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Abstract: Traumatic brain injury (TBI) can lead to severe adverse clinical outcomes, including death
and disability. Early detection of in-hospital mortality in high-risk populations may enable early
treatment and potentially reduce mortality using machine learning. However, there is limited
information on in-hospital mortality prediction models for TBI patients admitted to emergency
departments. The aim of this study was to create a model that successfully predicts, from clinical
measures and demographics, in-hospital mortality in a sample of TBI patients admitted to the
emergency department. Of the 4881 TBI patients who were screened at the emergency department
at a high-level first aid duty hospital in northern Taiwan, 3331 were assigned in triage to Level I
or Level II using the Taiwan Triage and Acuity Scale from January 2008 to June 2018. The most
significant predictors of in-hospital mortality in TBI patients were the scores on the Glasgow coma
scale, the injury severity scale, and systolic blood pressure in the emergency department admission.
This study demonstrated the effective cutoff values for clinical measures when using machine
learning to predict in-hospital mortality of patients with TBI. The prediction model has the potential
to further accelerate the development of innovative care-delivery protocols for high-risk patients.

Keywords: electronic medical record; machine learning; Glasgow coma scale (GCS); injury severity
scale (ISS); blood pressure; traumatic brain injury (TBI); in-hospital mortality

1. Introduction

Traumatic brain injury (TBI) creates an enormous health and economic burden for the
visitors to an emergency department (ED) [1]. In addition to the high medical expenses,
TBI patients are confronted with physical-psychological threats associated with suffering,
hospitalization, disability, and death [2,3]. The essence of emergency nursing per se is high
mobility and agility and dependence on rapid assessment, decision making, and emergency
management [4]. Treatment-limiting clinical decisions are often required during the acute
phase immediately after TBI. The very process of decision making is characterized by both
a lack of objective criteria and absence of a validated prognostic model that can predict
the relevant outcome [5]. It is crucial for patients, proxies, and medical professionals to
make shared treatment decisions based on accurate long-term predictions from a validated
prognostic model informed by clinical measures at ED admission following the acute phase
of TBI.
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1.1. Background

Scores on the Glasgow coma scale (GCS) are an important indicator of severity of
TBI [4]. Likewise, the GCS is the most commonly used measure of one’s level of con-
sciousness following a TBI [6]. The GCS is composed of three subscales that independently
measure eye opening, verbal response, and motor response. It has been used to predict
mortality following TBI [7]. Previous study indicates that when given at arrival to the
hospital, GCS is the most significant predictor of overall mortality among TBI patients [8].
GCS ≤ 8 is the cutoff value for defining a TBI as severe [9]. However, the success of GCS
scores obtained at the time of the trauma in predicting mortality has not been supported
by other studies when the scores were obtained in the triage room [10]. A single GCS
score may not be a reliable indicator of mortality, but GCS scores obtained both on arrival
and prior to arrival have been found to be highly correlated with mortality and symptom
severity in TBI patients [8].

The injury severity scale (ISS) is the best predictor of mortality in trauma patients [11].
The abbreviated injury scale (AIS) has been recognized since its development in 1971 as the
gold standard for obtaining injury severity ratings [12]. The AIS assigns a severity score to
an injury on a scale from one (minor) to six (major) at each of the following locations: head,
face, neck, thorax, abdomen, spine, upper and lower extremities, and external/other [13].
Although AIS is commonly used to classify severity, AIS and GCS are more highly corre-
lated in cases of severe brain injury than in cases of mild or moderate injury [13]. The AIS
score cannot be calculated by hand at the scene of the trauma as it requires a manual review
of the patient’s record. The ISS score is calculated by taking the highest AIS score for each
body region, squaring it, and then summing the three highest scores [14]. In the literature,
ISS scores are categorized as <9, 9–15, 16–24, and ≥25 [13]. A study focusing on prognostic
factors for TBI mortality in Japan likewise found that the ISS was a significant predictor
of TBI mortality in patients [15]. Positive correlations have also been consistently found
between the ISS and TBI mortality in Korea, Europe, and America [13,16,17]. Another
cross-sectional retrospective study revealed that the GCS and ISS both have the capacity
to predict mortality in young children with TBI, with the cutoff values for the ISS and
GCS being 15 and 11, respectively [11]. Although ISS criteria alone may not predict short-
term outcomes, prognostic models that also include GCS scores play an important role in
predicting mortality in the hospital in TBI patients [10].

