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A B S T R A C T

A Galois field GFðpnÞ with p � 2 a prime number and n � 1 is a mathematical structure widely used in Cryp-
tography and Error Correcting Codes Theory. In this paper, we propose a novel DNA-based model for arithmetic
over GFðpnÞ. Our model has three main advantages over other previously described models. First, it has a flexible
implementation in the laboratory that allows the realization arithmetic calculations in parallel for p � 2, while
the tile assembly and the sticker models are limited to p ¼ 2. Second, the proposed model is less prone to error,
because it is grounded on conventional Polymerase Chain Reaction (PCR) amplification and gel electrophoresis
techniques. Hence, the problems associated to models such as tile-assembly and stickers, that arise when using
more complex molecular techniques, such as hybridization and denaturation, are avoided. Third, it is simple to
implement and requires 50 ng/μL per DNA double fragment used to develop the calculations, since the only
feature of interest is the size of the DNA double strand fragments. The efficiency of our model has execution times
of order Oð1Þ and OðnÞ, for the addition and multiplication over GFðpnÞ, respectively. Furthermore, this paper
provides one of the few experimental evidences of arithmetic calculations for molecular computing and validates
the technical applicability of the proposed model to perform arithmetic operations over GFðpnÞ.
1. Introduction

The fast-paced technological development keeps pushing computer
science to new boundaries. The field of DNA computing was born to
address hard computational problems. The strategy of most algorithms
developed within this novel area of study, is brute force, relying on the
huge capacity for parallel processing of DNA computing. The interest in
designing a molecular computer is not limited to difficult search prob-
lems. If a computer should be able to carry out addition and multipli-
cation, a wider range of problems could be addressed. However, most of
the work done in the field of DNA computing is theoretical. Researchers
laxly count on the supposed feasibility of the biomolecular techniques
proposed in the works of Adleman (Adleman, 1994, 1996; Roweis at al.,
1998), Lipton (Lipton, 1995, Winfree (Winfree et al., 1998); LaBean et
al., 1999; Rothemund et al., 2004) and Rothemund (Rothemund, 2006).
Most algorithms that have appeared in the literature are based on a
reduced number of DNA computing models and introduced with no
experimental work to back up their actual implementation.

We propose a new DNA based model specifically designed to do
arithmetic over Galois fields, which was successfully implemented in the
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laboratory. Galois fields, GFðpnÞ, are mathematical structures widely
used in Cryptography and in Error Correcting Codes Theory. In Cryp-
tography, the key exchange scheme of Diffie-Hellman is implemented on
elliptic and hyperelliptic curves defined on Galois fields (Menezes et al.,
1996; Koblitz, 1998; Cohen et al., 2006). On the other hand, in Error
Correcting Codes Theory, algebraic geometric codes use algebraic curves,
such as Hermitian curves, defined on Galois fields (Sklar, 2001; Gua-
jardo, 2004; Carrasco and Johnston, 2008). Our model has two main
properties. First, the molecular techniques employed, Polymerase Chain
Reaction (PCR) and electrophoresis, are standard techniques, widely
used, easily implemented and not expensive, with only a few designed
components needed to carry out the experiments. Secondly, our model
allows calculations over GFðpnÞ, for p prime number, p � 2, and an
integer n > 0. In contrast, all works on DNA molecular computation over
finite fields found in the literature, are restricted to GFð2Þ and GFð2nÞ.

This paper is organized as follows. Section 2 introduces the DNA
computing model. Section 3 presents mathematical basic concepts about
Galois fields. Section 4 presents the proposed DNA-based model for
arithmetic over Galois fields. Section 5 describes the physical molecular
implementation for the proposed DNA-based model. Section 6
ovember 2019
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Table 1. Definitions for addition and multiplication in GFðpÞ.

(a)

þ 0 1 2 ⋯ p� 1

0 0 1 2 ⋯ p� 1

1 1 2 3 ⋯ 0

2 2 3 4 ⋯ 1

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

p� 1 p� 1 0 1 ⋯ p� 2

(b)

* 0 1 2 ⋯ p� 1

0 0 0 0 ⋯ 0

1 0 1 2 ⋯ p� 1

2 0 2 4 ⋯ p� 2

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

p� 1 0 p� 1 p� 2 ⋯ 1
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summarizes the obtained experimental results for GFð35Þ as case study.
Section 7 presents a simulation of the proposed DNA-based model using
Field Programmable Gate Array (FPGA) technology. Section 8 contains
the discussion of the experimental results, the analysis of the advantages
and the description of a possible DNA-based computer that implements
arithmetic over GFðpnÞ using the proposed model. Section 9 presents
conclusions and future works.

2. DNA computing models

The tendency in computer technology is to produce devices with
greater memory and speed than the previous generation but much
smaller. The idea of building a tiny computer is not new. In the late
1950s, Richard Feynman suggested the possibility of having sub-
microscopic computers in his famous talk “There's Plenty of Room at
the Bottom”. However, only about two decades ago Leonard Adleman
made a breakthrough when he used the tools of molecular biology to
address an NP-complete problem (Adleman, 1994). He succeeded in
solving a case of the Hamiltonian path, by manipulating DNA. This event
marked the birth of the field known as DNA computing (Kari, 1997).

The speed of any computing device, bio-molecular or not, depends on
howmany parallel processes it has and howmany steps, per each process,
it can realize per unit of time. Electronic computers can calculate millions
of instructions per second, a task a biological system cannot emulate.
However, a DNA computer has a huge advantage in parallel processing
and memory (Goldman et al., 2013) and this compensates for the much
slower execution time for one instruction (Lipton, 1995; Guarnieri et al.,
1996). The immense capacity for parallelization of DNA computing
appeared to be the key to outperform electronic computers. The advent of
the new discipline at first augured the end of silicon-based computers,
however, scientists in the field soon acknowledged there were some
obstacles in the way of realizing a competitive DNA-based computer
(Gibbons et al., 1996; Regalado, 2000).

The models developed for DNA computing can be classified in two
types: those which require human intervention during the process of
calculation and those that can be programmed to function autonomously.
Early research, following the works of Adleman (Adleman, 1994) and
Lipton (Lipton, 1995), provided a variety of non-autonomous models,
known as filtering models, for solving complex computational problems.
Filtering models use large DNA combinatorial libraries as search spaces
for algorithms of parallel filtering (Ignatova et al., 2008). Most of these
works were theoretical (Adleman, 1996; Gibbons et al., 1996; Reif, 1995;
Rozenberg and Spaink, 2003), however, a few specific problems were
actually solved in the laboratory: a 3-SAT problem with 3 (Liu et al.,
2000), 6 (Braich et al., 2000) and 20 (Braich et al., 2002) variables, and a
variation of the SAT problem, known as the knight problem (Faulhammer
et al., 1999).

