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Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of all esophageal tumors. However, the molecular mechanism
underlying ESCC development and prognosis remains unclear, and there are still no effective molecular biomarkers for di-
agnosing or predicting the clinical outcome of patients with ESCC. Here, using bioinformatics analyses, we attempted to identify
potential biomarkers and therapeutic targets for ESCC. Differentially expressed genes (DEGs) between ESCC and normal
esophageal tissue samples were obtained through comprehensive analysis of three publicly available gene expression profile
datasets from the Gene Expression Omnibus database. The biological roles of the DEGs were identified by Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Moreover, the Cytoscape 3.7.1 platform
and subsidiary tools such as Molecular Complex Detection (MCODE) and CytoHubba were used to visualize the protein-protein
interaction (PPI) network of the DEGs and identify hub genes. A total of 345 DEGs were identified between normal esophageal
and ESCC samples, which were enriched in the KEGG pathways of the cell cycle, endocytosis, pancreatic secretion, and fatty acid
metabolism. Two of the highest scoring models were selected from the PPI network using Molecular Complex Detection.
Moreover, CytoHubba revealed 21 hub genes with a valuable influence on the progression of ESCC in these patients. Among these,
the high expression levels of five genes—SPP1, SPARC, BGN, POSTN, and COL1A2—were associated with poor disease-free
survival of ESCC patients, as indicated by survival analysis. Taken together, we identified that elevated expression of five hub
genes, including SPP1, is associated with poor prognosis in ESCC patients, which may serve as potential prognostic biomarkers or
therapeutic target for ESCC.

1. Introduction

Esophageal carcinoma (EC) ranks seventh in incidence and
sixth in mortality worldwide, with approximately 572,000
new cases and 50,900 deaths due to EC estimated in 2018
alone [1]. The incidence rate of EC greatly differs depending
on sex and population, with about 70% of cases occurring in
men, and their mortality rate is 2-3-fold higher than that

reported for women with EC. Based on the histological type,
EC is classified as esophageal adenocarcinoma (EAC) and
esophageal squamous cell carcinoma (ESCC), with the latter
accounting for over 90% of all esophageal tumors [1].
Smoking, alcohol consumption, and their synergistic effects
are themajor risk factors for the development of ESCC [2, 3],
whereas obesity, gastroesophageal reflux disease, and Bar-
rett’s esophagus are the key risk factors for EAC [3]. The 5-
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year overall survival (OS) rate for patients with ESCC re-
mains low at 10–20% [4]. Early diagnosis, and successful
surgery, radiation therapy, and chemotherapy all contribute
to a better prognosis for patients with EC. However, there
are still numerous challenges to achieving an early diagnosis
and accurate prognosis of individual EC patients based on
current clinical indicators.

In recent years, several molecular biomarkers with po-
tential value in predicting the development of EC have been
screened through high-throughput techniques, which can
also help to reveal the molecular characteristics of cancer
cells to predict the prognosis of patients. Based on a genome-
wide association study of patients with ESCC, five genes
showing relatively higher expression levels than those in
controls (TDG, MBL2, CASP8, PLCE1, and UCP3) were
estimated to be closely associated with an increased risk of
tumor development [5]. Moreover, another study suggested
that glutathione peroxidase 7 plays an important physio-
logical role in protecting the healthy esophageal epithelium
from acidic bile salt-induced oxidative stress, oxidative DNA
damage, and double-stranded DNA breaks [6]. Despite these
clues, the molecular mechanisms underlying ESCC devel-
opment remain unclear, and there is a lack of effective
molecular biomarkers to diagnose and predict the prognosis
of ESCC.

Therefore, to identify candidate biomarkers for ESCC,
we used a bioinformatics approach to analyze publicly
available microarray data (GSE20347, GSE23400, and
GSE26886) from the Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) database [7]. We first
determined the differentially expressed genes (DEGs) be-
tween tumor and normal esophageal tissues through an
integrated analysis of the datasets. The main biological
functions of the identified DEGs were then explored by Gene
Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways analysis. In addition,
the protein-protein interaction (PPI) network of DEGs was
used to identify the hub genes, and genes with a strong
influence on the pathogenesis and prognosis of ESCC pa-
tients were selected through survival analysis. The workflow
of the analysis is schematically shown in Figure 1.

2. Material and Methods

2.1. Data Collection. Gene expression profiles (GSE20347,
GSE23400, andGSE26886) of cancerous and healthy esophageal
tissues were downloaded from the GEO database [8–10]. The
detailed information of the datasets is provided in Table 1. The
tumor samples were isolated from ESCC patients during sur-
gery, and none of the patients had received prior treatment
before surgery. Healthy esophageal tissues were collected from
patients experiencing esophageal pain but without esophageal
pathological changes, or from the normal adjacent tissues of
ESCC patients paired with the tumor samples.