Injury-induced change in initial physiological measures such as systolic blood pressure
(SBP), diastolic blood pressure (DBP), heart rate (HR) and pulse pressure (PP) variability
can provide useful prognostic information about TBI patients [18–20]. SBP on arrival at the
ED is correlated with mortality in patients with major TBI [21]. Previous studies found that
the depth and duration of out-hospital hypotension were associated with increased TBI
mortality [22]. Other studies found that hypotension and hypertension in the ED seemed
to be associated with increased mortality in TBI patients [20], and the mortality rate was
higher when SBP was <120 mm Hg or ≥140 mm Hg in the ED [23]. It was found that the
hypotension threshold required a higher SBP (<110 mm Hg) in isolated moderate to severe
TBI patients [24]. Moreover, DBP was an early predictor of mortality in major trauma
patients across all stages of care [25]. However, no one has been able to identify a unique
physiological cutoff point that predicts mortality in patients with TBI [21]. Clinicians
should not rely on blood pressure criteria alone to diagnose TBI. Even SBP alone may
not be a reliable indicator of TBI mortality; hemodynamic parameters such as HR may
need to be added to the vital signs criteria to make a rigorous prediction of TBI patients’
consciousness level after traumatic injury [15]. A previous study suggested that SBP lower
than HR can indicate a poor prognosis for trauma patients [9]. Mean PP dichotomized at
72.17 mm Hg provided a cutoff point for mortality in brain trauma patients [26]. Above all,
physiomarkers such as BP, HR and PP are significant predictors of in-hospital mortality in
TBI patients.

Not only clinical outcomes following TBI, but also demographics, have been shown to
be significant prognostic factors for TBI patients [27]. A previous study revealed that TBI



J. Pers. Med. 2021, 11, 1144 3 of 12

mortality increased substantially with age [28]. A retrospective analysis of data from over
1.7 million people hospitalized from 2000–2010 in the United States after sustaining a TBI
indicates that females had a 33.1% lower probability of death than males, after adjustment
for multiple covariates; the adjusted probability of death for both sexes has been shown to
increase with age up to ages 65–69 [29]. Based on analysis of data from a national trauma
databank, TBI was more prevalent in men and was associated with lower GCS scores and
higher ED ISS scores on admission [30].

1.2. Objectives

Despite this remarkable convergence of multiple clinical measures, there is little
empirical evidence and no comprehensive predictive models for the prognosis of TBI
patients. Based on the previous studies reviewed above, we hypothesized that a model
we created that exploits machine learning can accurately predict the mortality of TBI
patients from certain clinical measures (GCS, ISS, BP, HR, and PP) and demographics (age
and gender).

2. Materials and Methods
2.1. Study Materials

The study cohort consisted of patients who visited the emergency department (ED) at
a high-level first aid duty hospital in northern Taiwan from 1 January 2008 to 31 June 2018.
The retrospective dataset was a subset of data from electronic health records (EHRs) in a
trauma registry system at the above hospital, which registers more than 120,000 emergency
visits per year. Personal information was removed from the data prior to analysis and
was not included in reports for publication. The inclusion criteria were that the patient
had to be at least 16 years old and diagnosed in the ED as having TBI according to the
9th edition of the International Classification of Diseases, Clinical Modification [ICD-9-CM],
specifically sections 800.00–801.9 (fracture of the vault or base of the skull), 803.00–804.9
(other and unqualified and multiple fractures of the skull), 850.00–850.90 (concussion,
loss of conscious), 851.00–851.90 (other unspecified head injury), and 852.00–853.10 (any
intracranial hemorrhage following injury); the one exception was section 854 (intracranial
injury of other and unspecified nature), omitted so we could rule out nontraumatic brain
injury [4]. Patients less than 16 years old were excluded because of less mature brain
development and because clinical treatments for this group, such as advanced respiratory
airway management, could influence the research outcome [31].

