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Beef cattle raised under grass-fed and grain-fed have many differences, including

metabolic efficiency and meat quality. To investigate these two regimens’ intrinsic

influence on beef cattle, we used high-throughput sequencing and metabolomics

analyses to explore differentially expressed genes (DEGs) and metabolimic networks in

the liver. A total of 200 DEGs, 76 differentially expressed miRNAs (DEmiRNAs), and two

differentially expressed lncRNAs (DElncRNAs) were detected between regimen groups.

Metabolic processes and pathways enriched functional genes including target genes of

miRNAs and lncRNAs. We found that many genes were involved in energy, retinol and

cholesterol metabolism, and bile acid synthesis. Combined with metabolites such as low

glucose concentration, high cholesterol concentration, and increased primary bile acid

concentration, these genes were mainly responsible for lowering intramuscular fat, low

cholesterol, and yellow meat in grass-fed cattle. Additionally, we identified two lncRNAs

and eight DEGs as potential competing endogenous RNAs (ceRNAs) to bind miRNAs by

the interaction network analysis. These results revealed that the effects of two feeding

regimens on beef cattle were mainly induced by gene expression changes in metabolic

pathways mediated via lncRNAs, miRNAs, and ceRNAs, and contents of metabolites in

the liver. It may provide a clue on feeding regimens inducing the metabolic regulations.

Keywords: lncRNAs, miRNAs, ceRNAs, beef cattle, feeding regimens, metabolic regulations

INTRODUCTION

Feeding regimens of beef cattle influence meat quality, growth rate, greenhouse emission,
and animal welfare. Many studies reported the characteristic differences of beef cattle
between grass-fed and grain-fed including the fat acid compositions, intramuscular fat
and cholesterol contents, tenderness and flavor in the muscle (Sithyphone et al., 2011;
Orime et al., 2012; Zhao et al., 2012; Li et al., 2015a,b; Carrillo et al., 2016; Berger
et al., 2018; Mapato and Wanapat, 2018; Holman et al., 2019; Puzio et al., 2019). For
grass-fed beef cattle, the growth rate reaching to market weight is slower than that of
grain-fed (Cheung and McMahon, 2017), the intramuscular fat and cholesterol content
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are also low (Dunne et al., 2009) in beef, but omega-3: omega-6
fatty acids and CLA contents are high (Pavan and Duckett, 2013;
Lobato et al., 2014). Meat intake from grass-fed cattle for an adult
will significantly increase consumers’ long-chain omega-3 PUFA
content of plasma and platelet (McAfee et al., 2011), which will
reduce the risk of coronary heart disease and resist thrombotic
and inflammatory diseases (Mozaffarian et al., 2005). Besides,
the grass-fed regimen can also improve animal welfare, eliminate
risks of bovine spongiform encephalopathy (Lobato et al., 2014),
and decrease carbon footprints (Lynch, 2019).

What is the molecular mechanism of inducing these
differences between the two regimens? We had previously
analyzed the possible mechanism based on transcriptome and
metabolomics in the rumen (Li et al., 2015b), spleen (Li et al.,
2015a), and muscle (Carrillo et al., 2016). Many identified
differentially expressed genes (DEGs) were associated with a
lower total fat and a higher omega-3/omega-6 ratio (Carrillo
et al., 2016) in grass-fed cattle. Moreover, some other DEGs
were associated with substance transport, organ and organism
development in the rumen (Li et al., 2015b), with increasing
immunity in the spleen (Li et al., 2015a), and with less stress
for grass-fed cattle (Carrillo et al., 2016). Under two feeding
regimens, the diet structure is different. A grass-fed diet has
lower non-fibrous carbohydrates (NFC) and higher Neutral
Detergent Fiber (NDF) than a grain-fed diet. Besides, the rearing
environment and management patterns are also different. All
these may induce metabolic differences in organisms and organs.
As a result, there are many other characteristics for beef cattle
under two regimens.

As an essential metabolic organ, the liver can detoxify
various metabolites and produce biochemicals necessary for
digestion. It also involves many functions such as bile production
and excretion, cholesterol metabolism, hormones excretion,
metabolism of fats, proteins, and carbohydrates (Mitra and
Metcalf, 2009). At present, it is unclear how two feeding regimens
affect the biological processes in the liver.