To solve a wider range of problems a computer should be able to carry
out addition and multiplication. However, carrying out binary operations
poses other challenges. Guarnieri and colleagues (Guarnieri et al., 1996)
presented a general algorithm to perform addition of two nonnegative
binary numbers. In the same year, Roweis and colleagues introduced the
sticker model, a complete and universal system (Roweis et al., 1998),
which has been considered to do arithmetic over finite fields (Chang et
al., 2005; Guo and Zhang, 2009; Li et al., 2013a). The sticker system is
also a filtering model, which uses two types of single stranded DNA
molecules, named memory strand and sticker strand. A memory strand
and a number of sticker strands, hybridize to form a partial duplex
(memory complex), which represents a bit string of zeros and ones. The
main issues with this model are the limited length of a memory complex -
it might fragment if it is longer than 15,000 bases – and time consuming
operations, which are prone to error - stickers may bind to the wrong
sites, or unbind when they are not supposed to. In 1998, Erik Winfree
(Winfree, 1998) provided a remarkable new approach in the emerging
field, when he proposed that DNA self-assembly could be used to do
computation in an autonomous manner. Winfree explored algorithmic
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self-assembly, which is the result of the combination of Wang's tiling
theory (Wang, 1961) and DNA nanotechnology, introduced by Seeman
(Seeman, 1982). Winfree showed that DNA computation is
Turing-universal and proposed that DNA self-assembly can be used to
compute functions or assemble shapes (Winfree, 1996; Winfree et al.,
1998; Rothemund et al., 2004). The introduced model by Winfree and
colleagues, known as tile assembly model (TAM), has been considered to
implement arithmetic over a finite field (Barua and Das, 2003; Li et al.,
2013b, 2016; Li, and Xiao, 2014). TAM is based on the self-assembly of
double-crossover DNA molecules (known as tiles) into a rectangular
lattice, a pseudo-crystalline growth that occurs in the presence of an
infinite supply of a finite number of tile types (Rothemund and Winfree,
2000; Jonoska et al., 2011). Tiles glue together or not depending on the
binding domains on their sides. To carry out a computation one must
start with an arrangement of tiles, called seed configuration, and a set of
unattached tiles of different types. The calculation proceeds by anneal-
ing, ligation and melting, which occur in a controlled manner. A final
configuration containing the result is obtained (Brun, 2007). The dis-
advantages of this model are the high error rate, the big number of
components that a single calculation requires, and the fact that the seed
configuration cannot be recycled (Brun, 2008; Brun and Medvidovic,
2007).

Despite of the progress achieved in the field of DNA computing, big
drawbacks such as time consuming operations with a high error rate, the
output following statistical laws, and the amount of DNA molecules
growing exponentially with problem size, are still unresolved in all the
mentioned models (Kari et al., 2012). Recently, Woods and colleagues
have presented a reprogrammable model of self-assembly (Woods et al.,
2019). On the other hand, Currin and colleagues presented a
non-deterministic Turing universal model which offered to overcome the
problems that previous models posed (Currin et al., 2017). However, the
drawbacks associated to the complexities of the experiments are still an
issue.

3. Basic concepts about Galois fields

In this section, basic concepts about Galois fields are presented
(Guajardo, 2004; Hungerford, 2012; Koblitz, 1998; Menezes et al., 1996;
Sklar, 2001).

A Galois field is a finite set GFðpÞ ¼ f0;1; 2;⋯; p�1g with addition,
þ, and multiplication, *, module p , defined in Tables 1(a) and (b),
respectively. Here, p > 1 is a prime number.

Next, we briefly explain the method for constructing an extension
field GFðpnÞ, with n 2 Z and n > 1, using GFðpÞ as the underlying field.

First, an irreducible polynomial QðxÞ of degree n 2 Z ; n > 1 over
GFðpÞ is selected,



cj ← cj þ bi*aj
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QðxÞ¼ xn þ qn�1xn�1 þ…þ q1xþ q0 (1)
end_for

for j ¼ n� 1 to 0 do

aj ← aj�1 � qj*an�1

end_for

end_for

Return C

Table 2. Definitions for addition and multiplication in GFð3Þ.

(a)

þ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

(b)

* 0 1 2
where qi 2 GFðpÞ for i ¼ 0;1;⋯; n� 1. The polynomial QðxÞ is called a
primitive polynomial. Let α a root of QðxÞ, that is QðαÞ ¼ 0 , then

αn ¼ q0n�1α
n�1 þ…þ q01αþ q00 (2)

where q0i is the additive inverse of qi according to Table 1a.
Next, αnþ1 is constructed recursively as,

αnþ1 ¼α *αn ¼α*
�
q0n�1α

n�1 þ…þ q01αþ q00
�

αnþ1 ¼ q0n�1α
n þ…þ q01α

2 þ q00α

and, the element αn is replaced using Eq. (2),

αnþ1 ¼ q0n�1

�
q0n�1α

n�1 þ…þ q01αþ q00
�þ…þ q01α

2 þ q00α

Then,

αnþ1 ¼ an�1αn�1 þ…þ a1αþ a0

where an�1 ¼ q
0
n�1*q

0
n�1, …, a1 ¼ q

0
n�1*q

0
1 þ q

0
0 , and a0 ¼ q

0
n�1* q

0
0.

Thus, the nonzero elements of GFðpnÞ are generated as linear com-
binations of f1; α; α2;⋯; αn�1g in the following manner,

αk ¼ an�1αn�1 þ…þ a1αþ a0 (3)

with k � 0, ai 2 GFðpÞ, i ¼ 0;1;⋯; n� 1. We should note that α0 ¼ 1,
and the null element 0 2 GFðpnÞ does not have a representation as power
of α. Hence, the field GFðpnÞ has pn elements, which are stored in a look-
up table according to the powers of each element.

Next, we explain how addition and multiplication of the elements of
the field GFðpnÞ are carried out.

Let αk; αl 2 GFðpnÞ, where

αk ¼ an�1αn�1 þ…þ a1αþ a0; αl ¼ bn�1αn�1 þ…þ b1αþ b0

Their addition is calculated as follows

αk þ αl ¼ ½an�1 þ bn�1�αn�1 þ…þ ½a1 þ b1�αþ ½a0 þ b0� (4)

where ai þ bi is calculated in GFðpÞ using the Table 1a, for i ¼ 0; 1;⋯;n�
1. There is not carry or borrow, because ai þ bi are independent of each
other.

On the other hand, the multiplication, αk*αl , is calculated using Al-
gorithm 1 (Guajardo, 2004).

In the seventh step of the algorithm, we must set a�1 ¼ 0, when j ¼
0.

In the following sections, we will refer to steps 2 to 9 as the external
cycle and to the two internal for cycles, that is, the first cycle from steps 3
to 5, and the second cycle from 6 to 8, as cycles IF-A and IF-B, respec-
tively. These can be executed in parallel, since these are independent of
each other.

Algorithm 1. Multiplication for αk; αl 2 GFðpnÞ.
Input:

αk ¼ Pn�1

i¼1
aiαi ; αl ¼

Pn�1

i¼1
biαi ; QðαÞ ¼ αn þ Pn�1

i¼1
qiαi

where ai ;bi; qi 2 GFðpÞ.
Output:

C ¼ αk*αl ¼ Pn�1

i¼1
ciαi

where ci 2 GFðpÞ.