2.2. Clinical Measures and Demographics

To predict the in-hospital mortality of TBI patients from demographics and physiolog-
ical signals at ED admission, the candidate predictors were extracted from the electronic
health record (EHR) dataset; the datapoints were mainly demographic characteristics and
clinical measures. The variables in the registry system are gender, age, GCS, ISS, and vital
signs (all on arrival at the ED) and in-hospital mortality. Together these measures constitute
the variable we expected to be a significant predictor variable of mortality in our sample
of traumatic brain injury patients. The rationale for this expectation is described in the
background section.

2.3. Machine Learning Algorithms

Following the guidelines for the Scikit Learn Algorithm [32], we used the following
classification algorithms to determine the best predictor of in-hospital mortality of TBI
patients in the ED in our study: linear SVC, KNeighbors, naïve Bayes, and SVC Ensemble.
The predictive model was built from the derivation of the cohorts in two steps. First, several
advanced linear or nonlinear machine learning algorithms were adopted to construct the
following models: J48, random forest (RF), random tree (RT), reduce error pruning tree
(REP Tree), k-nearest neighbors (KNN), naïve Bayes (NB) and support vector machine
(SVM). J48, one of the most useful decision tree classification approaches, classifies patients



J. Pers. Med. 2021, 11, 1144 4 of 12

using a divide-and-conquer strategy for decision making [33]. RF is an ensemble machine
learning method that involves construction of multiple criteria via bootstrap aggregation
that is well suited to perform embedded feature selection [34]. RT is an algorithm for con-
structing a tree that uses information obtained by splitting criteria but performs no pruning
procedures [35]. REP tree is a fast decision-tree learner that builds a decision/regression
tree using information obtained from the splitting criterion, and prunes it using the reduced
error method [36]. Nearest neighbor classifiers are based on learning by analogy: when
given an unknown sample, a k-nearest neighbor (KNN) classifier searches the pattern space
for the k training samples that are closest to the unknown sample [37]. The NB classifier
assumes that each variable is unrelated to the presence of any other variable; because the
independent variables are assumed, only the variances of the variables for each class need
to be determined [37]. SVM produces a model that predicts the target data value using a
testing set that contains only attributes; it can classify both linear and nonlinear data [37].

2.4. Statistical Analyses and Machine Learning Framework

Results on the physiological signals and demographic characteristics (SBP, DBP, HR, PP,
GCS, ISS, gender, age) were summarized as frequencies, percentages, means, and standard
deviations. Independent t tests were used to analyze the differences among the demograph-
ics and physiological signals in predicting in-hospital mortality. Machine learning-based
algorithms were used to express a sequential classification and are described by a set of
attributes. The machine learning classification algorithms (J48, RF, RT REP Tree, KNN, NB,
and SVM) were then evaluated. The algorithms were tested using Weka 3.8.3 open-source
data mining software (Hamilton, New Zealand) [33].

The samples were randomly divided into 10 subgroups, 9 of which involved training
and the other testing. The nine training subgroups were then combined, leaving one train-
ing and one testing cohort. The training and testing datasets were constructed using a pure
random 10-fold cross-validation [38]. The following statistical classification measures were
used for the evaluations: precision, recall, F1 score, true positive rate (TPR), false positive
rate (FPR), area under the receiver operating characteristic curve (AUC), accuracy [33],
and average success rate of classification [36].

2.5. Ethical Considerations

In agreement with the ethical requirements, it was emphasized to the participants’
that their data were confidential and would be used only for the purpose of this study.
The hospital’s ethics committee approved the study (Approval No. 2-108-05-005).

3. Results
3.1. Sample Characteristics

Of the 4881 TBI patients who were screened at the ED, 3331 were admitted and
assigned to Level I, “resuscitation” (immediate) or Level II “emergent” (within 10 min) in
triage, using the five-level Taiwan triage and acuity scale (TTAS) [39]. These 3331 patients
became the sample for the study (Figure 1). There were no missing data.

