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Simple Summary: Teat number is important for the mothering ability of a sow, but this trait has
seldom been investigated by high-depth genomic data-based genome-wide association study (GWAS).
Here, we performed GWAS for the teat number-related traits in 100 Chinese native Qingping pigs by
recording their left and right teat numbers and analyzing their genetic variations through 10-fold
whole-genome sequencing. T-Box Transcription Factor 3 (TBX3) on Sus scrofa chromosome (SSC) 14 and
Wnt signaling pathway are revealed to be associated with teat number-related traits, with important
roles in mammary gland morphogenesis and development.

Abstract: Teat number plays an important role in the reproductive performance of sows and the
growth of piglets. However, the quantitative trait loci (QTLs) and candidate genes for the teat
number-related traits in Qingping pigs remain unknown. In this study, we performed GWAS based
on whole-genome single-nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) for
the total number of teats and five other related traits in 100 Qingping pigs. SNPs and Indels of
all 100 pigs were genotyped using 10× whole genome resequencing. GWAS using General Linear
Models (GLM) detected a total of 28 SNPs and 45 Indels as peak markers for these six traits. We also
performed GWAS for the absolute difference between left and right teat number (ADIFF) using Fixed
and random model Circulating Probability Unification (FarmCPU). The most strongly associated SNP
and Indel with a distance of 562,788 bp were significantly associated with ADIFF in both GLM and
FarmCPU models. In the 1-Mb regions of the most strongly associated SNP and Indel, there were five
annotated genes, including TRIML1, TRIML2, ZFP42, FAT1 and MTNR1A. We also highlighted TBX3
as an interesting candidate gene for SSC14. Enrichment analysis of candidate genes suggested the
Wnt signaling pathway may contribute to teat number-related traits. This study expanded significant
marker-trait associations for teat number and provided useful molecular markers and candidate
genes for teat number improvement in the breeding of sows.

Keywords: teat number; Qingping pig; whole genome resequencing; TBX3; Wnt signaling pathway

1. Introduction

Porcine teats are located from the anterior to posterior limb bud and symmetrical to
the abdominal midline, and teat number is an important trait for the mothering ability of a
sow, which can affect the piglets’ weight gain and mortality. It has been shown that teat
number is a quantitative trait with a medium level of heritability (0.32) [1]. Using genetic
markers can speed up the genetic improvement of teat number. Thus far, 655 teat num-
ber quantitative trait loci (QTLs) in pigs have been reported and included in the PigQTL
database [2]. Previous genome-wide association studies (GWAS) found microsatellite mark-
ers or single nucleotide polymorphisms (SNPs) in popular breeds, including Durocs [1,3],
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Large Whites [4], and their crosses with Meishan pigs [5,6]. GWAS were also performed
for teat number-related traits in several Chinese native pig breeds, including Erhualian [7],
Sushan [8] and Beijing black [9]. However, the genetic architecture for teat number in
Qingping pig, a Chinese native pig breed, is still not clear.

In 2000, Wada et al. revealed two QTLs for teat number on SSC1 and SSC7 by QTL
analysis of 265 F2 offspring of the Meishan and Göttingen miniature pig [10]. Since then,
an increasing number of studies have used microsatellite markers to confirm the QTL on
SSC7 in other pig populations, including Meishan × Duroc F2 resource population [5],
F2 populations of Yorkshire boars and Meishan sows [11], and Meishan × Large White
F2 pigs [12]. Additionally, a number of studies detected associated SNPs for teat number
near or within this QTL on SSC7 in Duroc pig [1,3,13,14], White Duroc × Erhualian F2
resource population [15], a commercial swine population [16], and Large White pig [17].
Notably, VRTN (located at 103.4 Mb on SSC7 on Sscrofa10.2) was a credible candidate
gene in this major QTL for teat number on SSC7. These studies also indicated that QTLs
for teat number-related traits are distributed across the genome on every chromosome.
Several other genes have also been annotated as teat number-associated genes, such as
Lysine Demethylase 6B (KDM6B) [15], TOX High Mobility Group Box Family Member
3 (TOX3) [17], Estrogen Receptor 1 (ESR1) and Nuclear Receptor Subfamily 5 Group A
Member 1 (NR5A1) [8]. However, most previous studies have not used the high-density
single-nucleotide polymorphisms (SNPs) detected by high-throughput sequencing data to
investigate teat number-related traits.

The purpose of the current study was to detect genome-wide associations for teat
number-related traits in Qingping pigs using whole-genome SNPs and insertions/deletions
(Indels) based on whole-genome resequencing.

2. Materials and Methods
2.1. Sample and Sequencing

In this study, all 100 pigs were raised indoors in the Qingping pig Conservation
Farm in Yichang, Hubei, China. Ear tissues were collected and stored in liquid nitrogen
until further analysis. Genomic DNA samples were extracted from ear tissues, using a
standard phenol–chloroform method. Sequencing libraries were constructed and sequenced
by the Novogene Bioinformatics Institute (Novogene, Beijing, China). High-throughput
sequencing was performed as paired-end 150 sequencing using a HiSeq 4000 sequencing
system (Illumina, San Diego, CA, USA).

2.2. Phenotypic Data

In this study, three independent persons observed all 100 pigs and counted the teat
number of the left and right lines. A total of six teat number-related traits were obtained:
(i) the number of teats on the left side (LTN); (ii) the number of teats on the right side (RTN);
(iii) the total number of teats (TNUM = LTN + RTN); (iv) the maximum number of teats in
LTN and RTN (MAXAP); (v) the difference between the two sides (L-R = LTN − RTN) and
(vi) the absolute difference between left and right teat number (ADIFF = |LTN − RTN|).
The mean, standard deviation, minimum value, maximum value, and coefficient of variance
for each trait were calculated using R (version 3.6.0) (R Core Team, Vienna, Austria).