C ← 0 0 0 0 0
1.
for i ¼ 0 to n� 1 do

for j ¼ n� 1 to 0 do
1 0 1 2
2.
2 0 2 1
3.
(continued on next column)
3

(continued )
4.
5.
6.
7.
8.
9.
10.
Example 1. For p ¼ 3 the field GFð3Þ ¼ f0; 1; 2g, the addition and
multiplication are defined in Tables 2(a) and (b), respectively.

The extension field GFð35Þ is constructed using the primitive poly-
nomial QðxÞ ¼ x5 þ 2x þ 1. If α a root of QðxÞ, then

QðαÞ¼α5 þ 2αþ 1¼ 0⇔ α5 ¼ αþ 2

Now,we construct the non-null elements of GFð35Þ recursively as follows,

α6 ¼αα5 ¼α½αþ 2� ¼α2 þ 2α¼ 0 � α4 þ 0 � α3 þ 1 � α2 þ 2 � αþ 0 � 1

α7 ¼αα6 ¼α
�
α2 þ 2α

�¼α3 þ 2α2 ¼ 0 � α4 þ 1 � α3 þ 2 � α2 þ 0 � αþ 0 � 1
Equivalently, we can represent the elements of GFð35Þ as arrays of

elements in GFð3Þ.

α6 ¼ð0 0 1 2 0Þ; α7 ¼ð0 1 2 0 0Þ
Next we build a look-up table that contains all the elements of

GFð35Þ. In particular, this field has 35 ¼ 243 elements and Table 3
shows some of its elements.

We use Algorithm 1 to calculate the multiplication α6*α20 ¼ α4 þ
2α3 þ 2αþ 2 ¼ α26 in GFð35Þ, where α6 ¼ α2 þ 2α and
α20 ¼ α4 þ 2α3 þ 2αþ 1. Initially, the array C is initialized with

c4 ¼ 0; c3 ¼ 0; c2 ¼ 0; c1 ¼ 0; c0 ¼ 0

Then, the input values for α6 and α20 are

a4 ¼ 0; a3 ¼ 0; a2 ¼ 1; a1 ¼ 2; a0 ¼ 0

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

The coefficients of the primitive polynomial QðxÞ ¼ x5 þ 2x þ 1 are

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

In Tables 4, 5, 6, 7, and 8, we detail the iterations of Algorithm 1 to
calculate α6*α20.

Finally,



Table 3. Look-up table with some non-null elements of GFð35Þ.

αi α4 α3 α2 α 1

i ¼ 0 0 0 0 0 1

i ¼ 1 0 0 0 1 0

i ¼ 2 0 0 1 0 0

i ¼ 3 0 1 0 0 0

i ¼ 4 1 0 0 0 0

i ¼ 5 0 0 0 1 2

i ¼ 6 0 0 1 2 0

i ¼ 7 0 1 2 0 0

i ¼ 8 1 2 0 0 0

i ¼ 9 2 0 0 1 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i ¼ 20 1 2 0 2 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i ¼ 26 1 2 0 2 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i ¼ 35 1 0 1 2 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 4. Iteration i ¼ 0 for the external cycle.

a4 ¼ 0; a3 ¼ 0; a2 ¼ 1; a1 ¼ 2; a0 ¼ 0

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

c4 ¼ 0; c3 ¼ 0; c2 ¼ 0; c1 ¼ 0; c0 ¼ 0

i ¼ 0

Cycle IF-A j ¼ 4 c4 ← c4 þ b0*a4 ¼ 0þ ð1 *0Þ ¼ 0

j ¼ 3 c3 ← c3 þ b0*a3 ¼ 0þ ð1 *0Þ ¼ 0

j ¼ 2 c2 ← c2 þ b0*a2 ¼ 0þ ð1 *1Þ ¼ 1

j ¼ 1 c1 ← c1 þ b0*a1 ¼ 0þ ð1 *2Þ ¼ 2

j ¼ 0 c0 ← c0 þ b0*a0 ¼ 0þ ð1 *0Þ ¼ 0

Cycle IF-B j ¼ 4 a4 ← a3 � q4*a4 ¼ 0� ð0 *0Þ ¼ 0

j ¼ 3 a3 ← a2 � q3*a4 ¼ 1� ð0 *0Þ ¼ 1

j ¼ 2 a2 ← a1 � q2*a4 ¼ 2� ð0 *0Þ ¼ 2

j ¼ 1 a1 ← a0 � q1*a4 ¼ 0� ð2 *0Þ ¼ 0

j ¼ 0 a0 ← a�1 � q0*a4 ¼ 0� ð1 *0Þ ¼ 0

Table 5. Iteration i ¼ 1 for the external cycle.

a4 ¼ 0; a3 ¼ 1; a2 ¼ 2; a1 ¼ 0; a0 ¼ 0

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

c4 ¼ 0; c3 ¼ 0; c2 ¼ 1; c1 ¼ 2; c0 ¼ 0

i ¼ 1

Cycle IF-A j ¼ 4 c4 ← c4 þ b1*a4 ¼ 0þ ð2 *0Þ ¼ 0

j ¼ 3 c3 ← c3 þ b1*a3 ¼ 0þ ð2 *1Þ ¼ 2

j ¼ 2 c2 ← c2 þ b1*a2 ¼ 1þ ð2 *2Þ ¼ 2

j ¼ 1 c1 ← c1 þ b1*a1 ¼ 2þ ð2 *0Þ ¼ 2

j ¼ 0 c0 ← c0 þ b1*a0 ¼ 0þ ð2 *0Þ ¼ 0

Cycle IF-B j ¼ 4 a4 ← a3 � q4*a4 ¼ 1� ð0 *0Þ ¼ 1

j ¼ 3 a3 ← a2 � q3*a4 ¼ 2� ð0 *0Þ ¼ 2

j ¼ 2 a2 ← a1 � q2*a4 ¼ 0� ð0 *0Þ ¼ 0

j ¼ 1 a1 ← a0 � q1*a4 ¼ 0� ð2 *0Þ ¼ 0

j ¼ 0 a0 ← a�1 � q0*a4 ¼ 0� ð1 *0Þ ¼ 0

Table 6. Iteration i ¼ 2 for the external cycle.

a4 ¼ 1; a3 ¼ 2; a2 ¼ 0; a1 ¼ 0; a0 ¼ 0

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

c4 ¼ 0; c3 ¼ 2; c2 ¼ 2; c1 ¼ 2; c0 ¼ 0

i ¼ 2

Cycle IF-A j ¼ 4 c4 ← c4 þ b2*a4 ¼ 0þ ð0 *1Þ ¼ 0

j ¼ 3 c3 ← c3 þ b2*a3 ¼ 2þ ð0 *2Þ ¼ 2

j ¼ 2 c2 ← c2 þ b2*a2 ¼ 2þ ð0 *0Þ ¼ 2

j ¼ 1 c1 ← c1 þ b2*a1 ¼ 2þ ð0 *0Þ ¼ 2

j ¼ 0 c0 ← c0 þ b2*a0 ¼ 0þ ð0 *0Þ ¼ 0

Cycle IF-B j ¼ 4 a4 ← a3 � q4*a4 ¼ 2� ð0 *1Þ ¼ 2

j ¼ 3 a3 ← a2 � q3*a4 ¼ 0� ð0 *1Þ ¼ 0

j ¼ 2 a2 ← a1 � q2*a4 ¼ 0� ð0 *1Þ ¼ 0

j ¼ 1 a1 ← a0 � q1*a4 ¼ 0� ð2 *1Þ ¼ 1

j ¼ 0 a0 ← a�1 � q0*a4 ¼ 0� ð1 *1Þ ¼ 2

Table 7. Iteration i ¼ 3 for the external cycle.