The sample characteristics are listed in Table 1. Most participants were men (n = 2221,
66.7%) and the overall mean age was 51.14 years (SD = 29.17). Most survived (n = 3003,
90.15%) and the survivors had significantly higher SBP/DBP, PP, HR, GCS, and ISS and
were significantly younger than those who died.
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TBI Patients who were 16 years or older and admitted to ED in one medical center of the northern 

Taiwan from January 1, 2008 to June 31, 2018. 
(N = 4881) 

Excluded (n = 1550) 
Patients who labeled as level III to V in triage 
classification of TTAS were excluded 

Patients included in analysis 
(N = 3331) 

Figure 1. Flowchart of the patient selection process.

Table 1. Sample characteristics and differences in mortality of patients a,b.

Variables
All (N = 3331) Lived (n = 3003) Died (n = 328) p-Value c

M SD M SD M SD

Gender
(n, %) 0.622

Male a 2221 66.68 1998 90.00 223 10.00
Female a 1110 33.32 1005 90.54 105 9.46

Age 51.14 29.17 50.42 29.66 57.79 23.24 <0.001
SBP 137.54 42.03 140.64 33.42 109.15 82.74 <0.001
DBP 78.70 23.93 80.79 19.83 59.52 42.60 <0.001
PP 58.84 27.53 59.85 22.80 49.63 53.38 <0.001
HR 85.00 24.09 86.27 19.85 73.37 46.30 <0.001
ISS 16.09 8.64 14.95 7.38 26.53 11.78 <0.001

GCS 12.97 3.70 13.69 2.78 6.36 4.44 <0.001
a Values are n under M and % under SD. b SBP: systolic blood pressure. DBP: diastolic blood pressure.
PP: pulse pressure difference. HR: heart rate. ISS: injury severity scale. GCS: Glasgow coma scale.
M: mean. SD: standard deviation. c p-values are for the differences in sample characteristics between
the lived and died groups from Chi-square (gender) and independent t tests.

3.2. Performance of Classification Algorithms

Several machine learning-based algorithms were used in this research. The algorithm
that achieved the best identification performance, based on its accuracy, precision, recall,
F1 score, and average success rate of classification, was chosen as the best algorithm for
modeling prediction of the mortality rate for TBI patients. The chosen algorithm was J48,
its classification expressed as a tree (Table 2). It has an average success rate of classification
of 77.2%, an accuracy rate of 93.2%, and an F1 score of 92.9%. According to the confusion
matrix for the J48 algorithm (Table 3), the prediction algorithm we developed placed 188
of the 276 TBI patients who died (68.1%) in the correct category. It placed 2915 of the
3055 patients who survived (95.4%) in the correct category.

3.3. Algorithms for Predicting the In-Hospital Mortality of TBI Patients

The structure of the predictive algorithm we created is shown in Figure 2. The first
splitting node is occupied by GCS scores, and the next splitting node by the SBP and ISS.
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TBI patients for whom GCS ≤ 6 and SBP ≤ 84 mm Hg were predicted to die (coded as
1 in the figure). In the first gray box in the figure, 1 is the prediction; (112/12) means
that 112 patients from the training set in this path were correctly classified by the rule
corresponding to the leaf, and 12 refers to the number of such patients misclassified by the
rule. TBI patients for whom GCS > 6 and ISS ≤ 24 were predicted to survive (coded as 0 in
the figure). Therefore, the best predictor variable is consciousness level as assessed by GCS,
the second best are ISS and SBP, followed in order by age, DBP, PP, HR, and gender.

Table 2. Calculated results of average success rate of classification (%).

Model Accuracy Precision Recall F1 AUC Success Rate,
Class “Lived”

Success Rate,
Class “Died”

Average
Success Rate

J48 93.2 92.7 93.2 92.9 82.0 97.1 57.3 77.2
Random Forest 93.3 92.7 93.3 92.9 92.1 97.8 52.4 75.1
Random Tree 91.0 90.8 91.0 90.9 73.5 95.2 51.8 73.5

REP Tree 92.0 91.1 92.0 91.4 84.6 96.9 46.3 71.6
KNN 91.0 90.5 91.0 90.7 71.6 95.7 48.2 72.0
SVM 93.2 92.5 93.2 92.3 71.0 98.7 43.3 71.0
NB 91.9 91.7 91.9 91.8 91.7 95.7 56.4 76.1