2.3. Genotyping and Quality Control

Clean reads from all 100 pigs were aligned to the Sscrofa11.1 reference genome by the
BWA software (version: 0.7.8) (Wellcome Trust Sanger Institute, Hinxton, UK) [18]. To
reduce mismatches generated by PCR amplification before sequencing, duplicated reads
were removed using SAMtools (Wellcome Trust Sanger Institute, Hinxton, UK) [19]. SNPs
and Indels calling were initially performed to generate a gvcf file using UnifiedGenotyper
in GATK (version 3.6) (Broad Institute, Cambridge, MA, USA) [20]. SNPs and Indels were
divided using SelectVariants in GATK. Hard filtering of SNPs was applied to the raw
variant set using “QUAL < 30.0 || QD < 2.0 || FS > 60.0 || MQ < 40.0 || SOR > 3.0 ||
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ReadPosRankSum < −8.0”. Hard filtering of Indels was applied to the raw variant set using
“QUAL < 30.0 || QD < 2.0 || FS > 200.0 || SOR > 10.0 || ReadPosRankSum < −20.0 ||
MQ < 40.0 || MQRankSum < −12.5”. SNPs and Indels in the VCF files were quality-filtered
using VCFtools (v0.1.16) (Wellcome Trust Sanger Institute, Hinxton, UK) to remove variants
with sequencing depth less than 3 [21]. SNPs and Indels were further filtered using PLINK
2.0 (Complete Genomics, Mountain View, CA, USA) [22]. Missing genotypes were imputed
using beagle.03Jul19.b33.jar [23], followed by filtering SNPs and Indels again using PLINK
2.0 to obtain the high-quality common SNPs and Indels of 100 pigs for further analysis
(individual call rate > 0.90; minor allele frequency > 0.05; call rate > 0.90, SNPs and Indels
in Hardy–Weinberg equilibrium (p > 1 × 10−6) and excluding SNPs and Indels located on
the sex chromosomes).

2.4. SNP-Based Heritability

The phenotypic variance explained by genome-wide SNPs (SNP-based heritability)
was estimated using GREML in Genome-wide Complex Trait Analysis (GCTA) [24]. Briefly,
the genetic relationships between pairwise individuals from all the autosomal SNPs were
estimated using the genetic relationship matrix (GRM) based on high-quality common
SNPs, followed by GRM and phenotype for restricted maximum likelihood (REML) analysis
to estimate the variance explained by the SNPs.

2.5. Principal Component Analysis

Principal component analysis (PCA) was used to explore the population structure of
Qingping pigs and determine whether principal components (PCs) should be added to
the GWAS. PCA was performed using MVP.Data.PC in rMVP R (version 3.6.0) (Huazhong
Agricultural University, Wuhan, China) [25] package based on high quality common SNPs.
PC1 and PC2 were visualized using MVP.PCAplot in rMVP R (version 3.6.0) package.

2.6. GWAS Using General Linear Model (GLM)

In the present study, GLM in rMVP R (version 3.6.0) package was used to perform the
GWAS for teat number-related traits based on high-quality common SNPs and Indels [26].
Principal component analysis showed no discernible clustering. Therefore, no principal
component was adjusted in the subsequent association analysis. Each SNP or Indel for teat
number-related traits was tested by GLM as follows:

y = Xb + e

where y is the vector of each teat number-related trait in Qingping pigs; X, a matrix of
test SNP or Indel; b, an incidence vector for X; e, a vector of residuals following a normal
distribution with a mean of zero and Iσ2

e covariance, where I is the identity matrix and σ2
e

is the residual variance.

2.7. GWAS Using FarmCPU

The Fixed Effect Model (FEM) and the Random Effect Model (REM) are used iteratively
in FarmCPU [27], and FarmCPU in rMVP R (version 3.6.0) package was also used to
perform GWAS for ADIFF. In the GLM model, some genetic markers were significantly
associated with ADIFF with a whole-genome significant p-value (2.16 × 10−9 for SNPs and
2.44 × 10−8 for Indels). These markers can be used to define kinship in the REM step of
FarmCPU to avoid the model over-fitting problem in FEM. The FEM is used to test each
genetic marker, one at a time. Pseudo QTNs are included as covariates to control false
positives. Specifically, the FEM could be expressed by the following equation:

yi = Mi1b1 + Mi2b2 + · · ·+ Mitbt + Sijdj + ei

where yi is the phenotype of the ith individual; Mi1, Mi2, . . . , Mit, the genotypes of t.
pseudo QTNs, initiated with no QTN; b1, b2, . . . , bt, the corresponding effects of the pseudo
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QTNs; Sij, the genotype of the ith individual and jth genetic marker; dj, the corresponding
effect of the jth genetic marker; ei, the residual having a distribution with zero mean and
variance of σ2

e .
The REM is used to optimize the selection of pseudo QTNs from markers with whole

genome significant p-values (2.16 × 10−9 for SNPs and 2.44 × 10−8 for Indels) and positions
by using the SUPER algorithm [28]. The REM could be expressed by the following equation:

yi = ui + ei

where yi and ei. are the same as in FEM, and ui indicates the total additive genetic effect of
the ith individual. The expectations of the individuals’ total genetic effects are zeros. The
variance and covariance matrix of the individuals’ total genetic effects can be expressed by
G = 2Kσ2

a , where σ2
a is an unknown genetic variance and K is the kinship matrix calculated

by pseudo QTNs. The FEM and REM are iterated until no new pseudo QTNs are added, or
the specified maximum number of iterations is reached.