2.2.Data Processing and Identification ofDEGs. The raw data
of the mRNA expression profiles were analyzed by the oligo
package from Bioconductor (http://www.bioconductor.org/)

in R language software [11].The limma [12] package was then
applied to select the DEGs between the ESCC and healthy
samples according to the cut-off criteria of a |log 2 fold
change (FC)| ≥1 and adjusted P value <0.05. Overlapping
DEGs among the three datasets were determined with the
venn diagrams packages [13] and retained for subsequent
analyses.

2.3. Functional Enrichment Analysis of DEGs. To clarify the
probable biological processes (BP), cellular components
(CC), and molecular functions (MF) correlated with the
common DEGs in the three datasets, GO annotation and
KEGG pathway enrichment analyses were carried out by
ClusterProfiler [14]. An adjusted P value <0.05 was con-
sidered statistically significant.

2.4. PPI Network, Submodules, and Hub Genes Analysis.
The potential interactions of the overlapping DEGs were
analyzed using the STRING [15] database, which collects
and integrates information of functional interactions be-
tween expressed proteins. The network with a confidence
score ≥0.4 in STRING was retained and then input to
Cytoscape (version 3.7.1) [16] for visualization. In addition,
we performed module analysis to detect hub clustering
modules in the network utilizing the MCODE [17] appli-
cation with default parameters.The significant modules were
then subject to GO annotation and KEGG pathway en-
richment analyses for functional interpretation. The top 20
genes were selected according to 12 different analysis
methods in the CytoHubba application, which provides a
user-friendly interface to analyze the topology of PPI net-
works [18]. Genes detected with at least five different
methods were considered as the hub genes.

2.5. Expression and Survival Analysis of Hub Genes.
GEPIA (http://gepia.cancer-pku.cn/) [19] is a newly de-
veloped interactive web server for analyzing the RNA-se-
quence expression data of 9,736 tumors and 8,587 normal
samples from TCGA and GTEx projects. GEPIA also pro-
vides the option of conducting OS or disease-free survival
(DFS) analysis based on relative gene expression levels by the
log-rank test and Mantel-Cox test. Moreover, the Cox
proportional hazard ratio (HR) and the 95% confidence
interval (95% CI) of the survival plot can be obtained.

3. Results

3.1. Identification of DEGs. Through integrated analysis of
the three datasets (Table 1), a total of 345 overlapping DEGs
(including 142 upregulated and 203 downregulated DEGs)
were screened based on the cut-off criteria of |log 2FC| ≥1
and adjusted P value <0.05 (Figure 2(a) and Table S1).
Figure 2(b) displays the heat map of overlapping DEGs
among the three datasets.

3.2. Functional Enrichment Analysis of DEGs. GO annota-
tion showed that the 345 DEGs were mostly enriched in the
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chromosome region, azurophilic granule, endosome
membrane, and secretory granule membrane for the CC
terms, and in cell cycle-related BP terms such as chromo-
some segregation and nuclear division, and neutrophil-re-
lated BP terms such as neutrophil-mediated immunity,
neutrophil degranulation, neutrophil activation, and neu-
trophil activation involved in immune response
(Figure 3(a)). Similarly, KEGG pathway enrichment analysis

showed that the DEGs mainly participated in endocytosis,
cycle cell, pancreatic secretion, and fatty acid metabolism
pathways (Figure 3(b)).

3.3. PPINetwork, Submodules, andHubGenes. A total of 162
nodes and 778 interactions of the overlapping DEGs were
identified in the PPI network, which were visualized in

GSE20347 GSE23400 GSE26886

345 DEGs PPI analysis Functional 
annotation

Submodules and hub genes 
analysis with CytoHubba 

Expression and survival analysis of 
hub genes from GEPIA

Figure 1: Workflow to identify molecular signature markers associated with esophageal squamous cell carcinoma (ESCC) from the GEO
database.

Table 1: Information of three GEO datasets in this study.