a4 ¼ 2; a3 ¼ 0; a2 ¼ 0; a1 ¼ 1; a0 ¼ 2

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

c4 ¼ 0; c3 ¼ 2; c2 ¼ 2; c1 ¼ 2; c0 ¼ 0

i ¼ 3

Cycle IF-A j ¼ 4 c4 ← c4 þ b3*a4 ¼ 0þ ð2 *2Þ ¼ 1

j ¼ 3 c3 ← c3 þ b3*a3 ¼ 2þ ð2 *0Þ ¼ 2

j ¼ 2 c2 ← c2 þ b3*a2 ¼ 2þ ð2 *0Þ ¼ 2

j ¼ 1 c1 ← c1 þ b3*a1 ¼ 2þ ð2 *1Þ ¼ 1

j ¼ 0 c0 ← c0 þ b3*a0 ¼ 0þ ð2 *2Þ ¼ 1

Cycle IF-B j ¼ 4 a4 ← a3 � q4*a4 ¼ 0� ð0 *2Þ ¼ 0

j ¼ 3 a3 ← a2 � q3*a4 ¼ 0� ð0 *2Þ ¼ 0

j ¼ 2 a2 ← a1 � q2*a4 ¼ 1� ð0 *2Þ ¼ 1

j ¼ 1 a1 ← a0 � q1*a4 ¼ 2� ð2 *2Þ ¼ 1

j ¼ 0 a0 ← a�1 � q0*a4 ¼ 0� ð1 *2Þ ¼ 1

Table 8. Iteration i ¼ 4 for the external cycle.

a4 ¼ 0; a3 ¼ 0; a2 ¼ 1; a1 ¼ 1; a0 ¼ 1

b4 ¼ 1; b3 ¼ 2; b2 ¼ 0; b1 ¼ 2; b0 ¼ 1

q4 ¼ 0; q3 ¼ 0; q2 ¼ 0; q1 ¼ 2; q0 ¼ 1

c4 ¼ 1; c3 ¼ 2; c2 ¼ 2; c1 ¼ 1; c0 ¼ 1

i ¼ 4

Cycle IF-A j ¼ 4 c4 ← c4 þ b4*a4 ¼ 1þ ð1 *0Þ ¼ 1

j ¼ 3 c3 ← c3 þ b4*a3 ¼ 2þ ð1 *0Þ ¼ 2

j ¼ 2 c2 ← c2 þ b4*a2 ¼ 2þ ð1 *1Þ ¼ 0

j ¼ 1 c1 ← c1 þ b4*a1 ¼ 1þ ð1 *1Þ ¼ 2

j ¼ 0 c0 ← c0 þ b4*a0 ¼ 1þ ð1 *1Þ ¼ 2

Cycle IF-B j ¼ 4 a4 ← a3 � q4*a4 ¼ 0� ð0 *0Þ ¼ 0

j ¼ 3 a3 ← a2 � q3*a4 ¼ 1� ð0 *0Þ ¼ 1

j ¼ 2 a2 ← a1 � q2*a4 ¼ 1� ð0 *0Þ ¼ 1

j ¼ 1 a1 ← a0 � q1*a4 ¼ 1� ð2 *0Þ ¼ 1

j ¼ 0 a0 ← a�1 � q0*a4 ¼ 0� ð1 *0Þ ¼ 0

I. Jir�on et al. Heliyon 5 (2019) e02901
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α6 * α20 ¼ α26 ¼ α4 þ 2α3 þ 2αþ 2 � 12022⇔ c4 ¼ 1; c3 ¼ 2; c2 ¼ 0; c1
¼ 2; c0 ¼ 2
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4. Proposed DNA-based model for arithmetic over GFðpÞ and
GFðpnÞ

We have developed a simple DNA-based model to perform addition
andmultiplication over the fields GFðpÞ and GFðpnÞ, n > 1. It is based on
the differential migration of dsDNA fragments of different sizes in a gel
electrophoresis, which is a standard technique for the separation of
double-stranded DNA (dsDNA) fragments of different sizes that are pre-
viously obtained by PCR. Here the size of a dsDNA fragment corresponds
to the number of base pairs ½bp� that are contained in the fragment.

Each element r 2 GFðpÞ is represented by a dsDNA fragment whose
size is unique to the element r. Therefore, only p dsDNA fragments are
necessary to represent all the elements of GFðpÞ. Table 9 shows this
representation using dsDNA of different sizes, where the smallest size is
S0 and the largest size is Sp�1.

The gel electrophoresis is used to visualize the DNA molecular rep-
resentation of a nonzero element αk 2 GFðpnÞ representing the co-
efficients of the polynomial expression, which is given for Eq. (3). The
dsDNA fragments for each coefficient ai 2 GFðpÞ ; i ¼ 0;1;…; n� 1 are
loaded into different slots of the agarose gel matrix. The slots and their
respective columns are numbered as n� 1; n� 2; ⋯; 2; 1; 0 according
to the order of powers αn�1;…; α2; α; 1 from left to right. Then, an
electric field is applied to make the molecules migrate through the gel
and be separated by sizes. Figure 1 shows the dsDNA fragments repre-
sentation of αk ¼ 2αn�1 þ ðp � 1Þαn�2 þ α2 þ ðp � 1Þαþ ðp � 1Þ. For this
purpose, chains with size S2 were loaded in the slot n� 1, chains with
size Sp�1 were loaded in the slot n� 2, and from slot n� 3 to slot 3,
Table 9. DNA representation for elements r 2 GFðpÞ.

r 2 GFðpÞ 0 1 2 … p� 1

Size of DNA fragment ½bp� S0 S1 S2 … Sp�1

Figure 1. dsDNA fragments representation of αk ¼ 2αn�1 þ ðp�1Þαn�2

Figure 2. DNA-based represent
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chains with size S0 were loaded. Finally, chains with size S1 were loaded
in the slot 2, and chains with size Sp�1 were loaded in the slots 1and 0.
Thus, our model defines a unique DNA-based representation for each
element of GFðpnÞ.
Example 2. For GFð3Þ ¼ f0;1; 2g and the extension field GFð35Þ, the
dsDNA fragments S0; S1and S2 are required to represent the elements of
GFð3Þ. Figure 2 shows the DNA-based representation of α5 ¼ αþ 2 and
α20 ¼ α4 þ 2α3 þ 2αþ 1 2 GFð35Þ. Such representations are obtained at
the end of the gel electrophoresis process.