2.8. Comparison with Known QTLs and Haplotype Analysis

Pig QTLs based on Sscrofa11.1 were downloaded from the PigQTL database. The
information of QTLs for teat number-related traits was obtained using R (version 3.6.0),
followed by comparing the significant SNPs and Indels with these QTLs using R (version
3.6.0). For the strongest significant SNP (rs322863105) for ADIFF on SSC17, SNPs with
suggestive significant p-values (1/557,540, 1.79 × 10−6) around rs322863105 were used for
haplotype block analysis to evaluate the linkage disequilibrium (LD) patterns of selected
SNPs within this region using Haploview version 4.2 [29]. The effects of this SNP on ADIFF
were plotted using ggplot2 R (version 3.6.0) package.

2.9. Annotation of Candidate Genes and Functional Enrichment Analysis

Candidate genes, including or close to the significant SNPs and Indels, were annotated
using the biomaRt [30] R (version 3.6.0) package based on Sscrofa11.1. Candidate genes
located in 1-Mb regions of significant SNPs and Indels were also annotated. Gene ontology
(GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses
and visualizations were performed using the clusterProfiler R (version 3.6.0) package [31].

3. Results
3.1. Genotyping and Phenotypic Statistics

After whole-genome sequencing, 2.76 TB of sequences were generated, with a mean cov-
erage of 98.47% at an average of 9.66-fold depth for 100 Qingping pigs in this study (Table S1).
Clean data were mapped to the pig reference genome (Sscrofa11.1), with 36,482,281 SNPs and
4,859,001 Indels being called with GATK. After filtering, 23,193,931 SNPs and 2,053,221 Indels,
with a distribution roughly proportional to autosomal chromosomes of pigs, were retained
for subsequent analyses (Figure 1).
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Table 1 shows the descriptive statistics of teat number-related traits of Qingping pigs.
The average teat number [standard deviation (SD)] was seen to be 14.78 (0.97), ranging
from 14 to 17, which was higher than the values of Beijing Black Pig (13.6) [9], Japanese
Duroc (13.73) [3], American (10.90) and Canadian Duroc (10.92) [14], but lower than the
value of Erhualian pigs (19.13) [7]. The meansvalues (SD) for the other teat number-related
traits, were 7.36 (0.48), 7.42 (0.61), 7.50 (0.59), −0.06 (0.51) and 0.22 (0.46) for LTN, RTN,
MAXAP, L-R and ADIFF, with coefficient of variation (CV) values of 6.55, 8.17, 6.56 and
7.93% for LTN, RTN, TNUM and MAXAP, respectively.

In Table 1, it was shown that the values of SNP-based heritability (h2
SNP) for teat

number-related traits were 0.29, 0.19, 0.36, 0.38, 0.00 and 0.24 for LTN, RTN, TNUM,
MAXAP, L-R and ADIFF in Qingping pigs, respectively. Unfortunately, the standard errors
(SE) were large, which reflects the low accuracy of the heritability estimates. Therefore, we
compared the results of the teat number-related heritability estimates in Qingping pigs
with those of other pig breeds. In Qingping pigs, the narrow-sense heritability for TNUM
(0.36) (only considering the contribution of additive genetic effects) was consistent with
the values of purebred Korean Yorkshire pigs (0.37) [4] and Duroc pigs (0.34 ± 0.05) [3]. In
previous studies, the h2

SNP values of LTN, RTN, MAXAP and L-R were 0.16, 0.26, 0.261 and
0.00, which were consistent with our results [17]. Unexpectedly, ADIFF had a medium h2

SNP
value (0.24), which was virtually null in previous studies [16,17]. These results suggest that
estimates of the heritability of teat number-related traits in Qingping pigs were reliable,
but caution is required due to the large standard errors.

Table 1. Summary of phenotypic data in terms of mean, standard deviation, minimum, maximum,
coefficient of variance, and SNP-based heritability and standard error (SE) for each trait.

Trait N Mean SD Min Max C.V. h2
SNP SE

LTN 100 7.36 0.48 7.00 8.00 6.55 0.29 0.21
RTN 100 7.42 0.61 6.00 9.00 8.17 0.19 0.21

TNUM 100 14.78 0.97 14.00 17.00 6.56 0.36 0.23
MAXAP 100 7.50 0.59 7.00 9.00 7.93 0.38 0.22

L-R 100 −0.06 0.51 −2.00 2.00 NA 0.00 0.20
ADIFF 100 0.22 0.46 0.00 2.00 NA 0.24 0.20

LTN: the number of teats on the left side; RTN: the number of teats on the right side; TNUM: the total number
of teats (TNUM = LTN + RTN); MAXAP: the maximum number of teats in LTN and RTN (MAXAP); L-R: the
difference between the two sides (L-R = LTN − RTN); ADIFF: the absolute difference between left and right teat
number (ADIFF = |LTN − RTN|).

3.2. GLM GWAS for Teat Number-Related Traits

PCA results indicated that Qingping pigs could not be clustered into groups (Figure S1),
so GWAS was performed using GLM with no principal component. The Bonferroni correc-
tion assumes that each of the tests is independent, an is thereby inherently conservative
when considering SNPs in LD. We calculated the effectively independent tests based on the
estimated number of independent markers [32]. A total of 557,540 SNP and 28,629 Indel
independent tests were suggested, with the threshold p-value of 8.97 × 10−8 (0.05/557,540)
for SNPs and 1.75 × 10−6 (0.05/28,629) for Indels.