AUC: area under the receiver operating characteristic curve. REP tree: reduce error pruning. KNN: k-nearest neighbor. SVM: support
vector machine. NB: naïve Bayes.
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Figure 2. J48 Decision tree for predicting the in-hospital mortality of TBI patients. The root of the
tree starts at the first variable (GCS). Since GCS is ≤6, the next variable in the tree is SBP and so
on. Because SBP was ≤84, the patient was predicted to die, as indicated by “1” inside the gray
box. The (112/12) means that 112 patients in the training set in this path were correctly classified
(outcome = 1) and 12 were incorrectly classified (outcome = 0). GCS: Glasgow coma scale. ISS: injury
severity scale. DBP: diastolic blood pressure. SBP: systolic blood pressure. PP: pulse pressure
difference. HR: heart rate. Gender: 1 = male, 2 = female. Predicted outcome: 1 = died, 0 = survived.
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Table 3. Confusion matrix of J48 algorithms.

Outcomes
Predicted Outcome

Alive Died

Actual outcome
Alive 2915 88
Died 140 188

4. Discussion
4.1. Summary of the Results

Results from the study show that it is possible to predict the in-hospital mortality
in TBI cases from demographics and clinical measures at ED admission using a novel
machine learning-based algorithm. The prognostic model for TBI presented above is based
on clinical traumatic registry information and physiomarkers in the ED. Given that our
aim was to create a valid algorithmic model that can be applied successfully in the ED,
we chose for our algorithm eight main variables that seemed to fulfill our aim. The chosen
clinical measures (GCS, ISS, vital signs) overcame the major practical challenges presented
by using complicated scoring tools in a clinical setting. The algorithm works even in
conditions when monitoring is intermittently disrupted, as happens often in the ED. In the
present study, the J48 algorithm’s performance and its average success rate of classification
was good. The algorithm represents a promising start in the development of large-data
algorithms for predicting TBI prognosis in the ED. Such algorithms have the potential
to help clinical professionals and family members make timely, data-driven, and valid
treatment decisions.

4.2. The Machine Learning Algorithms

The best way to assess the performance of prognostic models has not been conclusively
determined. Traditionally, the performance of a prognostic model is tested by assessing its
discrimination tools (i.e., AUC for binary outcome models) and calibration (i.e., probability
estimate of a data point belonging to a class) [40]. The performance metrics include
both threshold metrics (accuracy, F1 score, Cohen’s kappa), and rank metrics (AUC) [41].
One big difference between the AUC and F1 score is that the AUC predicts scores and the F1
score predicts membership in a class. However, for TBI prognosis algorithms, the changes
in the predictions need to be properly calibrated probabilities and the dataset is heavily
unbalanced. Thus, an AUC assessment could be misleading [41]. Therefore, the F1 score
was chosen for this study so as to optimize the model’s performance.

Moreover, AUC has limited clinical interpretability since it does not account for the
various misclassification costs arising from false-negative and false-positive diagnoses [42].
For TBI prognosis algorithms, successful diagnosis for the class “died” is the most important
metric for clinicians trying to decide which emergent treatment to immediately offer
TBI patients to prevent death. Therefore, the average success rate of classification was
determined based on the demonstrated sensitivity and specificity of clinical consequences
in predicting TBI mortality. It is noteworthy that the J48 algorithm had a maximum
AUC > 80%. This shows that the use of prognostic algorithms does not mean that we
should abandon AUC just because it is intended for a different purpose.

Regarding the prognosis model’s calibration, the algorithm that produced the highest
accuracy was chosen as the most successful algorithm for modeling the prognosis of TBI
patients. The most accurate classification rate overall (93.3%) was produced using the
random forest decision algorithm, but the tree was not as successful in classifying both
surviving and dying patients. We found that the random forest algorithm underestimated
the risk of in-hospital mortality for those with a very low probability of death. Such
underestimation (i.e., false negative) should always be interpreted with caution, as a poor
prognostic estimate can easily become a self-fulfilling prophecy for surviving TBI patients.
Therefore, the average success rate of classification was calculated for the two models that
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gave the best average success rate of classification (J48 and Random Forest), and the higher
average rate was found to be achieved by the model relying on the J48 algorithm (see [36]).