The changes in nutrition or/and environment can modify
gene expression, involving epigenetic regulation. Although its

Abbreviations: DEGs, differentially expressed genes; DEmiRNA, differentially

expressed miRNA; ncRNAs, noncoding RNAs; lncRNA, long noncoding RNA;

DElncRNA, differentially expressed lncRNA; ceRNA, competing endogenous

RNAs; NFC, non-fibrous carbohydrates; NDF, Neutral Detergent Fiber;

MREs, microRNA response elements; GO, gene ontology; BP, biological

processes; CC, cellular component; MF, molecular function; ADH6, alcohol

dehydrogenase 6; AOX1, aldehyde oxidase 1; CYP7A1, cytochrome P450

family 7 subfamily A polypeptide 1; DHCR24, 24-dehydrocholesterol reductase;

DPYS, dihydropyrimidinase; FBP1, fructose-bisphosphatase 1; GATM, glycine

amidinotransferase; HSD17B6, hydroxysteroid (17-beta) dehydrogenase 6;

KMO, kynurenine 3-monooxygenase; SC5D, sterol-C5-desaturase; ALDOB,

aldolase, fructose-bisphosphate B; TCA, tricarboxylic acid cycle; FBP1,

Fructose-1,6-bisphosphatase 1; PCK2, phosphoenolpyruvate carboxykinase

2; CYP1A2, cytochrome P450 family 1 subfamily A member 2; RDH16, retinol

dehydrogenase 16;UGT2B15, UDP glucuronosyltransferase family 2 member B15;

SULT1B1, sulfotransferase family 1B member 1; CCL3, C-C Motif Chemokine

Ligand 3; RBPJ, Recombination Signal Binding Protein For Immunoglobulin

Kappa J Region; TEFM, mitochondrial transcription elongation factor; CA,

cholic acid; CDCA, chenodeoxycholic acid, T(G)CA, tauro(glyco)cholic acid;

T(G)CDCA, tauro(glyco) chenodeoxycholic acid; DCA, deoxycholic acid; LCA,

Lithocholic acid.

precise role is difficult to be established because of multiple
interactions between dietary components and other epigenetic
regulators (Dauncey, 2012; Jiménez-Chillarón et al., 2012), it is
worthy to mine the relationship between dietary regulating genes
and epigenetic regulators.

So far, we have known different non-coding RNAs (ncRNAs)
are involved in epigenetics processes. For example, long non-
coding RNA (lncRNA) is an ncRNA class with more than
200 nucleotides in length. In mammalian genomes, plenty of
lncRNAs are engaged in different biological processes through
diverse mechanisms, including the function as scaffolds, decoys
or signals, regulation of gene expression in cis, or trans antisense
interference (Kung et al., 2013). MicroRNA (miRNA) is also
a type of ncRNAs with 18–25 nucleotides in length. It binds
to the complementary sequence mainly in the 3’UTR of target
mRNA and thereby regulates gene expression (Bartel, 2004;
Winter et al., 2009). Previous studies reported that the expression
of miRNAs and lncRNAs correlated with diet and lifestyle
(Palmer et al., 2014; Slattery et al., 2017; Silva and van Booven,
2018). LncRNAs can act as molecular sponges of miRNAs
through microRNA response elements (MREs) and function as
a competing endogenous RNA (ceRNA) to protect mRNA (Ebert
et al., 2007; Tay et al., 2014). The coding and noncoding RNA
can interact with each other through MREs and form large-
scale regulatory networks across the transcriptome, which will
make sense to uncover the mechanism of biology phenomenon
(Salmena et al., 2011).

In this study, we hypothesize that different metabolisms
exist in the liver associated with beef cattle’s characteristic
differences under two feeding regimens. To test it, we performed
transcriptome analyses in the liver and metabolomics analyses in
blood to identify functional genes, pathways, andmetabolites and
construct a regulatory network. We believe these results would
provide a deep insight into themetabolic mechanisms and benefit
the beef industry to produce healthier and higher quality beef.

MATERIALS AND METHODS

Ethics Approval
All experiments were conducted using procedures approved by
the Institute of Animal Care andUse Committee at the University
of Maryland.

Animals and Samples Collection
Liver samples of Wye Angus steer under grass-fed and grain-fed
were collected when they reached market weight (the average
final weights and ages were 459.6 ± 35.87 kg, 14 months
old for the grain-fed steers and 471.1 ± 36.49 kg, 21 months
old for grass-fed steers). Before slaughtering, 10ml of whole
blood from the jugular vein was collected in EDTA tubes and
directly stored at −80◦C for metabolite measurement. After
killing, six individuals’ liver samples located at lobus hepatis
sinister from the grass-fed and grain-fed group (each group of
three individuals) were collected, immediately frozen in dry ice,
returned to the laboratory, and frozen at −80◦C for farther
analyses. Since this population has been closed for more than
70 years, all individuals have a similar genetic background. The
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diet composes of grass-fed (mainly including alfalfa, hay, or grass
pasture) or grain-fed (mainly including corn silage, shelled corn,
soybean, and minerals, etc.), and feeding regimens were the same
as the description from Carrillo et al. (2016). The diet nutrition
components of grass-fed and grain-fed cattle were different:
soluble protein 28 and 47%, respectively, the ratio of non-fiber
carbohydrates and neutral detergent fiber (NFC: NDF) 0.33 and
1.59, starch 0.2 and 35.6%, total digestible nutrients 60 and 73%,
net energy (for milk, maintain, and gain) 1.42 and 2.07 Mcal/lb
based on the dry mess (Carrillo et al., 2016).