Datasets Platform Samples (tumor/normal)
GSE20347 Affymetrix human genome U133A 2.0 array 17/17
GSE23400 Affymetrix human genome U133A array 53/53
GSE26886 Affymetrix human genome U133 plus 2.0 array 19/9
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Figure 2: Identification of differentially expressed genes (DEGs) in ESCC. (a) A total of 345 overlapping genes were identified from the three
datasets with the venn diagrams package. (b) Heat map of overlapping DEGs in ESCC and normal esophageal tissues; each column
represents one sample and each row represents one gene.
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Cytoscape (Figure 4(a)). The CytoHubba application iden-
tified 71 hub genes, including 21 genes that were identified by
at least five different methods as the candidate hub genes
(Table 2). In addition, the top two clustering modules
(scores: 19.368 and 15.556) were obtained with the MCODE
application (Figures 4(b) and 4(c)), and the genes involved
in the modules were functionally annotated. Pathway en-
richment analysis indicated that these two modules were
mainly correlated with DNA replication, cell cycle, protein
digestion and absorption, relaxin signaling pathway, ECM-
receptor interaction, IL-17 signaling pathway, and focal
adhesion (Figure 3(b)).

3.4. Expression and Survival Analysis of Hub Genes. The
expression levels of the hub genes in the cancer tissues were
significantly higher than those in healthy control tissues,
except for SNAI2, according to the data from GEPIA (http://
gepia.cancer-pku.cn/index.html) (Figure 5). DFS analysis of
the hub genes demonstrated that high mRNA expression
levels of SPP1 (HR: 2.3, P � 0.00087), SPARC (HR: 1.8,

P � 0.021), BGN (HR: 2.1, P � 0.0036), POSTN (HR: 1.8,
P � 0.019), and COL1A2 (HR: 1.7, P � 0.034) were related
to a poor prognosis in ESCC patients (Figure 6).

4. Discussion

In this study, 345 DEGs between ESCC and normal
esophageal samples were identified from three microarray
datasets in the GEO database, which were mainly signifi-
cantly enriched in neutrophil-mediated immunity and cell
cycle processes. In accordance with the GO annotation
results, the KEGG pathway analysis of the DEGs and the two
main clusteringmodules also suggested that a disordered cell
cycle phase, unstable endocytosis, and unbalanced protein
digestion and absorption affect the prognosis of patients
with ESCC.

The cell cycle, a sequence of biological processes causing
cell division and duplication, is crucial for the controlled
proliferation and growth of the cell, and an unstable cell
cycle process significantly impacts carcinogenesis and tumor
progression, representing a key tumor characteristic [20–
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Figure 3: GO and KEGG pathway analyses of DEGs in ESCC. (a) BP, CC, and MF of the DEGs with GO annotation. (b) KEGG pathway
enrichment analysis of the DEGs and the two modules.
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23]. In particular, the DEGs identified to be associated with
ESCC in the present study were suggested to have an in-
fluence on chromosome segregation at the mitosis stage.

Indeed, genes related to the cell cycle (CDKN2A, RB1,
NFE2L2, CHEK1, and CHEK2) have been found to contain
mutations in 2–10% of ESCC cases [24]. In addition to a role
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Figure 4: Protein-protein interaction (PPI) network and hub clustering modules. (a) The PPI network of overlapping DEGs. (b) Module 1
(MCODE score� 19.368). (c) Module 2 (MCODE score� 15.566). Red rectangles represent hub genes.

Table 2: 71 genes were identified by 12 differential analysis methods, and 21 genes were detached by at least 5 methods.

Genes Times Genes Times Genes Times Genes Times
MMP1 9 PLAU 5 MCM3 3 COL5A2 1
MMP9 9 SPARC 5 MCM7 3 COL6A3 1
COL3A1 8 VCAN 5 SCEL 3 CRABP2 1
CXCL8 8 CDKN3 4 THBS2 3 CRCT1 1
UBE2C 8 COL5A1 4 TTK 3 CXCL1 1
BGN 7 ISG15 4 ANO1 2 GABRP 1
MMP13 7 KRT4 4 CDH11 2 GMPS 1
POSTN 7 MCM2 4 CENPF 2 IFI44L 1
SPP1 7 MCM4 4 CKS1B 2 IFI6 1
ITGA6 6 MUC1 4 COL11A1 2 IRS1 1
LUM 6 ASPM 3 CXCR2 2 LCN2 1
RFC4 6 CKS2 3 MCM6 2 MMP12 1
SNAI2 6 DLGAP5 3 SLPI 2 MYH11 1
COL1A2 5 DTL 3 TYMS 2 PSCA 1
COL4A1 5 ERBB3 3 ADH7 1 PTHLH 1
ECT2 5 ESPL1 3 ALCAM 1 S100A9 1
IGFBP3 5 FANCI 3 ANXA1 1 SAMD9 1
MMP3 5 KIF14 3 CCNG2 1
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in the cell cycle, the overlapping DEGs in the three ESCC
databases were related to neutrophil-associated processes.
Neutrophils are the main defense cells that protect the body
from microbial infection and eliminate pathogens [25].
Recent studies have revealed that neutrophil infiltration is
closely related to the progression of different types of tu-
mors. Given their plastic nature, neutrophils can differen-
tiate into either a protumoral (N2) or an antitumoral (N1)
phenotype depending on the tumor background, which play
opposite roles in tumor development [26]. Chen et al. [27]
showed that tumor-infiltrating MPO+neutrophils are a
favorable prognostic factor for ESCC; however, there is still
insufficient evidence to reveal the exact relationship between
neutrophil activation and ESCC. In addition to the above,
our results indicated that endocytosis, DNA replication, and
pancreatic secretion signaling pathways were involved in the
development of ESCC.

