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Abstract: Progress in cancer research is substantially dependent on innovative technologies that
permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting
from somatic mutations and post-translational modifications. In view of a large number of genes,
multiplied by differential splicing as well as post-translational protein modifications, the ability to
identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue
environment, has become a prerequisite for understanding tumorigenesis and cancer progression.
The need for quantitative analyses has led to a renaissance of optical instruments and imaging
techniques. With the emergence of precision medicine, automated analysis of a constantly increasing
number of cellular markers and their measurement in spatial context have become increasingly neces-
sary to understand the molecular mechanisms that lead to different pathways of disease progression
in individual patients. In this review, we summarize the joint effort that academia and industry
have undertaken to establish methods and protocols for molecular profiling and immunopheno-
typing of cancer tissues for next-generation digital histopathology—which is characterized by the
use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or
multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods
for machine and deep learning.

Keywords: next-generation digital histopathology; tissue cytometry; multiplexing; RNA ISH; cancer;
tumor immune microenvironment; tumor microenvironment

1. Introduction

Cancer is a crucial global health challenge. The incidence of new cancer cases is
predicted to increase by around 70% over the coming two decades [1]. Due to the idea
that cancer originates from a deranged genome, exploring the genomic, transcriptomic,
and proteomic nature of cancer is vital for understanding and utilizing remedies for the
treatment of cancer [2]. The tumor cells and the surrounding microenvironment, which
includes various types of immune cells, signaling cells and molecules, fibroblasts, and
the extracellular matrix comprised of adjacent blood vessels, are highly interdependent
compartments. We have started to understand the complex interplay between each of these
compartments, with the tumor itself shaping and directing its surroundings—the tumor
microenvironment (TME)—while at the same time obtaining signals from this microenvi-
ronment for further progression [3]. It is often believed that cancer seeds are germinated
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primarily in an appropriate microenvironment [4]. Precise localization of molecular indi-
cators by spatial immunophenotyping techniques inside the microenvironment concedes
an additional comprehensive analysis of the tumor to foresee its progression and therapy
response [5–7].

In the past few years, in-depth profiling of cancer cells/tissues has determined the
cancer genome, the transcriptome, and the proteome as powerful sources of diagnostic,
prognostic, and predictive markers/biomarkers [8,9]. In this regard, spatially mapped
cellular gene expression has appeared as a critical method to understand the localization
and complicated multicellular interactions of DNA, RNA, and proteins within cells located
in the tumor as well as in the TME [10,11]. Interrogation of the tumor cellular organization
context at single cell level with the cell’s interactions with neighbor cells helps towards
a better understanding of the heterogeneity of the TME between individuals as well as
within the same tumor sample [12,13]. Thus, a need arises for multi-omics approaches
where many DNA, RNA, splice variants and protein targets can be visualized by various
staining techniques in situ. This dictates the need to quantify stained tissue sections, in
terms of intensity, presence (expression levels), and/or spatial distribution in an unbiased,
objective, fast, and automated way. Next-generation digital pathology is able to fulfil these
requirements in research as well as in clinics. Even though the term “digital pathology”
has been used for decades, its practical definition is still limited to digitizing samples. The
actual analysis in digital pathology is still performed visually—by pathologists looking on
a monitor rather than through a microscope’s oculars. Converting immunohistochemistry
(IHC), immunofluorescence (IF), or RNA in situ hybridization (RNA ISH) stained markers
within tissues sections into digitized images is a prerequisite, but for pathology to become
really “digital” and automated, further processing and extraction of quantitative data,
termed as image cytometry, is required. Several commercial systems are available [14]
that offer specialized software solutions utilizing image cytometry, but are methodically
focused on the analysis of histological sections and are thus referred to as tissue cytome-
try [15,16]. Due to the constant evolvement and the increasing reliability of these systems,
two commercially available whole slide imagers are approved by the ‘U.S. Food and
Drug Administration’ (FDA) and can be used for clinical approaches [17]. To evaluate
the reliability of these next-generation digital pathology platforms in clinics in terms of
prognostication and patient management, Nagpal et al. conducted a comprehensive study
using prostatectomy specimens. They established a deep convolutional neural network
addressing Gleason scoring, which was trained by pathologists on 912 hematoxylin and
eosin (HE) stained tissue slides. Next, they compared the classification of 29 additional
pathologists with the results of the deep learning-based system. As an outcome of the
study, the deep learning-based Gleason classification system showed a significantly higher
sensitivity and specificity than 9 out of 10 pathologists [18]. Further studies that used
deep convolutional/deep learning/machine learning networks for cancer tissue classi-
fication/TME on HE cancer samples for follow-up alignment with clinicopathological
parameters are those by Jiao et al. [19], Kwak et al. [20], and Bidal et al. [21] on colon cancer
samples, Mittal et al. on breast cancer [22], Wang et al. on lung adenocarcinoma [23], and
Diao et al. on skin cutaneous melanoma, stomach adenocarcinoma, breast cancer, lung
adenocarcinoma, and lung squamous cell carcinoma [24].