Library Preparation and High-Throughput
Sequencing for mRNA and miRNA
According to the manual instruction, total RNA was extracted
and purified from liver samples using the RNAeasy R© Plus Mini
Kit (Qiagen, Valencia, CA). The concentration of RNA was
accessed by a Nanodrop ND-2000 spectrophotometer (Thermo
Fisher Scientific, DE, USA). The RNA integrity (RIN) was
checked by the Bioanalyzer 2100 system (Agilent Technologies,
CA, USA), and RIN was more than 7.0. The cDNA libraries were
built using the NEBNext R© UltraTM RNA Library Prep Kit for
Illumina R© (NEB, USA). The Agilent Bioanalyzer 2100 system
was used to measure the libraries’ quality for RNA-seq from each
sample of grass-fed cattle and grain-fed cattle. Each library was
sequenced in 50 bp reads length using the Illumina R©HiSeq 2000
platform (Williams et al., 2014; Hrdlickova et al., 2017).

Small RNA with 18–30 nt was obtained from the total RNA,
and adapter ligation and RT-PCR were carried out to construct
small RNA libraries for six liver samples of grass-fed and grain-
fed cattle using TruseqTM Small RNA sample prep kit according
to the protocols (Lagos-Quintana et al., 2001). These libraries
were sequenced with 50 bp single-end reads on an IlluminaHiSeq
2000 platform.

Reads Quality Control, Alignment, and
Annotation
Raw reads were processed by removing adapters and low-quality
reads using FastQC (Version 0.11.5) (Andrews and Fast, 2010)
to perform quality control. For RNA-seq, reads after filtered and
trimmed by Trimmomatic-0.36 (Bolger et al., 2014) weremapped
to Bos taurus reference genome (ARS-UCD1.2) using Hisat2-
2.1.0 (Kim et al., 2019). Small RNA reads with low quality and
length < 17 or >25 after deleting adapters were removed. Reads
were mapped to Bos taurus reference genome (ARS-UCD1.2).
The known miRNAs were identified based on the miRBase 22.0
(http://www.mirbase.org/) database using miRDeep2 software
(Friedländer et al., 2012).

Identification of DEGs and DEmiRNAs, and
Prediction of DEmiRNAs Targets
DEGs were analyzed using cuffdiff (Trapnell et al., 2012), and
DEmiRNAs were identified by the EdgeR package in R software
(Robinson et al., 2010). Genes with a false discovery rate
(FDR) <0.1 were identified as DEGs and DEmiRNAs. We used
TargetScan version7.2 (Agarwal et al., 2015) andmiRanda (v3.3a)
(score cutoff ≥ 140, energy cutoff ≤-15 kcal/mol, scaling: 4)

(Enright et al., 2003) to predict conserved miRNA target sites
on the mRNAs. For further analysis, we used common miRNA-
targets from both software.

Mining lncRNA From RNA-seq Data
Based on the Bos taurus reference genome (ARS-UCD1.2)
annotated 9,626 lncRNAs (Refseq), we used cuffdiff to calculate
fragments per kilobase of exon model per million mapped
fragments values and identified possibly DElncRNAs in a grass-
fed group vs. grain-fed group from RNA-seq data. To explore the
function of lncRNAs, we predicted the target genes of lncRNAs in
cis- and trans-regulation. The cis-regulation targets of lncRNAs
were searched within 100 kb down-stream and up-stream of
DElncRNAs. The potential targets of lncRNA in trans-regulation
were predicted by calculating the correlation coefficients between
lncRNAs and mRNAs. When Spearman correlation coefficients
were more than 0.9, DElncRNA-mRNA pairs were regarded as
candidate coexpression gene pairs.

Bioinformatics Analysis of DEGs, Targets
of DEmiRNAs and Coexpression Genes of
DElncRNAs
We used the online STRING tools (http://string-db.org/) for
the Gene Ontology enrichment and KEGG pathways analysis
of DEGs, targets of DEmiRNAs, and coexpression genes of
DElncRNAs. All enrichment results with FDR < 0.05 were
deemed to be significant.

Construction Interaction Network of
DElncRNAs, DEmiRNAs, and DEGs
The conserved MREs were predicted in DElncRNAs using
miRanda (v3.3a) (Enright et al., 2003). Based on the obtained
DEmiRNAs-DEGs, DElncRNAs-DEGs, and DElncRNAs-
DEmiRNAs pairs, we constructed an interaction network. The
regulatory network was visualized by using the Cytoscape
3.5.0 (http://www.cytoscape.org/).