To calculate addition and multiplication in GFðpnÞ, first it is neces-
sary to establish a key configuration to interpret addition and multipli-
cation in GFðpÞ, according to Tables 1(a) and (b), respectively. In the
configuration key, the band pattern in any column (depicting dsDNA
fragments on a gel matrix) represents the addition or multiplication of
two elements of the field GFðpÞ. This is illustrated in the following
example.

Example 3. The DNA-based implementation of addition in GFð3Þ, re-
quires dsDNA fragments of 3 different sizes. For example, to carry the
addition 1þ 2, dsDNA fragments S1 and S2 are loaded into a slot in the
agarose gel matrix. Then, the electrophoresis is executed, and the resulting
band pattern is interpreted according to the key configuration for addition
over GFð3Þ, shown in Figure 3. In this figure, a pattern as the one shown in
column ðvÞ, will be interpreted as 0, the result of 1þ 2 or 2þ 1. In a
similar way, for Figure 4, to calculate 1�0, the dsDNA fragments S1 and S0
are loaded into the gel matrix and the electrophoresis is run. The resulting
configuration, identical to the one shown in column ðiiÞ of the key
configuration for multiplication, will be read as 0, the result of 1�0 or 0*1.

Using these key configurations, we can carry out addition and multi-
plication of any two elements of GFðpnÞ by gel electrophoresis. Addition is
calculated by adding the coefficients of corresponding powers of each
operand, as explained in formula (4) of Section 3. Each one of these
þ α2 þ ðp�1Þαþ ðp�1Þ performed by agarose gel electrophoresis.

ation for α5; α20 2 GFð35Þ.



Figure 3. Key configuration for addition over GFð3Þ, used to interpret band patterns in gel electrophoresis.

Figure 4. Key configuration for multiplication over GFð3Þ, used to interpret band patterns in gel electrophoresis.
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additions is independent of the others, since there is not carry or borrow.
This is best explained by the following example of addition over GFð35Þ.
Example 4. The addition of α5 ¼ αþ 2 and α20 ¼ α4 þ 2α3 þ 2αþ 1 2
GFð35Þ is calculated as

α5 þ α20 ¼ð0þ 1Þα4 þð0þ 2Þα3 þð0þ 0Þα2 þð1þ 2Þαþð2þ 1Þ1¼ α4

þ 2α3

Next, we use the Table 3, which is the look-up table of GFð35Þ, pre-
viously constructed, to find the representation of α5 þ α20 as a power of a
root α of primitive polynomial QðxÞ ¼ x5 þ 2x þ 1. Then, the linear
combination α4 þ 2α3 or equivalently the array ð1 2 0 0 0Þ corresponds
to α8.

For the implementation of addition by gel electrophoresis, dsDNA
fragments representing corresponding coefficients of α5 and α20, are
loaded into five slots in the agarose matrix. The slots (columns) are
numbered 4; 3; 2; 1; 0 from left to right. The dsDNA fragments S0 and
S1 representing 0 and 1 are loaded in slot 4, S0 and S2 representing 0
and 2 are loaded into slot 3. This procedure is repeated for the rest of the
coefficients. Next, the electrophoresis is run. Figure 5 shows the resulting
band pattern from calculating α5 þ α20. The configurations in columns 4
and 3, match the configurations in columns ðiiÞ and ðiiiÞ of Figure 3,
respectively. Thus the band patterns in these columns are read as 1 and 2.
The columns 4; 3; 2; 1; 0 are independent of each other, because there
is not carry or borrow, therefore they are interpreted separately. The
complete band pattern is interpreted as the array ð1 2 0 0 0Þ, which
corresponds to element α8 2 GFð35Þ, according to the Table 3.

Below, we explain the DNA-based implementation for the multipli-
cation of two elements of GFðpnÞ.
Figure 5. Gel electrophoresis impleme
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Example 5. We use Algorithm 1 to calculate the multiplication α6*
α20 ¼ α4 þ 2α3 þ 2αþ 2 ¼ α26 in GFð35Þ, where α6 ¼ α2 þ 2α and
α20 ¼ α4 þ 2α3 þ 2αþ 1. Initially, the agarose gel matrix is empty. Then,
the array C is initialized according to the step 1 of Algorithm 1, with

c4 ¼ 0⇔ S0; c3 ¼ 0⇔ S0; c2 ¼ 0⇔ S0; c1 ¼ 0⇔ S0; c0 ¼ 0⇔ S0

Next, dsDNA fragments representing corresponding coefficients of
both elements are loaded into five slots of the agarose gel matrix. Then,
the electrophoresis is run according to Algorithm 1, where the input
values and their representation as dsDNA fragments for α6 and α20 are

a4 ¼ 0⇔ S0; a3 ¼ 0⇔ S0; a2 ¼ 1⇔ S1; a1 ¼ 2⇔ S₂; a0 ¼ 0⇔ S0

and

b4 ¼ 1⇔ S1; b3 ¼ 2⇔ S2; b2 ¼ 0⇔ S0; b1 ¼ 2⇔ S₂; b0 ¼ 1⇔ S1;

respectively. The coefficients of the primitive polynomial QðxÞ ¼ x5 þ
2x þ 1 and their representation as dsDNA fragments are

q4 ¼ 0⇔ S0; q3 ¼ 0⇔ S0; q2 ¼ 0⇔ S0; q1 ¼ 2⇔ S2; q0 ¼ 1⇔ S1

Tables 4 and 8 show the iterations of the algorithm for cycles IF-A and
IF-B for i ¼ 0 and i ¼ 4, respectively. Then, the array C⇔ ð1 2 0 2 2Þ is
searched in the rows of Table 3 for GFð35Þ, and it is determined that
α26 ¼ α6*α20.

For Table 4, the theoretical scheme of gel electrophoresis for cycles
IF-A (steps 3 to 5) and IF-B (steps 6 to 8) in Algorithm 1 is shown in
Figure 6. We use three different sizes fS0; S1; S2g for the dsDNA frag-
ments, in order to implement the addition and the multiplication in steps
4 and 7. Furthermore, as explained in Section 3, the cycles IF-A and IF-B
ntation of α5 þ α20 ¼ α8 in GFð35Þ.



Table 10. The three pair of PCR primers used in this study and the expected size
for each PCR product. Fw and Rv are forward and reverse primers, respectively.

Primer Sequence 5
0
→ 3

0
Product length ðbpÞ

1-Fw GACAGACCTGCTCGCTTCTT 639

1-Rv TGGTAAACGCGGGCAACTTA

4-Fw TACTCCATCCGCCAGTCAGA 110

4-Rv GTTGACGTGCTGTGACAACC

5-Fw GTTGTCACAGCACGTCAACC 77

5-Rv AAGTACAAGAGCGCCAACGA

Figure 6. Interpretation of gel electrophoresis: cycles IF-A and IF-B for i ¼ 0 and j ¼ 4; 3;2;1; 0.
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are independent of each other. This allows executing them in parallel,
using gel electrophoresis. Figure 8 in Section 6 shows this condition of
parallelism empirically in the lab.