All the above-mentioned studies are good examples that show that tissue cytometry
may provide the methodological basis for next-generation digital pathology, which is the
state-of-the-art technology to use and constitutes an enabling factor for precision medicine
in clinics as well as in research. Within this review, we are going one step further by
addressing the concepts of next-generation digital pathology using imaging-based tissue
cytometry, in combination with multiplexing and RNA ISH technologies, as an emerging
and central method within precision diagnostics, and discussing various applications.
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2. Multiplexing Techniques as Useful Tools for High-Content Phenotyping

To achieve high-content phenotyping, optionally in combination with applying genetic
markers for well-defined DNA loci as well as total RNA or specific mRNA measurements,
the importance of multiplexing staining techniques continues to increase in research and
clinics, especially for the purpose of determining the complex immune and tumor microen-
vironment status in patients suffering from cancer, graft versus host disease, and other
pathological conditions related to immune responses [25]. In clinics the assessment of
various immune cell markers as well as immune cell populations is required for progno-
sis, diagnosis, and selecting the therapeutic intervention strategy. Conventional IHC/IF
staining techniques are restricted by the number of markers which can be detected at
once within one tissue section. This problem was bypassed by staining consecutive tissue
sections, with the main limitation being that high-dimensional co-expression analysis is
not possible and very precious information is lost [14]. However, in recent years the ability
of multiplexing, in terms of visualizing a high number of markers at one time within a
sample, has evolved and thereby represents a powerful tool for investigating complex
molecular/functional processes and interactions within cells as well as in the complex
native tissue environment. In this section, we discuss various immunohistochemistry and
immunofluorescence multiplexing techniques.

IHC-based multiplexing methods: Conventional IHC staining usually used in pathol-
ogy only allows the detection of one marker per tissue section, and therefore no co-
expression analysis is possible. With IHC multiplexing techniques the number of stained
markers per tissue sections can be increased drastically, which leads to more detailed
staining of patient tissue, especially important for clinical applications in respect to diag-
nostics and prognosis [26]. Previously published multiplexing methods based on IHC are
“multiplexed immunohistochemical consecutive staining on single slide” (MICSSS) [27]
and “Sequential Immunoperoxidase Labelling and Erasing Method” (SIMPLE) [28]. These
two techniques use the chemical property alcohol solubility of the peroxidase substrate
3-amino-9-ethylcarbazole (AEC). The protocol is similar to conventional IHC but includes
after image acquisition the removal of AEC with organic solvent-based destaining buffer,
and the restaining with new antibodies targeting other markers of interest. Thereby, MIC-
SSS and SIMPLE enable multiple staining rounds. As a final step, the images taken after
each staining round are overlaid and sometimes even transferred into a pseudo-color
IF-like image. The advantages of these two staining techniques are that they allow co-
expression analysis and there are no limitations in terms of antibody species (same antibody
origin species can be used for each marker), which is a limitation in conventional staining
IHC techniques. However, MICSSS and SIMPLE allow only one marker at each staining
round and therefore are limited in number of markers (accordingly to published data, up
to 5–10 in total) and are highly time intensive [28,29].