Validation of DEGs, DEmiRNAs, and
DElncRNAs Expression by Real-Time PCR
We randomly selected six DEGs, six DEmiRNAs, and all
DElncRNAs to validate transcriptome sequence reliability
using reverse transcription real-time PCR (RT-qPCR). The
RT-qPCR primers were designed using Primer Premier
5.0 (http://downloads.fyxm.net/Primer-Premier-101178.
html) for DEGs and DElncRNAs. For DEmiRNAs, stem-loop
primers were designed for RT-qPCR analysis. All primers
were synthesized by Integrated DNA Technologies, Inc., USA.
Total RNA of each sample was extracted using the RNAeasy R©

Plus Mini Kit (Qiagen, Valencia, CA), and 1 µg total RNA
was reversely transcribed to cDNA using the QuantiTect R©

Reverse Transcription Kit (Qiagen, Valencia, CA) for DEGs
and DElncRNAs, and using the Taqman MicroRNA Reverse
Transcription kit and specific stem-loop RT primers for
DEmiRNAs according to manufacturer’s instructions. The
RT-qPCR was performed using BIORAD iQTM SYBR R© Green
Supermix (BIO-RAD, USA) on the BIORAD iQ5 Real-time PCR
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Detection System. The 10 µl PCR reaction volume included 100
ng RT product, 5 µl 2 × iQTM SYBR Green supermix, 300 nM
forward primers, and 300 nM reverse primer (for all miRNA,
using universal reverse primer), and the rest was RNase-free
water. We chose GAPDH for mRNA and lncRNA and U6 for
miRNA as the endogenous control genes. We performed three
technical replicates for each sample, and included negative
controls without a template. Fold-changes of mRNA, miRNA,
and lncRNA expression were calculated using the 2−11CT

method (Livak and Schmittgen, 2001).

Metabolomics Measure and Analysis
Whole blood samples from 16 individuals (8 samples for
each group) were submitted to Metabolon Inc. (Durham, NC,
USA) for metabolomic analysis. The extracted samples using
Metabolon’s standard solvent extraction method were split into
equal parts for analysis on the GC/MS and UPLC/MS/MS
platforms (Kennedy et al., 2013). Automated comparisons
detected the samples’ biochemical molecules to the Metabolon’s
reference library (326 compounds of known identity), and
MS/MS patterns of thousands of commercially available purified
standard biochemicals tested using the Metabolon’s mass
spectrometry platform. The combination of chromatographic
properties and mass spectra indicated a match to a specific
metabolite. The biochemical component’s measured method in
samples for GC/MS and UPLC/MS/MS was same as described
before (Carrillo et al., 2016).

Statistical Analysis
In metabolomics analysis, following median scaling, imputation
of missing values (if any) with the minimum observed value
for each compound, and log transformation median scaled data,
Welch’s two-sample t-test was used to identify biochemicals that
differed significantly between experimental groups. A statistical
significance criterion was set at P < 0.05. The q-value was
estimated to take into account the multiple comparisons.
Statistical analyses were performed with the R program (http://
cran.r-project.org/).

RESULTS

Expression Profile of mRNAs in the Liver
From Grass-Fed and Grain-Fed Cattle
To characterize the differences of beef cattle under two
regimens, the transcriptomes of the liver were analyzed. A
total of 17,900,957 and 20,929,124 clean reads were left for
grass-fed and grain-fed groups, respectively. An average of
90% clean reads was mapped to the Bos taurus reference
genome (Supplementary Table 1). Based on FDR’s criterion
below 0.1, a total of 200 DEGs were found. Among these,
100 genes were up-regulated and 100 genes were down-
regulated in a grass-fed group compared with a grain-fed group
(Supplementary Table 2).

Functional Analysis of DEGs
In the liver, DEGs from grass-fed vs. grain-fed group were
enriched to 150 biological processes (BPs), 24 cellular

components (CCs), five molecular functions (MFs), 11 KEGG
pathways (FDR < 0.05) (Supplementary Table 3). Significant
GO terms and KEGG pathways were mainly involved in negative
regulation of the metabolic process, regulation of catalytic
activity, oxidation-reduction process, and metabolic pathway
(Figure 1).

Global miRNA Expression Pattern in the
Liver From Grass-Fed and Grain-Fed Cattle
The small RNA libraries were constructed from six individual
liver samples collected from grass-fed and grain-fed cattle. In
total, 54.94 and 54.55 million raw reads were obtained from
grass-fed and grain-fed groups, respectively. After filtering the
low-quality sequences, 44.38 and 37.42 million clean reads in
grass-fed and grain-fed groups were used for further analysis.
For grass-fed and grain-fed groups, 57.7 and 48.37% of the
cleaned reads were successfully mapped. Known miRNAs were
identified based on miRBase 22.0 (http://www.mirbase.org/)
using the miRDeep2 software (Friedländer et al., 2012). A
total of 445 known mature miRNAs (with count >2 at least
two individuals) were detected. After the difference of miRNA
expression between grass-fed and grain-fed cattle were analyzed,
a total of 76 known mature DEmiRNAs (FDR < 0.1) were found.
Among these, 64 down-regulated miRNAs and 12 up-regulated
miRNAs were detected in grass-fed vs. grain-fed group (Figure 2,
Supplementary Table 4).

Functional Annotation of DEmiRNAs
Targets
A total of 374 DEmiRNAs-DEGs pairs with the reverse
relationship were obtained. Functional analysis showed target
DEGs of down-regulated DEmiRNAs were enriched to 64 BPs,
one MF, and five KEGG pathways. Still, target DEGs of up-
regulated miRNAs were only enriched to one MF, two CCs,
and no BP and KEGG pathway (FDR < 0.05) (Figure 3;
Supplementary Table 5). We found that the target DEGs were
mainly enriched to the regulation of macromolecule metabolic
process,response to stimulus and metabolic pathways.

