O2
- and NO is an important pathogenesis of I/R-induced 

AKI [44]. Tempol is reported to attenuate renal dysfunction by protecting tubular cells from 

oxidative stress [22, 23, 25, 45]. Indeed, tempol could improve tissue NO and PO2, reduce 

inflammation and protect the kidney from I/R-induced renal injury [22, 45]. Pretreatment 

with tempol may reduce the renal injury by inhibiting the neural activity of renal 

sympathetic nerve [24]. Our results confirm the reports that tempol protects the kidney from 

ischemic damage, but shows a complex mechanism.

The present study demonstrated an important mechanism of cellular defense after tempol 

involved up-regulation of Akt and its downstream genes, including mTOR and GSK3β. 

Tempol may restored Akt-dependent cytoprotective pathways by reducing the levels of ROS, 

lipid peroxidation [25, 46], inflammation and apoptosis [47], as well as upregulating SOD 

and CAT activity. Upregulating Bcl-2 expression in the tempol-treated mice after renal 

ischemia reduces kidney I/R injury by suppression of mitochondrial apoptosis [48, 49].

The microperfused afferent arteriolar technique in vitro has several advantages over other 

methodologies used to study the vessels in kidney. Renal afferent arterioles are the primary 

site of resistance in the renal circulation, their response to Ang II is very important to kidney 

function. Afferent arteriolar activity is a result of a number of factors. In the present study, 

we found that the Ang II responses were reduced in afferent arterioles in mice after I/R 

injury. This is in agreement with previous reports that renal microvascular reactivity reduced 

after the acute kidney injury [33, 50, 51].
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Conclusion

Our findings using the renal I/R injury model demonstrated that tempol effectively prevented 

against I/R-induced renal injury through PI3K/Akt/mTOR and GSK3β signaling pathways 

and improved the afferent arteriolar activity in mice.
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Fig. 1. 
The renal afferent arteriolar microperfusion.
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Fig. 2. 
Effects of tempol on renal function after renal I/R injury. (A) Effects of tempol on serum 

creatinine after renal I/R injury. (B) Effects of tempol on serum BUN after renal I/R injury. 

Data are expressed as mean ± SEM, (n=8), * p<0.05 vs sham group; # p<0.05 vs I/R group.
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Fig. 3. 
Effects of tempol on oxidative stress induced by renal I/R injury. SOD, CAT and O2

- in 

kidney were expressed as mean ± SEM, (n=8). * p<0.05 vs sham group; # p<0.05 vs I/R 

group.
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Fig. 4. 
Effect of tempol on the morphologic changes of kidney tissues. PAS staining kidney sections 

were taken from sham group (A), I/R group (B) and I/R pretreated with tempol (50 mg/kg, 

C) and kidney injury was quantitatively measured by percentage of tubular necrosis in the 

cortex (D). Data were expressed as mean ± SEM, n=3, * p<0.05 vs sham group, # p <0.05 vs 

I/R group.
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Fig. 5. 
Effect of tempol on the expression of Akt/mTOR and GSK3β pathways in I/R injury. Data 

were expressed as mean ± SEM, n=5, * p <0.05 vs sham group; # p <0.05 vs I/R group.
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Fig. 6. 
Effect of tempol on the expression of apoptosis and inflammation pathways in renal I/R 

injury. Data were expressed as mean ± SEM, n=5, * p <0.05 vs sham group; # p <0.05 vs I/R 

group.
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Fig. 7. 
Effect of tempol on the afferent arteriolar activity in renal I/R injury. A) The representative 

picture of microperfusion. Dose response curve for Ang II in three different groups. 

Arteriolar luminal diameters were given in μm (B) and contractive percent of the control 

diameter (C). Data were expressed as mean ± SEM, n=5, * p <0.05 vs sham group; # p 

<0.05 vs I/R group.
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