IF-based multiplexing methods: Multiplexing methods based on immunofluores-
cence are much more common and comprise many advantages over IHC-based multi-
plexing methods. With IF multiplexing techniques, conventional immunofluorescence
staining/imaging can be extended from around 6 to up to 60 markers. Published IF multi-
plexing techniques include “TSA Opal multiplex immunohistochemistry” (Opal mIHC,
PerkinElmer, Waltham, MA, USA) [30], “in silico multiplexing workflow” [31], “tissue-
based cyclic immunofluorescence” (t-Cycif), MultiOmyx (MxIF) and “multi-epitope-ligand
cartography” (MELC) technology as well as DNA barcoding-based techniques such as
“CO detection by InDEXing” (CODEX, Akoya Biosciences ,Marlborough, MA, USA) and
GeoMx® (NanoString, Seattle, WA, USA). IF-based methods are much more effective
and faster than the IHC-based methods, given that more than one marker can be stained
simultaneously in each staining round [14,31–35]. The Opal mIHC technique is based
on sequential staining rounds, and the secondary antibodies are tagged with tyramide
signal amplification system (TSA)-conjugated fluorescence molecules. Heat-treated strip-
ping of the tissues in between the staining rounds removes the primary and secondary
antibodies but not the TSA-conjugated fluorescence molecules. After multiple staining
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rounds, the slides can be acquired. There is no limitation in the number of different anti-
body species but there is a restriction in the number of fluorochromes [30]. Blenman et al.
established a workflow for multiplexing that includes multiple staining rounds of the
tissue, whole-slide imaging with the tissue cytometer TissueFAXS PLUS (TissueGnostics,
Vienna, Austria), dye inactivation by chemical bleaching after each acquisition step, as well
as merging the images from all staining rounds and quantitative analysis of the stained
markers/cell populations with StrataQuest software (TissueGnostics) [31]. A similar strat-
egy is used by the t-Cycif and the MxIF techniques [32,33]. One big advantage of these
chemical bleaching-based methods is that they substantially reduce autofluorescence of the
tissue after each acquisition step [36]. However, chemical bleaching-based technologies
are still time consuming; for a staining protocol of 30 markers, approximately 1–2 weeks
are needed. One main disadvantage of the repeated chemical-based bleaching steps for
fluorochrome removal after each staining/imaging round is that the preservation of cell
and tissue integrity cannot be guaranteed. Lin et al. reported that after 10 staining rounds,
a loss of 2–46% of the cells within various tissue types was observed [31–33]. Another
technology used for multiplexing is MELC, which is based on fully automated and repeated
rounds of multiple marker IF staining, imaging as well as chemical and photobleaching (at
the excitation wavelength) of the fluorochromes on a tissue section. The main limitation
of the MELC technology is that the photobleaching and imaging step can be only applied
to one microscopic field of view [35]. A rather innovative and novel technology able to
deal with a very high number of different target antigens is the DNA barcoding-based
method CODEX. A cocktail of up to 50 unique oligo-DNA (barcodes) conjugated antibodies
specific for the target markers is applied at once on the tissue section. Next, the barcodes
are detected by highly specific dye-labeled reporters, which are barcode-complementary
oligonucleotides labeled with fluorochromes. Multiple rounds of staining, imaging, and
removing of the reporters allow high-dimensional phenotyping [34]. Similar technology is
used by GeoMx® (NanoString, Seattle, WA, USA), which is also based on oligonucleotide
tags (barcodes) in combination with microscopic imaging to identify a high number of
markers (proteins, mRNA, miRNA, etc.) in one hybridization reaction [26]. A summary of
the above-mentioned staining methods is provided in Table 1.

The enhanced number of stained markers offered by several multiplexing methods
also increases the necessity of appropriate next-generation digital pathology platforms
that provide fully automated acquisition of the stained tissue sections as well as computer-
assisted/digital high-content phenotypic analysis and high-dimensional data mining.
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Table 1. IHC and IF multiplexing techniques.