Identification and Functional Analysis of
Differential Expressed lncRNAs
Based on annotated Bos taurus reference genome, we identified
two differentially expressed lncRNAs (DElncRNAs) i.e.,
lnc_ENSBTAT00000076705 and lnc_ENSBTAT00000068696
in liver from RNA-seq data. They were up-regulated in the
grass-fed group compared with the grain-fed group. The
lnc_ENSBTAT00000076705 was co-located with eight genes
(PTGDR2, MS4A10, CCDC86, TMEM109, TMEM132A,
SLC15A3, PRPF19, CD6), and lnc_ENSBTAT00000068696
was co-located only with one gene (AGPS) within a 100 kb
window up-stream or down-stream of DElncRNAs through
cis analysis. Still, all these co-located genes were no significant
difference between grass-fed group and grain-fed group.
We also performed a coexpression analysis by calculating
the expression correlation coefficients between lncRNAs
and mRNAs. A total of 141 DElncRNA-mRNA pairs were
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FIGURE 1 | Top 10 significantly enriched function for differential expression gene in grass-fed vs. grain-fed. Biological process (A), molecular function (B), cellular

component (C), and KEGG pathways (D).

detected (|r| > 0.9) (Supplementary Table 6). The potiential
regulated DEGs enriched to 192 BPs, 9 MFs, 34 CCs, and
15 KEGG pathways (FDR < 0.05) (Supplementary Figure 1;
Supplementary Table 7). These coexpression DEGs were also
mainly enriched to metabolic processes and pathways.

Construction of DElncRNAs, DEmiRNAs,
and DEGs Interaction Networks in
Metabolism
The relationship between DElncRNA and DEmiRNA was
predicted by miRanda software. As a result, two lncRNAs were
related to 11 miRNAs (Supplementary Table 8). Based on the
above results of function enrichments, the metabolic processes
and pathways were the focus. In order to clarify the metabolic
regulating relationship, we constructed an interaction network
from DEGs, DElncRNAs, and DEmiRNAs with 114 nodes
and 193 edges using Cytoscape (http://www.cytoscape.org/)
(Figure 4). We found two lncRNAs, eight DEGs including 24-
dehydrocholesterol reductase (DHCR24), sterol-C5-desaturase
(SC5D), glycine amidinotransferase (GATM), sulfotransferase
family 1B member 1 (SULT1B1), C-C motif chemokine
ligand 3 (CCL3), recombination signal binding protein for
Iimmunoglobulin kappa J region (RBPJ), IGFBP3, mitochondrial
transcription elongation factor (TEFM), and seven DEmiRNAs

(bta-miR-1248, bta-miR-1434-3p, bta-miR-708, bta-miR-677,
bta-miR-150,bta-miR-2484, and bta-miR-2332) formed ceRNA
regulatory networks of lncRNAs-miRNAs-mRNAs (nodes with
red edge in Figure 4).

Validation of DEGs, DEmiRNAs, and
DElncRNAs by RT-qPCR
In the present study, RT-qPCR analysis was performed in
six DEGs, six DEmiRNA with random selection, and two
DElncRNAs. Primers were designed for RT-qPCR analysis
(Supplementary Table 9). We confirmed the expression
consistency between the RT-qPCR results and RNA-seq data
from the grass-fed and grain-fed group (Figure 5).

Carbohydrate, Cholesterol, Bile Acid, and
Other Metabolites Changes Related to
Energy Metabolism in Blood From
Metabolomics Analysis
Metabolomics analysis was performed by GC/MS and
UPLC/MS/MS. We found the glucose, pyruvate, and lactate
concentrations in the carbohydrate metabolism pathway were
significantly lower in the grass-fed group than that of the
grain-fed group (P < 0.05) (Table 1). The related metabolites
to tricarboxylic acid cycle (TCA) like alpha-ketoglutarate,
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succinylcarnitine and succinate, and oxidative phosphorylation
like pyrophosphate were also significantly lower in the grass-fed
group than that of the grain-fed group (P < 0.05) (Table 1).
However, fructose and the mixed isobar were significantly
higher in the grass-fed group than that of the grain-fed group
(P < 0.05) (Table 1).

The concentrations of sterol, primary and second bile acid
metabolites in blood from grass-fed and grain-fed groups were
shown in Table 2. The concentrations of cholesterol, beta-
sitosterol, glycocholate and glycochenodeoxycholate (primary
bile acid), and 7-ketodeoxycholate (second bile acid) in blood
from the grass-fed group were significantly higher than that of
the grain-fed group (P < 0.05).

FIGURE 2 | Cluster analysis of differential expression miRNAs in grass-fed vs.

grain-fed. On the top-right of the figure, the color difference represents the

relative abundance.