Figures 2 and 3 show the Manhattan plots for LTN, RTN, TNUM, MAXAP, L-R and
ADIFF, and Figure S2 presents the Q-Q plots for these traits. A total of 28 significant SNPs
and 45 significant Indels were detected as peak associated variants for LTN, RTN, TNUM,
MAXAP, L-R and ADIFF (Table 2). Among the 28 SNPs identified, 10 SNPs were located
within 11 genes and the others (18 SNPs) were located at 3798 to 46,070,668 bp from the
nearest genes (Table 2). Among the 45 Indels identified, 21 Indels were located within
22 genes and the others (24 Indels) were located 2660 to 137,303 bp from the nearest genes
(Table 2).
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LTN, RTN, TNUM, MAXAP, L-R and ADIFF based on SNPs. LTN: the number of teats on the left side;
RTN: the number of teats on the right side; TNUM: the total number of teats (TNUM = LTN + RTN);
MAXAP: the maximum number of teats in LTN and RTN (MAXAP); L-R: the difference between the
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(ADIFF = |LTN − RTN|).
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Figure 3. Manhattan plots of GLM GWAS for teat number-related traits in Qingping pigs, including
LTN, RTN, TNUM, MAXAP, L-R and ADIFF based on Indels. LTN: the number of teats on the left side;
RTN: the number of teats on the right side; TNUM: the total number of teats (TNUM = LTN + RTN);
MAXAP: the maximum number of teats in LTN and RTN (MAXAP); L-R: the difference between the
two sides (L-R = LTN − RTN); ADIFF: the absolute difference between left and right teat number
(ADIFF = |LTN − RTN|).
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Table 2. Significant SNPs and Indels of GLM GWAS for teat number-related traits.

SNP Trait SSC Position Effect p-Value QTLs * Annotation Gene (Distance from the Gene in bp)

chr9:130956708 LTN 9 130956708 0.64 3.85 × 10−8 intronic PACC1(within), NENF(within)
rs345573243 RTN 18 47399908 0.62 1.60 × 10−8 24,290, 7470 intronic OSBPL3(within)
rs703282466 MAXAP 3 106788730 0.45 2.29 × 10−8 5224, 8797, 8798, 4250, 4256 intergenic LTBP1(63796), ENSSSCG00000050704(9889)

chr15:137183045 TNUM 15 137183045 −0.79 7.02 × 10−8 223,293 intronic MLPH(within)
rs345573243 TNUM 18 47399908 0.96 6.25 × 10−8 24,290, 7470 intronic OSBPL3(within)

rs1108940033 ADIFF 1 45796983 0.61 2.19 × 10−8 intergenic PHF3(500583),ENSSSCG00000049526(273685)
rs321204530 ADIFF 1 177056841 0.59 1.44 × 10−8 5223, 5255, 822, 845, 1250 intronic MDGA2(within)
rs318957512 ADIFF 2 97849348 0.50 5.79 × 10−8 intronic ADGRV1(within)
rs326371568 ADIFF 2 123586226 0.62 3.87 × 10−10 4255 intergenic FAM170A(119517),PRR16(613282)
rs342451777 ADIFF 2 127224122 0.57 8.31 × 10−9 4255 intergenic ENSSSCG00000042143(13463),ENSSSCG00000040936(55836)
rs325963999 ADIFF 3 19301837 0.66 9.15 × 10−9 5224, 7455, 7472 intronic KATNIP(within)
rs326276043 ADIFF 6 34051848 0.55 6.98 × 10−8 24,289 intergenic ENSSSCG00000050973(273191),CYLD(8093)
rs338649298 ADIFF 8 129552162 0.59 2.22 × 10−9 intergenic SNCA(163855),ENSSSCG00000043431(95940)
rs321470648 ADIFF 9 10769337 0.45 5.38 × 10−8 intergenic ENSSSCG00000046278(36887),ENSSSCG00000045225(26362)

rs1109963100 ADIFF 10 2911179 0.80 3.37 × 10−10 intergenic ENSSSCG00000042899(210778),BRINP3(52348)
rs339887165 ADIFF 13 12135388 0.68 1.46 × 10−8 7479 intergenic ENSSSCG00000044771(16544),ENSSSCG00000051554(31818)

chr13:39266305 ADIFF 13 39266305 0.72 1.88 × 10−8 7479 intronic DNAH12(within)
rs701874475 ADIFF 13 134665423 −0.51 2.19 × 10−8 7479 intergenic LMLN(8675),ENSSSCG00000050583(21280)
rs338558804 ADIFF 13 179683904 −0.45 3.49 × 10−8 intergenic ENSSSCG00000038062(120975),NRIP1(140958)
rs343864506 ADIFF 13 187708682 −0.54 3.72 × 10−8 intergenic ENSSSCG00000047308(444803),ENSSSCG00000050420(500018)
rs334271954 ADIFF 14 62959726 0.52 5.70 × 10−8 intergenic FAM13C(33877),SLC16A9(66937)

rs1109225784 ADIFF 15 12581324 0.64 1.96 × 10−9 intergenic U6(133156),U6(186459)
rs326978910 ADIFF 15 84015934 0.38 3.38 × 10−8 7468 intronic OSBPL6(within)
rs334746473 ADIFF 15 97200323 0.75 4.23 × 10−10 7468 intergenic ENSSSCG00000046205(186079),U2(688281)
rs322863105 ADIFF 17 7610979 −0.88 6.01 × 10−11 intergenic ENSSSCG00000045345(132678),ENSSSCG00000047202(438984)

chr17:8221026 ADIFF 17 8221026 0.79 1.47 × 10−9 intergenic U6(19092),FAT1(227734)
rs330045817 ADIFF 17 8536301 −0.71 3.76 × 10−10 ncRNA_intronic FAT1(within)
rs324534432 ADIFF 17 13364668 0.79 1.47 × 10−9 intergenic PSD3(100469),ENSSSCG00000046441(3798)