Method Process Advantages Disadvantages References

MICSSS (IHC)
Multiple staining rounds; AEC removal AEC
with organic solvent-based destaining
buffer; imaging

• No limitation by the number of different
antibody species

• No company-specific reagents/devices are needed

• Time intensive
• Limited to 10 staining rounds [29]

SIMPLE (IHC)
Multiple staining rounds; AEC removal with
organic solvent-based destaining
buffer; imaging

• No limitation by the number of different
antibody species

• No company-specific reagents/devices are needed

• Time intensive
• Limited to 5 rounds of staining without

loss of tissue antigenicity
[28]

Opal mIHC (IF)

sequential staining with AB tagged with TSA
conjungated fluorescence molecules, AB
removal by heat-treated antibody
stripping; imaging

• No limitation by the number of different
antibody species

• up to 7 markers

• Time intensive
• limited by the number of fluorochromes [30]

In silico
multiplexing
workflow (IF)

Multiple staining rounds; Dye inactivation by
bleaching with alkaline solution +
H2O2; imaging

• No limitation by the number of different
antibody species

• No company-specific reagents/devices are needed

• Each round of staining may take at least
24 h depending on the antibodies and
the tissue

[31]

t-Cycif (IF)
Multiple staining rounds (like MxIF); bleaching
by hydrogen peroxide, intense light and high
pH; imaging

• Background noise decreases with cycle number due to
multiple rounds of fluorophore bleaching

• No limitation by the number of different
antibody species

• No company-specific reagents/devices are needed

• Relatively slow (each cycle 6–8 h, most
time consuming is the imaging)

• after 10 cycles, 2–45% loss of cells
[32]

MxIF (IF)

Multiple staining rounds; Alkaline oxidation
chemistry was developed that eliminates
cyanine-based dye fluorescence within 15
min; imaging

• No limitation by the number of different
antibody species

• No company-specific reagents/devices are needed
• Removal of fluorescence dye within 15 min
• Up to 60 biomarkers

• relatively slow due to scanning times [33]
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Table 1. Cont.

Method Process Advantages Disadvantages References

MELC (IF)

Multiple automatic staining rounds; during
each cycle the sample is incubated with one or
more tags and imaged before bleaching by soft
multi-wavelength excitation

• Automated cycles of fluorescent staining, imaging and
photobleaching

• No limitation by the number of different
antibody species

• Bleaching/acquisition can be applied
only to one field of view

• Special devices are needed
[35]

CODEX (IF)
Antibodies conjugated to a CODEX barcode;
visualized by the binding of highly specific
corresponding dye-labeled CODEX reporter

• No limitation by the number of different
antibody species -> no secondary antibodies

• Fast, each round of extension and bleaching (10 min)
• Up to 35 rounds with 3 markers

• Special devices and reagents are needed [34]

NanoString (IF)
Antibodies conjugated to a barcode; visualized
by the binding of highly specific corresponding
dye-labeled reporter

• Up to 40 markers
• No autofluorescence and spectral overlap

• Limited number of regions of interest
• Special devices and reagents are needed [26]

AB, antibody; AEC, 3-amino-9-ethylcarbazole; CODEX, co detection by indexing; IF, immunofluorescence; IHC, immunohistochemistry; MELC, multi-epitope-ligand cartography; MICSSS, multiplexed
immunohistochemical consecutive staining on a single slide; SIMPLE, sequential immunoperoxidase labelling and erasing method; TSA, tyramide signal amplification system; t-Cycif, tissue-based cyclic
immunofluorescence.
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3. Advanced Imaging for Digital Pathology

The first step in a tissue cytometry/next-generation digital pathology workflow in-
cludes whole slide scanning or at least acquisition of a region of interest of the stained slide.
The second and even more important step comes with the subsequent computer-assisted
quantitative image analysis. Next-generation digital pathology technology aims to guide
the workflow away from visual observation with a standard microscope and subjective
estimations, which are funneled into scoring schemes describing marker expression with
“+/++/+++”, to a fully automated computerized platform for the detection and numerical
quantification of stained markers in defined cell subpopulations in relation to specific his-
tological structures. Not only are these platforms providing a fast analysis of markers, but
they also seek accurate, unbiased, reproducible, and standardized results. These platforms
are already well integrated and used in various fields of research [37,38]. Additionally,
in 2017 the FDA approved the first next-generation digital pathology program (Philips
IntelliSite; PIPS) as a clinical digital diagnostics tool in routine diagnosis [39].