For internal cycles IF-A and IF-B, the per column configuration in the
lower half of the gel matrix ( b0aj or � qjan�1), is interpreted according to
the key configuration for multiplication shown in Figure 4. The obtained
result of multiplication ( b0aj or � qjan�1) is added to the operand (cj or
aj�1), on the upper half of the gel matrix, which is in the same column.
The addition is calculated according to Table 2a. The first iteration ði¼ 0Þ
is shown in Figure 6. At the last iteration ði¼ 4Þ, the final configuration is
interpreted as the array ð1 2 0 2 2Þ using the look-up table described in
Table 3 for GFð35Þ, concluding that α26 is the result of α6* α20.

Therefore, our DNA-based model has a flexible implementation in the
laboratory, because we only need to change:

� The number p, which defines the amount of dsDNA fragments with
different sizes that are previously obtained by PCR.

� The number n, which defines the amount of slots in the gel matrix to
execute an electrophoresis.

It allows us to calculate additions and multiplications in different
fields GFðpÞ and GFðpnÞ with n > 1. For example, if we want to change
from the field GFð2163Þ to the field GFð580Þ, we would only have to
change from p ¼ 2 to p ¼ 5, and from n ¼ 163 to n ¼ 80. Obviously
for each field we must build the respective tables and DNA-based rep-
resentations for the addition and multiplication.

Finally, we analyze the efficiency of our model to calculate the
addition and the multiplication in a field GFðpnÞ. For this, we assume
that all electrophoresis are executed in a constant time for the addition
and the multiplication. Thus,

� The addition has an execution time of the order Oð1Þ, since the
addition is calculated in only one electrophoresis, as shown in Ex-
amples 3 and 4, Figures 3 and 5.

� The multiplication has an execution time of the order OðnÞ, since the
internal cycles (Cycle IF-A and Cycle IF-B) of the Algorithm 1 are
calculated in parallel, and in only one electrophoresis for each iter-
ation of the external cycle (steps 2 to 9), as shown in Example 5 and
Figure 6.

5. Physical implementation of the proposed DNA-based model

Before performing the agarose gel electrophoresis experiments, a
dsDNA template is required from which to generate the different dsDNA
fragments of known size by the PCR technique. For that purpose, the
bacterial strain Sulfobacillus sp. CBAR-13, whose genomic DNA sequence
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was already known, was grown by microbial culture in the laboratory.
Detailed information about the culture methodology is described below.
Then, the genomic DNA was purified.
5.1. Cells growth and DNA template preparation

Bacterial strain CBAR-13 of Sulfobacillus sp. was grown in a shaking
incubator at 59 	C in Single Strength medium [0.2 g/liter (NH4)2SO4,
0.4 g/liter MgSO4⋅7H2O, and 0.1 g/liter K2HPO4 (initial pH 1.7)] with
50 mM ferrous sulfate (membrane filtered) and 0.02% yeast extract. At
the mid-exponential-growth phase, the bacterial cells were harvested,
and the total genomic DNA was extracted with High Pure PCR Template
Preparation Kit (Roche Product No. 11796828001) following the pro-
tocol prescribed by the manufacturer and then used for Polymerase chain
reaction (PCR). The DNA fragments were obtained by PCR using a set of
DNA primers designed specifically and the genomic DNA of CBAR-13 as a
PCR template. The details are explained below.
5.2. Primers design

Primers were designed using Primer-BLAST software (Ye et al., 2012).
The genomic sequence of S. sp. CBAR-13 (access numbers;
NZ_LGRO01000001 and NZ_LGRO01000002) was used as template for
primers design. Table 10 shows all primers designed, synthesized and
used in this study.
5.3. PCR protocol for generation of dsDNA fragments

PCR amplification was carried out in a 50 μl reaction volume con-
taining 50–100 ng of template DNA, primers (1 μM each Fw and Rv),
dNTPs (10 μM each), MgCl2 (2 mM), 5X Green GoTaq® Flexi Buffer (1X
final concentration) and 1.25 U GoTaq® DNA Polymerase (Promega
catalog M7801).
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The conditions for the PCR reactions were: 98 	C for 3 min, followed
by 30 cycles of denaturation at 95 	C for 30 s, annealing at 60 	C for 45 s,
extension at 72 	C for 30 s, and a final extension at 72 	C for 5 min.
5.4. Agarose gel electrophoresis

The products of the PCR reactions were separated as follows, 4 μl of
each reaction were revealed by agarose gel electrophoresis at 90 V for 1.5
h on 1 or 3% agarose in Tris-acetate-EDTA buffer (40mM Tris, 20mM
acetic acid, and 1mM EDTA) and 3 μl GelRed® 10000X (Biotium catalog
41002). The agarose gels were visualized by a transilluminator and then
documented and confirmed. The same electrophoretic procedure was
applied to perform the arithmetic calculations with the obtained DNA
fragments.

6. Experimental results

The dsDNA fragments of specific size were generated for the experi-
mental development of the proposed model. Figure 7 shows the size and
quality of the generated fragments S0; S1; S2, that represent the elements
of the field GFð3Þ, verified by electrophoresis of the PCR products.

To test the validity of the proposed model, we performed the calcu-
lation described in Section 4 using the fragments generated previously.

Figure 8 shows the true implementation by gel electrophoresis of the
multiplication described in Figure 6 of Section 4, which considers the
iterations i ¼ 0, where j ¼ 4;3; 2; 1;0, for internal cycles IF-A and IF-B
of Algorithm 1.

Once the results of cj and aj for i ¼ 0 (cycle IF-A and IF-B) are
interpreted and obtained, then cj and aj are replaced for calculation of
i ¼ 1, and so on. The calculation of the multiplication of α6 and α20 in
GFð35Þ ends when all iterations ði ¼ 0; 1; 2; 3; 4Þ have been

completed.

7. FPGA simulation of the proposed model

In this section, we present the simulation of our proposedmodel using
Field Programmable Gate Array (FPGA) technology. The simulation
consists in the design and testing of arithmetic circuits optimized for
GFð35Þ, achieving shorter times than it would take sequential computers.
For this we use the FPGA ZYNQ7000 of Xilinx, which is incorporated into
a SoM TE0729-02 of Trenz electronic GmbH.

For the case study of the field GFð35Þ, the operations (base 3) were
designed as a virtual layer on the components of the architecture of FPGA
Figure 7. Practical implementation for Table 8 by DNA gel electrophoresis. Mk
¼ Molecular weight marker.
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ZYNQ7000 (base 2). Thus, virtual minimum logical units of 3 states are
considered to establish a homologation between the virtual layer and the
physical layer. Figure 9 shows the logical mapping using a FPGA for the
addition and multiplication of GFð3Þ, according to Tables 2a and b with
p ¼ 3. These operations are used to develop addition andmultiplication
of elements A;B 2 GFð3Þ, as explained in Sections 3 and 4.