Indel

chr6:7472906 LTN 6 7472906 −0.41 1.06 × 10−6 24,289 intronic CDYL2(within)
rs695882779 LTN 9 3690507 0.39 9.84 × 10−7 ncRNA_intronic ENSSSCG00000049604(within)

chr9:119650540 LTN 9 119650540 −0.30 3.62 × 10−7 intergenic ENSSSCG00000044083(337170),ENSSSCG00000050832(4698)
rs792699200 LTN 9 130899869 0.51 4.41 × 10−7 intronic PACC1(within)

chr12:44292044 LTN 12 44292044 −0.37 9.55 × 10−7 5227, 5261, 6472, 6479, 595,
2929 intronic NOS2(within)

chr13:194617904 LTN 13 194617904 −0.31 1.30 × 10−6 intergenic KRTAP11-1(111382),ENSSSCG00000047315(5813)
rs709659410 RTN 5 17969771 0.42 5.28 × 10−7 2927 intergenic KRT73(2682),KRT2(14544)
chr6:9186279 RTN 6 9186279 0.89 2.28 × 10−7 24,289 intronic WWOX(within)
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Table 2. Cont.

SNP Trait SSC Position Effect p-Value QTLs * Annotation Gene (Distance from the Gene in bp)

rs790747253 RTN 15 100810568 −0.61 1.28 × 10−6 7468 intronic PGAP1(within)
chr18:48316684 RTN 18 48316684 0.41 7.00 × 10−8 24,290, 7470 intronic STK31(within)
chr3:98429885 MAXAP 3 98429885 0.50 2.93 × 10−7 5224, 8797, 8798 intergenic ENSSSCG00000045166(59604),ENSSSCG00000046007(449247)
rs793312568 MAXAP 3 106792080 0.43 8.28 × 10−8 5224, 8797, 8798, 4250, 4256 intergenic LTBP1(67153),ENSSSCG00000050704(6530)
chr6:9186279 MAXAP 6 9186279 0.82 1.59 × 10−6 24,289 intronic WWOX(within)
chr6:30642639 MAXAP 6 30642639 0.43 1.31 × 10−6 24,289 intergenic ENSSSCG00000047270(70049),ENSSSCG00000041426(189382)

chr9:131996847 MAXAP 9 131996847 −0.49 1.46 × 10−6 intronic ENSSSCG00000040650(within)
chr14:12750600 MAXAP 14 12750600 0.43 1.31 × 10−6 intronic HMBOX1(within)

rs790747253 MAXAP 15 100810568 −0.60 1.17 × 10−6 7468 intronic PGAP1(within)
rs711984029 MAXAP 17 13041965 −0.47 1.68 × 10−6 intronic PSD3(within)
rs793312568 TNUM 3 106792080 0.63 1.41 × 10−6 5224, 8797, 8798, 4250, 4256 intergenic LTBP1(67153),ENSSSCG00000050704(6530)

chr5:75592729 TNUM 5 75592729 0.98 8.38 × 10−7 intronic NELL2(within)
rs792699200 TNUM 9 130899869 1.00 9.67 × 10−7 intronic PACC1(within)

chr18:48316684 TNUM 18 48316684 0.62 4.01 × 10−7 24,290, 7470 intronic STK31(within)
chr1:44096236 LR 1 44096236 0.69 1.25 × 10−7 intergenic ENSSSCG00000042072(159101),ENSSSCG00000045405(51729)
chr1:44973455 ADIFF 1 44973455 0.70 1.96 × 10−7 intronic ZUP1(within),RSPH4A(within)
chr1:46840905 ADIFF 1 46840905 0.71 5.46 × 10−8 intergenic ENSSSCG00000050391(123491),U6(392319)
chr1:65957275 ADIFF 1 65957275 0.43 1.14 × 10−7 intergenic FBXL4(21578),FAXC(274880)
chr1:77875820 ADIFF 1 77875820 0.42 8.57 × 10−8 intergenic FYN(65243),U6(107381)

chr1:118273285 ADIFF 1 118273285 −0.64 1.96 × 10−9 5223, 6481, 5255 intergenic ENSSSCG00000049391(9019),ENSSSCG00000045826(5556)
rs1113667849 ADIFF 2 123584099 0.55 8.50 × 10−7 4255 intergenic FAM170A(117391),PRR16(615405)
chr3:54080763 ADIFF 3 54080763 0.44 1.70 × 10−6 5224, 7455, 7472, 6465 intergenic LONRF2(99093),REV1(54761)

chr3:122749868 ADIFF 3 122749868 0.76 1.91 × 10−7 intergenic LRATD1(17941),ENSSSCG00000045589(179131)
chr6:9702570 ADIFF 6 9702570 0.61 3.15 × 10−7 24,289 intronic WWOX(within)
chr6:29725029 ADIFF 6 29725029 −0.41 1.54 × 10−7 24,289 intergenic ENSSSCG00000034192(132519),CES5A(117783)
chr7:48226837 ADIFF 7 48226837 0.67 1.74 × 10−6 5257 intronic RASGRF1(within)
chr8:3878010 ADIFF 8 3878010 −0.48 4.61 × 10−7 7477 intronic ENSSSCG00000027349(within)