DISCUSSION

The liver, as a vital organ, involved in a series of metabolic
and homeostatic functions (Berg et al., 2002), removal of
waste products and detoxification (Moubarak and Rosenkrans,
2000), bile acid synthesis (Vessey et al., 1977), and hormone
secretion (Rao et al., 1979). Our studies indicated that many
mRNAs and ncRNAs expression in liver and metabolite
levels in the blood of beef cattle are different under two
feeding regimens, which suggested the complexity of
metabolic regulation.

For pastures, the most limiting nutrient factor is energy
sources. In our study, the diet in the grass-fed group had more
structural carbohydrates, and the ratio of NFC and NDF was
lower than that of the grain-fed group. Glucose is an energy
carrier rarely absorbed from the small intestine, especially for
ruminants feeding high roughage (like grass-fed) compared
with that of feeding high grain diet (like grain-fed) (McAllan
and Smith, 1974). According to the metabolomics analysis
results, blood glucose, pyruvate, and lactate in the grass-fed
group were lower than that of the grain-fed group (Table 1).
Moreover, the concentrates of metabolites from TCA and
pentose pathways were also low in the grass-fed group. All
these indicated that there was a demand trend of glucose for
homeostasis in the grass-fed group. Our data supported the
previous study that the highly expressed proteins in the low
feed efficiency group were enriched glycolysis/gluconeogenesis
and fatty acids degradation pathway (Fonseca et al., 2019).
In our study, glycolysis, gluconeogenesis, and fatty acids
degradation genes included aldolase, fructose-bisphosphate
B (ALDOB), phosphoenolpyruvate carboxykinase 2 (PCK2),
fructose-1,6-bisphosphatase 1 (FBP1), alcohol dehydrogenase 4
(ADH4), ADH6, and acetaldehyde dehydrogenase 2 (ALDH2),
which were up-regulated in the grass-fed group (Figure 1
and Supplementary Tables 3, 4). Aldolase B is encoded by
the ALDOB gene, a key enzyme for fructose metabolism,
and preferentially expressed in the liver. It catalyzes the
specific and reversible cleavage of fructose-1,6-bisphosphate
and fructose-1-phosphate into dihydroxyacetone phosphate
and d-glyceraldehyde-3-phosphate, or d-glyceraldehyde

FIGURE 3 | Significantly enriched function for the target genes of differential expression miRNAs (DEmiRNAs). Blue pillar represented the enrichment from

down-regulated target genes and red pillar from up-regulated target genes by DEmiRNAs (A); Biological process (B).
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FIGURE 4 | Visualizing regulatory networks of metabolic processes and pathways in liver for grass-fed vs. grain-fed group. Blue represented RNAs up-regulated;

green represented RNAs down-regulated; triangle represented miRNAs; circle represented differential expression genes; diamond represented lncRNAs; and red lines

represented the edge of lncRNA-miRNA-mRNA network.

FIGURE 5 | Validation of differentially expressed mRNA, miRNA, and lncRNA by RT-qPCR in liver samples. (A) The quantification of mRNA and lncRNA in liver from

grass-fed vs. grain-fed groups. (B) The quantification of miRNA in liver from grass-fed vs. grain-fed group.
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TABLE 1 | Differences between carbohydrate and other energy metabolites in blood between grass-fed and grain-fed beef cattle.