On the other hand, Figure 10 shows the simulation using a FPGA, for
α6*α20, which was described in Example 1. The multiplication α6*α20

is done in 5 iterations. These iterations appear in red color in the row
corresponding to the result (R). It should be noted that in each operation
performed with the coefficients of α6 and α20, the logical mapping
described in Figure 9 is used. Although α6*α20 is performed in one clock,
there is an additional computational cost of converting non-binary co-
efficients in GFð3Þ to their respective binary representation in order to
operate with FPGA.

8. Discussion

This paper is the first that introduces a new DNA model in the area of
molecular computing, designed to perform arithmetic over Galois fields,
based on the differential migration of dsDNA fragments of different sizes.
The proposed model presents several advantages over other models that
have been widely studied and previously published, such as the Tile
Assembling model (TAM) (Winfree et al., 1998) and the Sticker model
(Roweis et al., 1998). All the arithmetic calculations covered by the TAM
have been performed only in a theoretical way (e. g. Brun, 2007; Li et al.,
2013a, 2013b; Li and Xiao, 2014; Li and Xiao, 2016; Li et al., 2016; Li,
2018; Li and Zhang, 2018). Li et al. (Li et al., 2013b) designed a tile
assembly system that, in theory, could compute a square over GFð2nÞ,
based on the condition that all DNA operations are perfect. But it is
widely known that this is not the case but quite the opposite. In the same
way, Jonoska et al. (Jonoska et al., 2011) assumed, in their flexible-TAM
study, that the assembly process happens in ideal conditions. In the more
recent studies (Li et al., 2016; Li, 2018) the authors only reference the
article (Rothemund, 2012) to justify the technical feasibility of their
methodology for DNA computation of modular-multiplication and
modular-square over GFð2nÞ. However (Rothemund, 2012), only uses
DNA self-assembly for fabrication of nanostructures (DNA origami) at
laboratory scale. There is still not empirical evidence of the application of
this molecular technique in the calculation of the mentioned problem.
This may be due to the recognized complexity associated to the imple-
mentation of the DNA self-assembly technique in the laboratory (Roth-
emund, 2006; Jonoska et al., 2011). In (Woods et al., 2019) the authors
present a reprogrammable DNA self-assembly system based on tiles,
which can copy, sort, recognize palindromes, find multiples of 3, and
other functions that are detailed in that article. However, this reprog-
rammable DNA self-assembly system is limited to the binary case, since
the system uses iterated Boolean circuits. This hinders its application to
develop calculations over a GFðpnÞ with p > 2 ; n � 1.

With respect to the molecular process associated to the TAM, Roth-
emund (Rothemund, 2006) and Jonoska (Jonoska et al., 2011) described
and showed some typical experimental deviations that can occur during
the practical work in the laboratory. First, the known difficulty in
determining the stoichiometry for complex test tubes with different types
of molecules, could result in annealing or thermodynamical problems
and, in consequence, in hybridization mismatches and low performance
of the reaction. Second, the low proportion of well-formed structures
resulting from self-assembling (only 53%), evidenced by Rothemund
(Rothemund, 2006), could predict an important percentage of error in
the tile assembly process and, consequently, in the molecular calcula-
tions. Third, the presence of large dislocations at unbridged seams, where
two halves of one assembled structure get completely separated, are also
common. It is highly probable that all these technical issues hinder an
accurate and successful computation by the TAM. In contrast, our model
is based on conventional PCR reactions and agarose gel electrophoresis,



Figure 8. Practical implementation for Figure 7 by DNA gel electrophoresis.
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both highly stable, reproducible and relatively low-cost molecular tech-
niques. Another consideration for the technical application of the TAM
on Galois fields calculations is that all technical work performed for one
calculation (for example a multiplication of two elements in GFð2nÞ)
cannot be recycled for a different calculation, which would have to be
completely performed from the start (Rothemund et al., 2004; Roth-
emund, 2012). Furthermore, it has been reported that time required for a
calculation by TAM increases proportionally with the increase of n in a
GFð2nÞ, just because the complexity of the DNA assembly increase with
n (Brun, 2008). If it is considered that the time required for the design of
the sequences necessary for structure formation is one week in addition
to one week needed for sequences synthesis and 2 h for mixing and
annealing reactions (Rothemund, 2006), then TAM is a time and money
expensive technique for algorithmic calculation. Conversely, most of the
technical work of our model could be reused for different arithmetic
calculations transforming it into a very attractive model in terms of costs
and time. In an eventual new arithmetic calculation, only the electro-
phoresis must be repeated, while the different DNA fragments could be
reused or, at most, re-amplified by PCR (90 min) with the previously
designed primers. The application of the TAM model to arithmetical
problems has been studied for more than ten years. However, there are
still no records of its successful implementation in the laboratory to do
arithmetic over GFðpnÞ with p � 2; n � 1. This supports our hypoth-
esis that the TAM works well at a theoretical level but there is high un-
certainty about the feasibility of its practical implementation and
application in the short or medium term.
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On the other hand, the only methodological complexity of our DNA-
based model is that the number of different dsDNA fragments for the
input depends on parameter p, and the number of slots in the gel matrix
depends on parameter n for any GFðpnÞ. For example, for the addition
and multiplication over GFð35Þ we only need dsDNA fragments of three
different sizes and a gel matrix with capacity for five slots. For a much
large field, such as GFð2163Þ, we only require dsDNA fragments of two
different sizes and a gel matrix with capacity for 163 slots, to perform
addition and multiplication over that field. This technical component of
our model, also makes it simpler than the sticker model. The sticker
model uses the hybridization of complementary DNA fragments to
represent bit strings and do binary arithmetic, in theory (Zimmermann,
2002). However, the implementation of such calculations requires a
careful adjustment of the hybridization conditions to ensure reproduc-
ibility and the correct assembly of all fragments. Consequently, any
modification in the sequence of stickers or an increase in the number of
stickers required, will need a resetting of the hybridization conditions. In
(Li et al., 2013a), the authors present a stickers-based algorithm for
parallel reduction in a field GFð2nÞ, and they use the field GFð2163Þ as
a theoretical example. Then, to represent all the elements of GFð2163Þ it
is required to design and handle 163 different stickers to represent a bit 1
in the different positions of the memory strand. Moreover, it would not
be possible to effectively manage the melting and annealing tempera-
tures to bind and unbind selectively up to 163 different stickers. This fact
makes the biological operations of merge, separate, set and clear difficult



Figure 9. The logical mapping for the addition and multiplication of A;B 2 GFð3Þ using a FPGA.

Figure 10. Simulation using a FPGA for α6*α20.
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to implement in the laboratory for addition and multiplication over
GFð2163Þ.