chr8:131927486 ADIFF 8 131927486 0.68 1.46 × 10−8 intergenic AFF1(2666),ENSSSCG00000032190(41799)
chr13:134712100 ADIFF 13 134712100 −0.50 2.83 × 10−7 7479 intergenic ENSSSCG00000050583(20384),OSBPL11(6327)
chr13:188309252 ADIFF 13 188309252 0.35 4.51 × 10−7 intergenic ENSSSCG00000050420(95234),ENSSSCG00000043493(500979)
chr13:191714830 ADIFF 13 191714830 0.76 1.91 × 10−7 intergenic ENSSSCG00000051384(248028),ENSSSCG00000048685(53357)
chr15:12585471 ADIFF 15 12585471 0.67 1.74 × 10−6 intergenic U6(137304),U6(182308)
chr15:84277014 ADIFF 15 84277014 0.53 6.57 × 10−9 7468 intergenic ENSSSCG00000036052(46519),ENSSSCG00000038561(122000)

rs792656057 ADIFF 16 69550278 −0.60 8.69 × 10−7 5228 intronic GRIA1(within)
rs793561441 ADIFF 17 5622328 −0.33 9.14 × 10−8 intronic PCM1(within)
rs700363122 ADIFF 17 8173767 0.60 1.13 × 10−8 intergenic ENSSSCG00000047202(116838),U6(28063)
rs789477433 ADIFF 18 25541841 0.43 8.35 × 10−7 24,290 intergenic ENSSSCG00000048651(270433),FAM3C(27695)

* QTL number in PigQTL database. Effect means additive effect. LTN: the number of teats on the left side; RTN: the number of teats on the right side; TNUM: the total number of
teats (TNUM = LTN + RTN); MAXAP: the maximum number of teats in LTN and RTN (MAXAP); L-R: the difference between the two sides (L-R = LTN − RTN); ADIFF: the absolute
difference between left and right teat number (ADIFF = |LTN − RTN|).
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Compared with known QTLs for teat number-related traits in the PigQTL database,
14 significant SNPs and 24 significant Indels overlapped with known QTLs (Table 2). Inter-
estingly, Manhattan plots showed similar trends between SNPs and Indels. In Table 2, there
were several significant SNPs and Indels were located at the same teat number-related
traits QTLs in the PigQTL database. For RTN, significant SNP (rs345573243) and Indel
(chr18:48316684) on SSC18 were located at QTL 7470 and QTL 24290, and coincidentally,
rs345573243 and chr18:48316684 also showed significant associations with TNUM. For
MAXAP, significant SNP (rs703282466) and Indel (rs793312568) on SSC3 were located
at QTL 4250 and 4256, and coincidentally, rs793312568 also exhibited a significant as-
sociation with TNUM. For ADIFF, significant SNPs (rs326371568 and rs342451777) and
Indel (rs1113667849) on SSC2 were located at QTL 4255; significant SNP (rs701874475)
and Indel (chr13:134712100) on SSC13 at QTL 7479; significant SNP (rs326978910) and
Indel (chr15:84277014) on SSC15 at QTL 7468. Additionally, five new significant SNPs
were closed to significant Indels, including rs1108940033 was closed to chr1:44973455 and
chr1:46840905 on SSC1, rs338649298 was closed to chr8:131927486 on SSC8, rs343864506
was closed to chr13:188309252 on SSC13, rs1109225784 was closed to chr15:12585471 on
SSC15, chr17:8221026 was closed to rs700363122 on SSC17.

3.3. FarmCPU GWAS for ADIFF

The GLM GWAS results of ADIFF showed significant associations even using whole
genome SNPs or Indels to decide the thresholds (SNP: 0.05/2,319,3931; Indels: 0.05/2,053,221).
However, Q-Q plots and genomic inflation factors (λSNP = 1.37, λIndel = 1.36) indicated
possible false positives (Figure S2). FarmCPU, a powerful and efficient GWAS model, was
used to control false positives and retain true positives. Q-Q plots and genomic inflation
factors (λSNP = 0.98, λIndel = 0.86) were improved by FarmCPU (Figure S3). In Figure 4a and
Table 3, 9 SNPs and 9 Indels were shown to be significantly associated variants for ADIFF
on SSC1, 2, 3, 6, 8, 10, 11, 12, 13, 14, 15 and 17, with six SNPs and five Indels included in
known QTLs (Table 3).

Three of the 9 significant SNPs were located within four genes and six SNPs were
located 15,848 to 133,156 bp from the nearest genes (Table 3). Three of the 9 significant
Indels were located within three genes and six Indels were located 3267 to 99,873 bp from
the nearest genes (Table 3). Compared with the GLM GWAS results for ADIFF, 4 SNPs
(rs325963999, rs1109963100, rs1109225784, rs322863105) and four Indels (chr1:77875820,
chr1:118273285, chr15:84277014, rs700363122) were duplicated in the FarmCPU GWAS
results, suggesting the reliability of the results (Table 3).

The strongest significant SNP in GLM for ADIFF on SSC17 (rs322863105,
p-value = 6.01 × 10−11) also showed significant association with ADIFF in FarmCPU

(p-value = 3.34 × 10−13). The effect of rs322863105 on the ADIFF was estimated by geno-
typing Qingping pigs for this SNP. Individuals with the TT genotype had a lower ADIFF,
suggesting LTN and RTN were more symmetrical (Figure 4b). Linkage analysis of the
suggestive significant SNPs around this SNP identified one haplotype block of 8 kb between
rs338532551 and rs322792299, including rs322863105 (Figure 4c). Three annotated genes
were contained in the 1-Mb region around rs322863105, including tripartite motif family like
1 (TRIML1), tripartite motif family like 2 (TRIML2), and ZFP42 zinc finger protein (ZFP42).
Moreover, a peak Indel (rs700363122) close to this SNP showed significant associations
with ADIFF in the results of both GLM (1.13 × 10−8) and FarmCPU (9.10 × 10−16), with
two annotated genes in the 1-Mb region around this Indel, including FAT Atypical Cadherin
1 (FAT1), and Melatonin Receptor 1A (MTNR1A).
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Table 3. Significant SNPs and Indels of FarmCPU GWAS for ADIFF.