The benefits of predicting mortality in TBI patients from GCS scores have been ques-
tioned [10]. The present algorithms included GCS scores as one of their most important
components. Of the eight clinical variables in the algorithms, three were blood pressure-
derived measures, and two were injury-derived. GCS was the top-most variable in the
tree (accounting for the highest incidence of TBI mortality), highlighting the importance
of the cutoff value of 6 for GCS. However, the current standard definition of a severe TBI
patient (GCS ≤ 8) has the potential of placing TBI patients with GCS ≤ 6 and GCS 7–8
at the same risk of mortality, as the currently accepted trauma triage relies on abnormal
level of consciousness criteria such as GCS < 8 to determine a patient’s advanced airway
mode, priority of treatment, destination for treatment, and need for possible life-saving
interventions [9]. Thus, based on the current guideline of GCS ≤ 8 for severe TBI patients,
we should consider such patients for advanced medical resuscitation. Moreover, we should
pay more attention to TBI patients with GCS ≤ 6, because the optimal prediction threshold
from our data-driven best fit algorithm suggests a high incidence of in-hospital mortality
for such patients.

The SBP variable in the algorithm was defined solely by professional assessment and
data monitoring, leaving no room for subjective interpretation of the patient’s clinical
condition. In previous studies, hypotension was defined as SBP < 90 mm Hg or <110 mm
Hg [24]. Our results indicate that SBP ≤ 84 mm Hg is a better predictor of TBI prognosis,
as seemingly are hemodynamic features and trends measured later. Such hemodynamic
features are easy for a clinician to measure, and they take into account, on a daily basis,
resuscitation in triage or treatment in the ED; the values are even comprehensible when
computed using a machine learning approach. Hemodynamic status, as inferred from
measures such as SBP, is represented in our algorithm by a single binary variable of
hypotension. According to our results, patients with GCS ≤ 6 should be considered high
risk for in-hospital mortality if SBP < 84 mm Hg. Worth mentioning also is that the four
hemodynamic variables in the J48 algorithm (SBP, DBP, SS and HR) were defined by the
results of data monitoring, highlighting the importance of objective clinical assessment.

Although the results of the present study seem to be no different than the results of
other studies that predicted TBI mortality from GCS, ISS and vital signs, none of these stud-
ies provided valid cutoff values for all these important clinical measures at ED admission.
One study did provide a cutoff value for the ISS [13], and it was similar to the cutoff value
we obtained from the J48 algorithm. ISS scores can range from 1–75, with a higher value
indicating a more severe injury. In our study, TBI patients with ISS > 24 were predicted
to have a higher incidence of in-hospital mortality, based on their classification scores for
severity of injury in all regions (head, face, neck, thorax, abdomen, spine, upper and lower
extremities, and external/other) as measured after the initial examination. Except for SBP
and GCS, it can be argued that prognostic variables are less meaningful if measured at
admission than at triage or clinical nursing assessment, although it can be argued that
the addition of ISS to SBP and GCS increases the algorithm’s discrimination. However,
ISS has been shown to be the more important predictor for shared decision making with
respect to treatment and resuscitation [5]. The prognostic importance of ISS is further
highlighted by the appearance, several times, of the values 36, 38 and 43 in the algorithm,
because they were derived from data; we can develop these algorithms further through
multinational collaboration. As mentioned before, it is important to note that the categories
of TBI severity have a huge impact on the mortality numbers. Our result that ISS > 24
predicts a higher risk of in-hospital mortality is helpful in verifying the accuracy of the
scoring tools.