Biochemical name Mean grass Mean grain Fold change* p-value q-value

1,5-anhydroglucitol (1,5-AG) 0.7129 1.3391 0.53 0.0011 0.0012

glucose 0.7449 1.2976 0.57 <0.0001 0.0001

glucose-6-phosphate (G6P) 1.9050 0.7356 2.59 0.4665 0.1536

Isobar: fructose 1,6-diphosphate, glucose 1,6-diphosphate,

myo-inositol 1,4 or 1,3-diphosphate

1.7824 0.6545 2.72 <0.0001 <0.0001

dihydroxyacetone phosphate (DHAP) 1.2024 1.0187 1.18 0.5649 0.1761

3-phosphoglycerate 0.8394 1.0488 0.80 0.1736 0.0673

Pyruvate 0.8469 1.9353 0.44 0.0298 0.0154

lactate 0.7172 1.0929 0.66 0.0033 0.0029

glycerate 0.9850 1.0354 0.95 0.4982 0.1610

Isobar: pentulose 5-phosphates 1.4289 1.0344 1.38 0.6027 0.1852

Ribulose 0.7385 0.8698 0.85 0.4468 0.1494

ribose 0.6935 1.4983 0.46 0.0037 0.0031

xylonate 1.2002 0.8599 1.40 0.1088 0.0458

xylose 0.9143 1.0736 0.85 0.1027 0.0437

xylitol 0.9268 1.1301 0.82 0.0291 0.0152

threitol 0.9706 1.0778 0.90 0.3613 0.1271

arabitol 0.7460 1.1139 0.67 0.0760 0.0341

fructose 1.0524 0.8536 1.23 0.0937 0.0408

sorbitol 0.8577 1.2186 0.70 0.0226 0.0124

mannose 0.8744 1.1021 0.79 0.0100 0.0067

erythronate 0.9914 0.9654 1.03 0.6685 0.2005

citrate 1.1010 0.9630 1.14 0.3635 0.1273

alpha-ketoglutarate 0.5824 1.4399 0.40 0.0001 0.0001

succinylcarnitine 0.8813 1.1859 0.74 0.0101 0.0067

succinate 0.7529 1.1785 0.64 0.0021 0.0020

fumarate 1.1280 0.8967 1.26 0.0538 0.0256

malate 0.9892 0.9472 1.04 0.4962 0.1610

acetylphosphate 0.9930 1.0004 0.99 0.8639 0.2402

pyrophosphate (PPi) 0.8382 1.3170 0.64 0.0218 0.0121

phosphate 0.9376 1.0350 0.91 0.0652 0.0304

*The relative change of grass-fed to the grain-fed group from the mass spectrometry intensities measured in equivalent volume blood.

TABLE 2 | Changes of cholesterol and bile acid concentrations in blood from grass-fed and grain-fed beef cattle.

Pathway Biochemical Name Mean Grass Mean Grain Fold Change p-value q-value

Sterol Cholesterol 1.0842 0.9563 1.13 0.0397 0.0198

7-beta-hydroxycholesterol 1.0863 1.0956 0.99 0.8555 0.2398

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) 0.9053 1.1463 0.79 0.0149 0.0091

Cholestanol 0.9675 1.0234 0.95 0.6252 0.1901

Beta-sitosterol 1.2467 0.6750 1.85 0.0010 0.0011

Campesterol 1.1258 0.9700 1.16 0.1278 0.0528

Primary bile acid metabolism Cholate 1.8244 0.8086 2.26 0.1001 0.0428

Glycocholate 2.5883 0.8102 3.19 0.0053 0.0041

Chenodeoxycholate 1.0063 0.9948 1.01 0.6748 0.2010

Glycochenodeoxycholate 2.1267 0.7008 3.03 0.0087 0.0061

Secondary bile acid metabolism Deoxycholate 0.9724 1.2939 0.75 0.6229 0.1901

Glycodeoxycholate 1.2744 1.2473 1.02 0.8550 0.2398

Taurolithocholate 1.0668 1.4461 0.74 0.2501 0.0924

7-ketodeoxycholate 1.5185 0.4695 3.23 0.0204 0.0117
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for gluconeogenesis and glycolysis (Devuyst and Igarashi,
2018). Fructose-1,6-bisphosphatase 1 encoded by the FBP1
gene catalyzes the hydrolysis of fructose 1,6-bisphosphate
to fructose 6-phosphate, acting as a rate-limiting enzyme
in gluconeogenesis (Granner and Pilkis, 1990). Isozymes
M of phosphoenolpyruvate carboxykinase is encoded by
the PCK2 gene, which catalyzes oxaloacetate conversion to
phosphoenolpyruvate, the rate-limiting step in the metabolic
pathway that produces glucose from lactate and other precursors
derived from the citric acid cycle (Beale et al., 2007). It indicated
that grass-fed cattle needed to mobilize the genes in the liver
related to glycolysis/gluconeogenesis, fatty acids degradation,
and amino acid metabolism pathways to meet the energy
demand. In the KEGG pathways, seven genes were enriched
to retinol metabolism, including ADH4, ADH6, aldehyde
oxidase 1 (AOX1), cytochrome P450 family one subfamily A
member 2 (CYP1A2), hydroxysteroid (17-beta) dehydrogenase
6 (HSD17B6), retinol dehydrogenase 16 (RDH16), UDP
glucuronosyltransferase family two-member B15 (UGT2B15)
(Figure 6 and Supplementary Table 4). Beef cattle fed high
forage rations have more yellow carcass fat than that of
concentrate-fed counterparts (Daley et al., 2010), caused by
carotenoids from forages. Carotenes (mainly β-carotene)
are precursors of retinol (Vitamin A), which is essential for
healthy vision, bone growth, reproduction, cell division, and
cell differentiation (Scott et al., 1994). Diets based on grass can
elevate precursors for Vitamin A, so beef from grass-fed steers
is rich in vitamin A (Descalzo et al., 2005), which are healthy
for people.