SNP SSC Position Effect p-Value QTLs * Annotation Gene (Distance from the Gene in bp)

rs325963999 # 3 19301837 0.27 7.82 × 10−15 5224, 7455, 7472 intronic KATNIP(within)
rs693622708 6 39540583 0.17 8.58 × 10−9 24,289 intergenic UQCRFS1(166710), ENSSSCG00000050718(41760)
rs326134805 8 88543901 0.13 3.81 × 10−15 7477, 1100 intergenic ENSSSCG00000044017(86061),SLC7A11(63983)

rs1109963100 # 10 2911179 0.33 3.74 × 10−13 intergenic ENSSSCG00000042899(210778),BRINP3(52348)
rs1113875395 12 11463144 0.16 7.51 × 10−9 5227, 1128 intergenic ABCA8(15848),ENSSSCG00000045738(20026)
rs343773900 13 110154062 0.24 5.42 × 10−15 7479 intronic PLD1(within)
rs333970515 13 132158230 −0.18 3.99 × 10−13 7479 ncRNA_exonic ENSSSCG00000047632(within)

rs1109225784 # 15 12581324 0.32 1.46 × 10−16 intergenic U6(133156),U6(186459)
rs322863105 # 17 7610979 −0.34 3.34 × 10−13 intergenic ENSSSCG00000045345(132678),ENSSSCG00000047202(438984)

Indel

chr1:77875820 # 1 77875820 0.17 1.02 × 10−7 intergenic FYN(65243),U6(107381)
chr1:118273285 # 1 118273285 −0.35 1.74 × 10−10 5223, 6481, 5255 intergenic ENSSSCG00000049391(9019),ENSSSCG00000045826(5556)

rs788352632 2 62598411 −0.12 3.81 × 10−10 909 ncRNA_intronic ENSSSCG00000048292(within)
chr11:6896071 11 6896071 −0.13 1.22 × 10−8 5260 ncRNA_intronic ENSSSCG00000036846(within)
rs787621311 13 110898097 0.23 2.27 × 10−7 7479 intronic FNDC3B(within)
rs701717756 14 38222283 0.26 9.42 × 10−10 intergenic RBM19(17536),ENSSSCG00000042669(3247)

chr14:91416556 14 91416556 −0.30 1.34 × 10−9 intergenic ENSSSCG00000047278(204580),CXCL12(99865)
chr15:84277014 # 15 84277014 0.22 2.92 × 10−9 7468 intergenic ENSSSCG00000036052(46519),ENSSSCG00000038561(122000)

rs700363122 # 17 8173767 0.40 9.10 × 10−16 intergenic ENSSSCG00000047202(116838),U6(28063)

* QTL number in in PigQTL database. # Duplicate signals between GLM and FarmCPU. Effect means additive effect. ADIFF: the absolute difference between left and right teat number
(ADIFF = |LTN − RTN|).
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Figure 4. FarmCPU GWAS for ADIFF. (a) Manhattan plots of the GWAS based on SNPs and Indels.
(b) Difference analysis of the strongest significant SNP (rs322863105) on SSC17 in GLM, which was
retested in FarmCPU. (c) Haplotype block analysis of selected suggestive significant SNPs associated
with ADIFF on SSC17 in GLM, including rs322863105. ADIFF: the absolute difference between left
and right teat number (ADIFF = |LTN − RTN|).

3.4. Functional Enrichment of Candidate Genes

Annotated genes within 1-Mb regions of significant SNPs and Indels were defined as
candidate genes. A total of 397 annotated genes were found in these regions (Table S2).
In Figure 5a, GO enrichment analysis showed the enrichment of these candidate genes in
epidermis development (p = 2.31 × 10−7), epidermal cell differentiation (p = 4.61 × 10−9),
and skin development (p = 1.12 × 10−7). In Figure 5b KEGG pathway analysis revealed the
enrichment of candidate genes in the pathways, such as the Sphingolipid signaling pathway
(p = 1.27 × 10−3), ECM-receptor interaction (p = 4.79 × 10−3), and Glycine, serine and
threonine metabolism (p = 5.43 × 10−3). Furthermore, we also paid attention to the Wnt sig-
naling pathway (Figure 5c), due to its important role in initiating mammary morphogenesis
and all subsequent stages of mammary formation as previously reported [33].
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4. Discussion

During the first month after birth, piglets only have sow milk as a source of nutrients,
which contributes to the regulation of their basal metabolism and temperature. Therefore,
the sow’s ability to produce milk can influence the health and growth of piglets, probably
with a long-term effect post-weaning. The sows’ lactation performance can be improved by
enhancing the growth of the mammary gland and sows with a low prolactin/progesterone
ratio before farrowing were reported to have a higher colostrum yield [34]. Addition-
ally, milk production could be increased by adding L-arginine to the diets of lactating
primiparous sows [35]. Moreover, for primiparous sows, teat suckling only for the first
2 days postpartum ensures the optimal mammary development and milk yield in the next
lactation [36]. Furthermore, the lactating ability of sows can also be improved by increasing
the teat number. As shown in the present study, teat number is heritable, with a genetic
correlation to numerous microsatellite sites and SNPs (especially a QTL on SSC7).