Several whole slide imaging platforms (with or without image analysis software) are
commercially available in various configurations (e.g., TissueGnostics, Akoya Biosciences,
Leica Biosystems, Hamamatsu, Zeiss, 3DHistech, PerkinElmer, Roche, Philips). As the
name already indicates, these scanners are able to acquire whole slides instead of only
individual captures of fields of view, and thereby provide complete composite digitized
images of slides in high resolution. The technology used is image acquisition by either
tile scanning or line scanning with a follow-up stitching of the images [14,40]. Depending
on the specific next-generation digital pathology platform configuration, these scanners
are able to perform whole slide imaging in different imaging modes such as brightfield,
widefield fluorescence, confocal, structured illumination, multiplexing, and/or multispec-
tral. The hardware components are usually the following: microscopy stand (upright,
inverted) or boxed system without a phototube, cameras (color and/or monochrome),
light sources for fluorescence and/or brightfield mode, multiple filter sets for multicolor
fluorescence imaging (may include single-, dual-, and/or multi-band filters), high-quality
objective lenses for acquisition with different magnifications (1× to 100×), motorized slide
scanning stage or high-throughput slide loading systems. Some platforms offer objective
auto-oiling for high magnifications and/or provide a slide bar-code reader for higher effi-
ciency. A powerful computer workstation and high-resolution computer monitors for the
viewing of the digitized slide as well as for the potential follow-up image analysis [37,41]
are mandatory. For controlling all the individual components, for digitized slide viewing
and data management, the platforms also include highly functional slide imaging soft-
ware [40]. In some instances, the platforms also offer or are equipped with image analysis
solutions for quantitative analysis. Such quantification is not stoichiometric, and hence
does not provide chemical concentration of markers, but is rather based on comparison
with negative controls, which is referred to as cytometric.

The basic Theory of Scales of Measurements defines four different types of scales—
nominal, ordinal, interval, and ratio [42], the first one being referred to as qualitative, and
the other three being accepted as quantitative. In all three scales, systematic, observer-
independent measurements of well-defined attributes of objects can be performed, resulting
in numerical values that allow for comparison of the objects under investigation as well as
statistical evaluation of the assigned attributes.

Most slide scanners today provide area and distance measurements in metric values,
whose measurements fall into the ratio type of scales. The amount of any given molecular
marker expressed in certain cells, however, is usually determined as a relational value
(e.g., mean relative fluorescence or optical density in brightfield microscopy) rather than an
absolute value (e.g., µmol or nanogram). Hence, such measurements belong to the interval
type of scale. Such measurements do permit comparative measurements of more and
less, but it is not possible to draw conclusions by building the ratio between two values.
If a cell or cell population expresses a certain molecule at a mean relative fluorescence
of 7000 and another cell or cell population exhibits a value of 14,000, in the scope of a
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cytometric measurement it is safe to state that “the second cell/population contains more
of that molecule than the first” and that “the mean relative fluorescence increases from
7000 to 14,000” in a comparison of these two entities, but it cannot be concluded that the
amount of molecules doubles. This is similar to our daily temperature readings in Celsius
or Fahrenheit: 30 ◦C is not “twice as hot as 15 ◦C”. Cytometric measurements belong to the
interval scale and are thus to be considered quantitative.

Image analysis options can provide unlimited applications depending on the platform
and among others may enable basic single cell analysis, dot detection, cellular co-expression
as well as subcellular co-localization analysis, meta structure detection, multiplexed high-
content phenotyping, proximity measurements, structural tracing (e.g., neurites and/or
axons), particle and/or single cell tracking, as well as the analysis of spatial relationships for
next-generation digital pathology [41,43]. A representative example of high-dimensional
data analysis and the power of these platforms is shown in Figure 1.