Parallel computing is being widely studied and has been implemented
using different approaches in recent years and it is expected that the
threshold of ExaFLOP (1018 floating-point operations per second) will be
reached by the year 2020. Thus, parallel computers could replace the
current computers, which mostly have a sequential architecture (Li, 2018;
Wright, 2019). However, silicon and molecular computers continue to use
binary logic, and this force translating non-binary operations into binary
atomic operations using Boolean algebra (Zhang et al., 2019; Eshra et al.,
2019). In particular, to calculate addition and multiplication in a
non-binary field GFðpnÞ, p > 2, there is an additional computational cost
associated with using atomic operations in Boolean algebra for the
implementation of these operations. In this context, our model can also
operate in parallel and it has a flexible implementation in the laboratory
that allows avoiding the translation to Boolean operations to implement
addition and multiplication over a non-binary field, which gives it a big
advantage over current silicon and molecular systems. Even in the simu-
lation with FPGA ZYNQ7000 for the case study of GFð35Þ, in which we
programmed the logicalmapping using the circuits to simulate the addition
and the multiplication over any Galois field, it was necessary to translate
the no-binary operations performed by our model into binary ones.

Therefore, our model has a flexible implementation in the laboratory
which allows arithmetic operations over binary GFð2nÞ and non-binary
GFðpnÞ; p > 2 fields without conversion cost, it is easy to implement,
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economic, less prone to error, more tolerant to changes without altering
the result.

On the other hand, we analyze the efficiency of our model to calculate
the addition and the multiplication in a field GFðpnÞ with p � 2; n � 1.
For this, we assume that each electrophoresis is executed in a constant
time for the addition and the multiplication. Thus, we obtain that the
addition has an execution time of the order Oð1Þ, while the multipli-
cation has an execution time of the order OðnÞ.

We use the multiplication as the worst case to compare the efficiency
of our model with the efficiency of TAM-based models. Since the multi-
plication is more expensive than the addition in computational terms
(memory, processor and time).

The authors of (Li, 2018; Li and Xiao, 2016; Li et al., 2016) state that
the execution time for the multiplication over a field GFð2nÞ is OðnÞ
using the TAM system, which is equal to the execution time of our model.
But in the TAM model, 7746 different tiles are needed to do the calcu-
lations, and as explained above this leads to great complexity of the
implementation in the laboratory of the TAM model. Further, we say
again TAM model can only be used in the binary case, that is, for
GFð2nÞ ; n � 1.
Finally, with a plausible engineering intervention, our model can be

fully automated. This is discussed with more detail below.
Figure 11 shows a system diagram of a possible DNA-based computer

for our model that performs addition and multiplication over GFðpnÞ for
p � 2 and n � 1 in an autonomous way.



Figure 11. System diagram for a DNA-base molecular computer for proposed model.

I. Jir�on et al. Heliyon 5 (2019) e02901
In the system there are Robots, Interpreters, Electrophoresis boxes
and a Display. A Robot makes the loading of the previously generated
dsDNA fragments in the respective slots in the gel matrix for the elec-
trophoresis. Thus, our model avoids any human error in pipetting and
loading process. An Interpreter contains the look-up table of all the ele-
ments of the field GFðpnÞ, and the key configurations for addition and
multiplication. This device makes the interpretation of the images ob-
tained by electrophoresis, and gives instructions to the next Robot to load
the dsDNA fragments of the next iteration or Electrophoresis box. The
Electrophoresis boxes represent the DNA electrophoresis processes for
each addition or multiplication calculations, according to previously
explained and showed in Sections 4, 5 and 6. At the end of the system,
there is a Display, which is a device that receives information from the
last Interpreter and shows the final result of the completed arithmetic
calculation.

Many of the mentioned possible improvements for the proposed
model are currently in use. The simplicity of the techniquemakes feasible
its adaptation to devices currently available in the market, like auto-
mated and miniaturized systems. Microfabricated capillary array elec-
trophoresis is a microfluidic device system that allows the separation of
molecules, in this case DNA fragments of different size, and could be used
for DNA sequencing (Paegel et al., 2002). The DNA sequencing tech-
nologies are relevant for our model, because they resume most of the
advances towards increasing the analysis throughput and fragment res-
olution, and decreasing consumption of reactants and samples. For
comparison, a slab gel requires 0.5–1.0 μL of DNA sample and 6–8 h of
analysis time, the DNA separation in a microfluidic device could require
0.0001 – 0.0005 μL of DNA sample and 0.1 – 0.5 h of analysis time
(Sinville and Soper, 2007). The handling of samples and the distribution
of liquid solutions is a field where multiple solutions have been devel-
oped through robotics, e.g. QIAsymphony SP/AS instruments of Qiagen.
Those devices can handle the mixture and the loading of samples into the
analytic instrument, so the entire wet procedure is free of human inter-
vention. This offers the advantages of a uniform loading of samples, time
saving and avoidance of the error prone process of handling and loading
larger number of samples by hand. Another area where improvements
can be incorporated is in reading and interpreting of the results through
image analysis by simple software, for example (Intarapanich et al.,
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2015; Abeykoon et al., 2015). This software can be of great help, as it can
quickly and accurately read and translate the image results in a
user-friendly format.

9. Conclusions and future work

This work is the first that introduces a novel DNAmodel to implement
arithmetic operations over a field GFðpnÞ, with p � 2 and n � 1, which
is based on the differential migration of dsDNA fragments of different
sizes. It has three major advantages over TAM and sticker models. First,
because of its flexible implementation in the laboratory, it allows per-
forming arithmetic operations over binary and non-binary Galois fields
without the translation to Boolean operations, while finite field arith-
metic, using the TAM model or the sticker model, is limited to p ¼ 2.
The second asset of our model is that it is less prone to error than other
systems. It is based on conventional PCR amplification and electropho-
resis, highly stable, reproducible and low-cost molecular techniques.
Hence, the problems associated to other models that arise when using
more complex molecular techniques, such as hybridization and dena-
turation, are avoided. The third advantage is that it is simple to imple-
ment and, when fully developed, it will use 50 ng/μL per DNA fragment
used to develop the calculations. There is no need for designing complex
DNA structures, since the only feature of interest is the size of the used
dsDNA fragments. Also, to do arithmetic over GFðpnÞ only fragments of p
different sizes and a gel matrix with capacity for n slots are necessary.
This contrasts with TAM and sticker models, where the design of the DNA
strands is of major importance and the concentration of reactants in-
creases greatly with the size of the problem.

Furthermore, the flexible implementation in the laboratory of our
model allows us to perform arithmetic calculations in parallel over
GFðpnÞ; p � 2; n � 1, and also without the cost of translating non-
binary operations into binary atomic operations using Boolean algebra.
Then, it is easy to implement, economic, less prone to error, more
tolerant to changes without altering the result.

On the other hand, the efficiency of our model has execution times of
order Oð1Þ and OðnÞ, for the addition and multiplication over a field
GFðpnÞ with p � 2; n � 1, respectively. For this, we assume that each
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electrophoresis is executed in a constant time for the addition and the
multiplication.

This paper provides one of the few experimental evidences of arith-
metic calculations for molecular computing and validates the technical
applicability of the proposed model to perform arithmetic operations
over GFðpnÞ with p � 2; n � 1.

Finally, our future work will be focused on making faster the inter-
pretation of the DNA patterns produced in each electrophoresis, and with
this achieve a cheaper and faster implementation of the addition and
multiplication on a field GFðpnÞ with p � 2; n � 1 in the laboratory.
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