The h2
SNP of most teat number-related traits in Qingping pigs was moderate, except for

L-R, suggesting it is feasible to improve teat number in pigs through genetic selection. SNPs
and Indels associated with teat number-related traits might play an essential role in teat
number improvement. Several candidate genes were reported to be related to mammary
gland development and breast cancer. CDYL2, including an Indel significantly associated
with LTN on SSC6, positively regulates breast cancer cell migration, invasion and epithelial-



Animals 2022, 12, 1057 14 of 17

to-mesenchymal transition through p65/NF-κB and STAT3 [37]. FAM3C, which is in the
1-Mb region of an Indel on SSC18 and associated with ADIFF, encodes Interleukin-Like
Epithelial-Mesenchymal Transition Inducer for the proliferation and migration of breast
cancer cells [38]. WWOX, including an Indel (chr6:9186279) significantly associated with
RTN, is known to play a role in breast cancer [39]. TRIML2 and MTNR1A were close to
SNP (rs330045817) and Indel (rs700363122), respectively, on SSC17. As mentioned above,
these two different types of variants were close to each other and significantly associated
with ADIFF in both GLM and FarmCPU models. TRIML2 was significantly associated with
prognosis, with a higher expression in triple-negative breast cancer cell lines than in normal
mammary cell lines [40]. Common variants in MTNR1A may contribute to breast cancer
susceptibility [41]. TBX5, encoding T-Box Transcription Factor 5, was close to the significant
Indel (rs701717756) for ADIFF on SSC14. In a large German family, TBX3 and TBX5 dupli-
cation was reported to be associated with Ulnar-Mammary syndrome [42]. Importantly,
TBX3 was the placode marker required for the formation of mammary placodes and the
development of fetal mammary glands in all mammals [43]. Although not located in the
1-Mb region of rs701717756, TBX3 was close to this Indel with a distance of 625,516 bp.

Unlike earlier studies, the present study failed to detect significant association signals
in genome regions around VRTN on SSC7, which was reported as a credible candidate
gene for the teat number and the vertebra number [17,44]. Zhuang et al. suggested that the
genetic heterogeneity of variants in VRTN may exist in different populations and VRTN
may not be a strong or the only causal gene for teat number based on their finding that
VRTN mutation was significantly associated with the teat number in Canadian Duroc pigs,
but not in American Duroc pigs [14]. Moreover, VRTN mutation on SSC7 was also not
significantly associated with the teat number in Chinese pig breeds, including Beijing Black
pig and Sushan pig [8,9], but significantly associated with the vertebra number in Beijing
Black pig. Furthermore, VRTN was reported to modulate somite segmentation [44]. These
reports suggested that VRTN plays a more important role in vertebra number and varies in
its role in teat number among populations with different genetic backgrounds. Therefore,
the teat number in Qingping pigs is speculated to involve other genes or pathways.

The GO enrichment results showed significant enrichment in skin development, epi-
dermis development, and epidermal cell differentiation. The mammary gland is an epithe-
lial organ, and epithelial–stromal crosstalk is a key aspect of mammary morphogenesis [45].
In KEGG enrichment analysis, the Wnt signaling pathway did not reach a significance level
of 0.05 (0.078). Interestingly, candidate genes, including WNT11, WNT16 and FZD3, were
located at key positions in this pathway (Figure 5c). WNT16 and FZD3 were also involved
in GO terms, skin development and epidermis development. The Wnt signaling cascade is
implicated in almost all stages of mammary development and is pivotal for the specification
and morphogenesis of the mammary gland [46]. WNT11 was expressed in stromal cells and
basal cells in the adult mammary gland [46]. Chu et al. reported that WNT11 and FZD3
were expressed in mammary buds at E12.5 and E15.5 [47]. Importantly, Wnt signaling
interacted with TBX3 in mammary placode development [47]. These reports suggested
that candidate genes might affect teat number during mammary gland morphogenesis.
Unlike other breeds, the teat number of Qingping pigs showed a medium heritability (0.24)
for ADIFF, implying the potential involvement of candidate genes in mammary gland
morphogenesis. Therefore, our candidate genes related to mammary gland morphogenesis
and development can be assumed to contribute to teat number improvement and even may
influence milk production.

5. Conclusions

In this study, GLM and FarmCUP GWAS were carried out to detect associated SNPs
and Indels for 6 teat number-related traits. We found a total of 33 SNPs and 50 Indels for teat
number. The most significant SNP and Indel were located on SSC17. Six candidate genes
were enriched in the Wnt signaling pathway with an important role in mammary gland
morphogenesis and development. A novel candidate gene on SSC14, TBX3, was detected
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as a mammary placode marker. These findings contribute to our understanding of the
genetic architecture of teat number and provide genetic markers for genetic improvement
of teat number in Qingping pigs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12091057/s1. Figure S1: Principal component analysis of
Qingping pigs; Figure S2: The Q-Q plots of the GLM GWAS for teat number-related traits in Qingping
pigs, including LTN, RTN, TNUM, MAXAP, L-R and ADIFF. (a–f) The Q-Q plots of GLM GWAS
based on SNPs. (g–l) The Q-Q plots of GLM GWAS based on Indels; Figure S3: The Q-Q plots of
the FarmCPU GWAS for ADIFF in Qingping pigs. (a) The Q-Q plot of FarmCPU GWAS based on
SNPs. (b) The Q-Q plot of FarmCPU GWAS based on Indels; Table S1: Sequencing reads, alignment
statistics, and mean coverage for each sample in this study; Table S2: Annotated genes within 1-Mb
regions of significant SNPs and Indels.
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