It is important to note that two of the demographics, gender, and age, were important
predictors of TBI mortality, a finding in line with a previous study [28]. Our results
show that the highest incidences of in-hospital mortality were among older patients (i.e.,
age > 72 years with GCS ≤ 6 and SBP > 84 mm Hg; and age > 77 years with GCS > 6,
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ISS > 24, and DBP ≤ 44 mm Hg). Overall, older males had a higher mortality rate than
older females. That age was a significant predictor suggests that more information about
patients’ intracranial physiology makes it substantially easier to discriminate between
survivors and non-survivors. In short, it is likely that increased incidence of in-hospital
mortality is associated with being male and having the poor hemodynamic status that
accompanies old age. One previous study revealed a higher probability of death in male
TBI patients [29], but another study found no gender difference in the prediction of in-
hospital mortality with a sample limited to severe TBI patients [28]. Haring et al. [29] tested
TBI patients age ≥ 65 years but did not test severe TBI patients, whereas Areas et al. [28]
tested TBI patients with GCS ≤ 8, which means their TBI was severe. It seems that the
difference in the two samples with regard to TBI severity explains the high prevalence of
mortality in male patients in Haring et al. [29]. Our results suggest that patients who have
poor hemodynamic status or are elderly have the highest incidence of death. It is consistent
with our study results that the effect of gender on the prediction of TBI mortality is in the
branch nodes of the tree.

4.3. Implications of the Findings

These results provide health professionals with important information that should
encourage them to pay more attention to the sequencing of physiological signals and
clinical measures at ED admission in TBI patients so as to prevent death in these patients.
Prognostic predictions based on data-driven algorithms could be used to alert emergency
room nurses about subtle conscious and hemodynamic changes and the need to quantify
the effects of different demographics for prognoses. It is important to note that GCS ≤ 6,
and SBP ≤ 84 mm Hg are the reference values that should be used for decision-making
in triage assessment and for emergency resuscitation. Including ISS > 24, which indicates
an extreme, abnormal injury, would make it substantially easier to discriminate between
survivors and non-survivors.

It has been shown that machine learning methods can usually be used by clinical
professionals to predict patient outcomes and prognoses. The data-driven algorithms can be
applied as components of bedside monitoring systems to assist clinicians with auto-alarm
mechanisms and with immediate precision-care. Moreover, it is possible to distinguish
high mortality TBI patients at ED triage and to determine optimal courses of treatment and
optimize patient outcomes. Because we used precise decision-tree algorithms, the results
of our study have important implications for clinical education by aiding physicians and
nurses in making triage decisions that are more data-driven and improving shared decision
making with TBI patients and their families, which in turn may result in better quality
of care.

4.4. Limitations

Although these findings are noteworthy, several limitations should be taken into
account. First, although a machine-learning prognostic model demonstrated the most
reliable and consistent results, the fact that the predictors all came only from patients
admitted to an ED may have affected the generalizability of the findings, since patients
could have undergone different treatments following our treatment. It is possible the
model would work better if subsequent treatment and clinical manifestations in advanced
treatment contexts are taken into account. Moreover, most of the empirical research
on TBI mortality has been retrospective; future research should examine prospectively
the prediction performance of our algorithms. In addition, the results of this study are
exploratory, and the study was conducted at a single site, which limits the generalizability
of our findings. In addition, the study was limited by the small number of patients who
died, meaning that their proportion of the total sample is not a reliable estimate of the
population value. Additionally, because of the retrospective nature of the study and the
limitations of the database, the model did not take into account other potentially influential
variables such as underlying medical conditions, comorbidities, type of treatment received
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in the ED or in hospital, and imaging findings. We suggest further prospective studies
to solve this problem. Finally, because of the relatively long-term time frame in this
retrospective study, some potentially confounding factors such as use of new techniques or
treatments, type of provider, and changes in the protocol, treatment guidelines or other
treatment strategies, we did not examine whether the above interventions were performed.
Thus, we could not properly assess the impact of these confounding factors on the clinical
outcomes. We nevertheless believe that our approach is advantageous in the early stages
of developing new clinical algorithms, as it gives us a better understanding of how such
algorithms work and which variables are truly valuable for outcome prediction.

5. Conclusions

The results from our algorithm for predicting mortality of patients with TBI treated in
the ED provide clinical professionals with effective cutoff values for the relevant clinical
measures at ED admission. The simple algorithms are based on eight main variables
and, in contrast to current prognostic criteria, provide evidence from data-driven machine
learning and may aid in clinical decision making. These results provide healthcare profes-
sionals with important information to increase their awareness of the sequences of clinical
prognosis in TBI patients, preventing possible death. Highly accurate classification rates of
prognosis prediction for TBI patients that use decision tree algorithms guide clinical health
professionals in assessing and offering intensive care and in shared decision making with
family members of TBI patients.
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