Figure 1. A representative example of high-dimensional automated tissue cytometry shown on a
colon sample stained for seven markers. (a) Original multicolor immunofluorescence image data set
acquired by a multispectral imaging technology. Nuclei stained by 4′,6-diamidino-2-phenylindole
(DAPI) in blue; immune markers/immune checkpoint markers CD4 in green/PD-L1 in yellow/PD1
in red/CD68 in pink/CD8 in orange; pan-cytokeratin marker in turquoise. As this raw data image
contains overlapping emission signals from the fluorochromes, the colors appear mixed. (b) Image
with clearly separated fluorescent signals obtained by a mathematical procedure referred to as
spectral unmixing. (c) Nuclei detection, highlighted by the green contour mask shown in overlay
to the original image. (d) Metastructure detection of epithelial cells, highlighted in orange overlay.
(e) Proximity measurements in relation to detected metastructures with various distance zones
highlighted by different colors. (f) Analysis of spatial connections among and between single cells of
a specific cellular phenotype highlighted by a green mask and white connecting lines. The images
were provided by and analyzed using TissueGnostics’ image cytometry solution StrataQuest.

4. Role of Machine Learning

A big fundamental improvement step in recent years elevating the next-generation
digital pathology approach is the integration of artificial intelligence (AI) algorithms for
pattern recognition into the image analysis/image cytometry process [44]. Over the past
few years, these AI tools have become more robust, and with only minimal user input
can be applied to automatically detect objects such as nuclei and specific structures as
well as for the classification of various anatomical tissue entities within an entire digitized
slide [44,45].

Understanding molecular and cellular interdependencies quickly leads to complex
questions, which require the elaboration of extensive algorithms and enormous amounts
of computing power to get to an answer. While machine learning has been known to have
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great potential in this field for many decades, in the recent past it has advanced greatly
in its practical use due to the availability of powerful computer technology, in particular
parallel computing on multiple CPUs and/or CPU cores as well as due to new software
tools, programming languages, and advanced machine learning techniques, which have
made the technologies much easier to use without the requirement of advanced theoretical
knowledge [44,45]. By engaging state-of-the-art technologies, computer scientists and
engineers try to generate models that can provide answers to the complex problems given
by nature. Machine learning’s power resides in its robustness in generating customized
models designed to solve (very) specific problems. [44]. Machine learning models are
generated by learning on examples consisting in observations. Current techniques of ma-
chine learning comprise supervised, unsupervised, transfer, federated, and reinforcement
learning [45].

In the case of supervised machine learning, the observations are tagged to a class by
a human expert, and therefore the model efficiency is strictly related to the quality of the
training data set used. An optimal training data set should cover a wide enough range of
variability expected in the real-world data, for example a well annotated slide. Failing to
do so can increase the possibility of misclassifications. [46].

Unsupervised learning refers to a machine learning method where the algorithm
learns from examples without being able to refer to predefined target values or classes
(untagged/unlabeled data). The algorithm tries to identify patterns by creating an internal
representation of the data and looks for density probabilities (e.g., clustering analysis). This
method is suited to search for patterns which are not obvious, or are difficult to identify
even for/by the human eye [47].

The transfer machine learning method is characterized by the fact that an already
trained algorithm can be used to answer different, but related questions. It means an
existing trained model can be adapted/tweaked to solve new tasks without the need to
train a new model from scratch [48].

In the federated machine learning method, the algorithm learns from data spread/stored
on multiple devices. Federated machine learning is similar to distributed learning, but the
focus is on training on heterogeneous data and not on parallelization. No training data
information is shared between the devices as part of the learning process [49].

Another machine learning method, enforcement learning, is based on an algorithm
that needs to take optimal decisions based on the new data presented and the cumulated
experience (knowledge). The learning process is continuous; each decision taken by the
algorithm is labeled using a system with rewards and punishments. The aim is to solve
the task by maximizing the cumulative positive feedback [50]. Precisely, the step-by-
step development in machine learning aims towards a human-like learning, in the sense
that humans learn from existing experience even in unrelated sectors and can transfer
knowledge to new arising tasks rather than start from the basics, which is, however, still
the case in machine learning.

Due to the versatile range of applications of next-generation digital pathology dis-
cussed in the following section, these platforms (with or without AI) can be seen as a
crucial part of precision medicine by providing a solid and fully automated tool for the
gaining of novel information on the pathology of specific diseases, identification of novel
predictive and prognostic biomarkers, as well as targets for therapy [37,38,44].