Among the DEGs, 21 hub genes were identified in the
PPI network, and five of these genes, namely, SPP1, SPARC,
BGN, POSTN, and COL1A2, were associated with the DFS of
ESCC patients, in which higher expression levels of these
genes were associated with a shorter DFS. SPP1 is a secreted
glycoprotein that has been closely associated with the me-
tastasis of various tumors such as gastric cancer, breast

cancer, and melanoma [28–30]. Lin et al. [31] observed that
all five subtypes of the SPP1 gene are coexpressed in most
primary EACs and could promote the invasion and dis-
semination of tumor cells. However, the clinical value of
SPP1 in ESCC is rarely mentioned. Only one study found
that serum levels of SPP1 in ESCC patients were higher than
those in healthy controls [32]. SPARC is a matricellular
protein that modulates cell adhesion and growth, along with
cell-matrix interactions by binding to the extracellular
matrix [33], and was suggested as a candidate biomarker for
diagnosing invasive meningiomas [34]. Compared with the
normal epithelium, the mRNA and protein expression levels
of SPARC were found to be substantially higher in tumor
tissues [35]. Moreover, overexpression of SPARC was cor-
related with a poor prognosis of patients with EAC [36].
Another study showed a significant difference in the SPARC
levels in tumor tissue between gastric cancer and ESCC (15%
vs. 34%) [37], suggesting SPARC as a potential novel
therapeutic target. High expression levels of BGN have also
been detected in a variety of human epithelial cancers
[38, 39], indicating a potentially important role in tumor
development. In addition, patients with high BGN levels
were associated with significantly worse DFS than those with
low expression, suggesting that higher expression of BGN
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indicates invasive tumor behavior and predicts poor clinical
outcome in ESCC patients [40]. POSTN is a vital downstream
target in the transforming growth factor-β signaling pathway,
which plays an essential role in the process of triggering and
promoting the epithelial-mesenchymal transition, a key step in
the induction of malignant characteristics in cancer cells
[41, 42]. Recent studies have suggested that overexpression of
POSTN mediates the progression of EC [43]. POSTN was also
found to be involved in the epithelial-mesenchymal transition
of ESCC cells andwas suggested as a predictive factor for tumor
invasion and metastasis [44]. COL1A2 is a subtype of type I
collagen, which is essential for maintaining the structure of
interstitial spaces, along with the skin, gut, and breast. Wong
et al. [45] discovered that COL1A2might serve as a biomarker
in ESCC based on bioinformatics analysis. Therefore, the in-
fluence of COL1A2 on the pathogenesis and prognosis of ESCC
warrants further experimental validation and exploration.

5. Conclusions

In summary, we identified 345 DEGs and 21 hub genes in
ESCC from three gene profile datasets using an integrated

bioinformatics approach. Among them, SPP1, SPARC, BGN,
POSTN, and COL1A2 may emerge as potential prognostic
biomarkers or therapeutic targets for ESCC. Functional an-
notations of the common DEGs in the three datasets indicate
that cell cycle and neutrophil activation might be the main
biological processes for the development and progression of
ESCC and that DNA replication, endocytosis, and protein
digestion and absorption signaling pathways also participate in
the ESCC process. Although further experimental studies are
required to verify these results, our data provide clues to guide
the future exploration of prognostic biomarkers andmolecular
targeted therapy for ESCC.

Data Availability

The data used to support this study are from prior studies
and datasets, which have been cited at relevant places within
the text as references [8–10].The processed data are included
within the article and the supplementary information file
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Figure 6: Prognostic value of five hub genes in ESCC obtained fromGEPIA (http://gepia.cancer-pku.cn/index.html). High expression levels
of SPP1 (a), SPARC (b), BGN (c), POSTN (d), and COL1A2 (e) were associated with poor disease-free survival.
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