Besides, we found cytochrome P450 family 7 subfamily A
member 1 (CYP7A1), DHCR24, and SC5D related to steroid
biosynthesis (Supplementary Tables 3, 4) in the liver from
the grass-fed group attended in cholesterol and bile acid
synthesis. No matter the Bloch pathway or Kandutsch-Russell
pathway, both DHCR24 and SC5D are involved (Bae and
Paik, 1997). SC5D, encoded by the SC5D gene, catalyzes the
conversion of lathosterol (Kandutsch-Russell pathway) or 24-
dehydrolathosterol (Bloch pathway) into 7-dehydrocholesterol
or 7-dehydrodesmosterol, which is the precursor for the synthesis
of cholesterol. DHCR24, encoded by the DHCR24 gene, is the
final enzyme of the cholesterol biosynthetic Bloch pathway,
and in Kandutsch-Russell pathway catalyzes the conversion of
lanosterol to 24,25 dihydro lanosterol (Bae and Paik, 1997).
Since cholesterol synthesis is an energetically expensive process,
cooperativity would ensure that critical genes must be strongly
activated to commit to cholesterol synthesis (Zerenturk et al.,
2012). Impaired SC5D or DHCR24 activity leads to a deficiency
of cholesterol (Jiang et al., 2010; Muse et al., 2018). In
this study, according to the results from the metabolomic
analysis, cholesterol concentration in blood was higher for the
grass-fed group than that of the grain-fed group (Table 2).
Previous studies reported that beef ’s cholesterol content from
grass/forage-fed was lower than that of grain-finished cattle
(Rule et al., 2002). Steers with low feed efficiency had increased
bloodstream pools of cholesterol (Montanholi et al., 2017). The
concentration of cholesterol is dynamic in the liver and blood.
Besides, bile acid synthesis is also recognized as a primary

output pathway of cholesterol from the body (Liepa et al.,
1978). This study found that CYP7A1 encoding cholesterol
7-hydroxylase was up-regulated in the liver from the grass-
fed group (Supplementary Table 4). CYP7A1 is a rate-limiting
enzyme of the classic pathway of bile acid synthesis (Chiang
and Ferrell, 2018). It catalyzes cholesterol to form primary
bile acid: cholic (CA) and chenodeoxycholic acid (CDCA),
and their conjugates Tauro(glycol)cholic acid (T(G)CA) and
Tauro(glycol) chenodeoxycholic acid (T(G)CDCA), which are
actively transported into bile and become part of the circulating
bile acid pool. In the small intestine, T(G)CA and T(G)CDCA are
converted to secondary bile acids: deoxycholic acid (DCA) and
Lithocholic acid (LCA), respectively (Chiang, 2013). The classic
pathway of bile acid is predominant for ruminants (Sheriha
et al., 1968). From our metabolomic results, the contents of GCA
and GCDCA (belonged to primary bile acid) in blood from the
grass-fed group were significantly higher than that of the grain-
fed group (Table 2). Still, the concentration of secondary bile
acids and conjugates (DCA and GDCA) showed no difference
in blood between the two groups. Previous reports, both in
ruminant and human studies, showed that diet composition
could affect the bile acid types (Sheriha et al., 1968; Madden,
2003). When a high fiber diet is consumed, there is a greater
excretion of bile acids in feces, thus less can reach the liver
for re-secretion. Reversely, for a less-fiber diet, because of
dehydroxylation transited to DCA slowly in the colon, the
secondary bile acid is reabsorbed and inhibits the production
of primary bile acid (Sheriha et al., 1968; Madden, 2003).
Recently, bile acids have been discovered as regulatory molecules.
Enterohepatic circulation of bile acids plays a central role in the
regulation of bile acids synthesis, fatty acid, lipid, and lipoprotein
synthesis, as well as glucose metabolism in the liver (Kullak-
Ublick et al., 2004). Besides, vitamin A also affected bile acid
synthesis by regulatingCYP7A1 expression (Schmidt et al., 2010).
Meanwhile, bile acids can promote the intestinal absorption of
lipid-soluble vitamins including vitamin A. Between vitamin A
metabolism and bile acid synthesis, there is a negative feedback
regulatory relationship.

Like diet, nutrients, environment, and management, many
factors can alter gene expression by epigenetic modulations
(Tarallo et al., 2014; Law and Holland, 2018). Though the
number of samples was relatively small, our data provided
initial analysis on epigenetic regulation mechanism. The results
still showed some valuable information. Noncoding RNAs
like miRNAs and lncRNAs were one of the modification
components of gene expression regulation. In the present study,
we identified 76 DEmiRNAs (Figure 2, Supplementary Table 6)
and two DElncRNAs in the grass-fed vs. grain-fed group. In
the metabolic processes and pathways networks, we found many
genes were regulated by one or many miRNAs and lncRNAs
(Figure 4). CYP7A1 was regulated by three miRNAs (bta-miR-
2484, bta-miR-27a-3p, and bta-miR-194) and one lncRNA in
the grass-fed group. RNAs also influence each other’s levels by
competing for a limitedmiRNApool (Salmena et al., 2011). Based
on the interaction network, we found two lncRNAs and eight
genes might act as ceRNA to bind miRNA (Figure 4), which
affected gene expression.
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FIGURE 6 | Retinol metabolism in animal (https://www.genome.jp/kegg-bin/show_pathway?ec00830+1.2.3.1). Red dashed represented differential expression

genes in liver from grass-fed cattle.

CONCLUSIONS

Our results indicated grass-fed induced the gene expression
in glycolysis/gluconeogenesis, fatty acids degradation,
and amino acid metabolism pathway in the liver to
meet energy demand and maintain glucose homeostatic,
and consequently improve beef quality. These genes
were related to epigenetic regulation, which may offer
new perspectives on different feeding regimens inducing
metabolic regulation.
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