5. Current Applications of Next-Generation Digital Pathology
5.1. RNA In Situ Hybridization (ISH)

In clinical settings, a routinely used method to measure RNA is real-time PCR [51].
However, this grind-and-bind technique is unable to visualize the individual cell signals
in their original context, and is prone to becoming contaminated by unintended cell
and tissue types and masking the different cellular subpopulations and phenotypes in
the heterogenous TME [6,52]. Next-generation sequencing and single-cell sequencing
technologies can detect RNA expression at the single cell level, but dissociation from
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their native setting deprives the data related to their spatial relationship [53]. With the
latest developments in RNA ISH, multiple approaches came into play such as non-isotopic
fluorescently labeled ISH (fluorescence in situ hybridization—FISH) and biotin or hapten
labeled nucleic acid probes (chromogenic in situ hybridization—CISH) to gather spatial
data [52,54–57]. These methods opened a new data dimension, supporting localization
and quantitation of target RNA in single cells to detect precise RNA expression in specific
cell types [52,58]. However, these techniques only allow a restricted number of labels
to be integrated into the probes, leading to reduced sensitivity of expression for most of
the genes [52]. Due to a high possibility of cross-hybridization and non-specific binding
in complicated tumors, the signal-to-noise ratio is constrained, and extreme technical
complication limits the performance of these methods [52,58]. In Figure 2, a representative
example of the automated quantitative analysis of FISH and RNA ISH is shown.

Figure 2. A representative example of automated analysis of fluorescence in situ hybridization
(FISH) and RNA in situ hybridization (ISH) stained cells using a next-generation digital pathology
platform. (a) FISH staining (blue, nuclei stained for 4′,6-diamidino-2-phenylindole (DAPI); red and
yellow dots, FISH probes); on the left the original image is shown, in the middle the corresponding
analyzed image including cell and dot detection mask, and on the right the analyzed data visualized
in a scattergram. (b) RNAscope staining (blue, nuclei stained for hematoxylin; brown, RNAscope
staining); on the left the original image is shown, in the middle the original image overlaid with the
detected dot mask, and on the right the original image overlaid with the nuclei mask, the cellular
mask, and the identified dot mask. Both images were provided by and analyzed using TissueGnostics’
image cytometry solution StrataQuest.

RNAscope by Advanced Cell Diagnostics Inc., Hayward, CA (ACD) has presented
the most pragmatic method that overcomes these limitations of traditional RNA ISH by a
unique probe design and an advanced signal amplification system [52,59]. This technology
excels due to its specificity, sensitivity, low turnaround time, and robustness in a wide
range of applications across various disciplines including infectious diseases, neuroscience,
cell or gene therapy, and single-cell transcriptomic profiling in cancer [52,60–64]. In the
TME, RNAscope has prominent advantages such as spatially mapping a cell atlas [65,66],
visualizing and characterizing gene signatures and generating the immune landscape, and
even identification of novel cell subtypes [67,68], classifying and identifying highly hetero-
geneous and immunotherapeutic cell types [69,70], and identification and characterization
of a gene signature of stem cells [71–73] and circulating tumor cells [74,75] as well as ana-
lyzing or predicting their response to drug treatments [76,77]. Compared with a one-probe
RNA ISH hybridization system, the possibility of nonspecific amplification in RNAscope is
considerably low since it implies a double-probe independent hybridization system and
improves the sensitivity and the signal-to-noise ratio, allowing better quantification of
RNA expression [52,78].
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The RNAscope method allows robust detection of mRNA, long non-coding as well as
microRNAs [57,79–82], and multiple gene transcripts generated by alternative splicing [83,84]
simultaneously in fresh-fixed, fresh-frozen, and formalin-fixed paraffin-embedded (FFPE)
clinical specimens, revealing the full potential of RNA [85]. For example, the expression of
a majority of androgen receptor (AR) splice variants other than the full-length AR variant
remains unclear in prostate cancer progression. RNAscope has been proposed to be a capable
technique for detecting expression and localization of splice variants by designing probes
specifically to target distinct splice variants. For example, AR and AR-V7 expression have been
detected in FFPE prostate tumors by RNAscope where AR expression was found to be 3-fold
higher in primary tumor cells compared with benign glands, while AR-V7 expression was
higher in metastatic castration-resistant prostate cancer than in primary prostatic tissues [84].

Emerging new therapeutic strategies broadly target both cellular and non-cellular
components of the TME more than ever, by various therapies such as immune checkpoint
blockade therapy, dendritic cell vaccination, and antiangiogenic therapy [86]. Detection of
RNA targets in the TME that are involved in tumor immunotherapy with the RNAscope
assay can facilitate these therapies predominantly. RNAscope applications enable the
determination of localization of specific immune cell types (i.e., cytotoxic lymphocytes
and regulatory T cells) in the TME [87], spatial relationships between different cell types
in the TME [88], and immune activation state and function of tumor-infiltrating immune
cells in the TME [89,90]. For example, Monte et al., using RNAscope assay, reported
that infiltrating basophils in the TME regulate tumor-promoting Th2 inflammation and
reduce survival in pancreatic cancer patients [89]. Besides, this technique is an attractive
strategy to determine cell type-specific expression of immune checkpoint markers [91] and
differentiate activated CAR+ T cells from endogenous T cells [5]. RNAscope’s aptitude to
precisely identify the cellular sources of secreted proteins (e.g., cytokines and chemokines)
is a distinct benefit since although the mRNA will always localize in the cells of origin,
secreted proteins tend to dilute and diffuse in the intercellular space [67,87,92]. Besides,
RNAscope provides valuable information on the differentiation of paracrine and autocrine
signaling, which aids in the classification of subtypes of several cancers [93]. A dual gene
analysis approach with RNAscope has been utilized for simultaneous detection of CD44+
cells and PD-L1 in head and neck squamous cell carcinoma, which found that CD44+ in
the TME induces expression of PD-L1, thus subsequently suppressing T cell-mediated
immunity in the TME [94]. The localization and quantification of multi-RNA from several
genes simultaneously by RNAscope provide greater time saving and significant results
from a single feasible technique. However, rapid mRNA translation and RNA degradation
in cells can affect RNAscope applications, and thus BaseScope, a subfield of RNAscope,
has been recommended for short RNA targets of 50–300 nucleotides [95]. Instead of using
20 probe pairs, BaseScope utilizes short 1–6 probe pairs to target small regions of RNA
more effectively. Thus BaseScope is a successful method to determine the expression and
quantification of small nucleolar RNAs (snoRNAs), microRNAs, and the RNAs which have
a high potential of degradation and transient expression in the TME [95].

The newest approach of RNAscope, in combination with IHC and called dual RNAscope
ISH/IHC, has proven to offer an ideal platform to generate more reliable data that can be
used to study gene expression signatures at the RNA and protein level with spatial and
single-cell resolution in complex TME [5]. This allows correlation of both RNA and protein
expression in a single slide, simultaneously validating antibody specificity [78,96–98]. For
example, combined detection of HPV RNA by RNAscope and Cdc2 protein expression by
IHC has been useful to predict the prognosis of oropharyngeal squamous cell carcinoma
patients. Even more, the results conclude that the sensitivity of RNAscope was higher
than that of PCR reverse dot hybridization [98]. The automated RNAscope is a significant
advancement over manual RNAscope and improves the clinical advantage by allowing more
samples to be analyzed in a standardized way simultaneously with less time, less inter-user
variability, and less manpower in an observer-independent manner [86]. The method has
proven consistent and provides reproducible results in quantifying transcript levels. Overall,
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the spatial resolution presented by the RNAscope method brings a novel dimension to precise
localization of target RNA in single cells and allows localization and quantitation of RNA
expression in specific cell types in the TME [86].

5.2. Assessment of the Tumor Immune Microenvironment

One of the most promising fields in biomarker and therapy target detection in on-
cology is dedicated to the exploration of the patient-specific immune contexture in situ
with conventional and multiplexing IF and IHC staining techniques in combination with
automated quantification [14].

One prominent approach for immune cell assessment within a particular tumor tissue,
colorectal cancer (CRC), was developed by the group of Galon et al., where they success-
fully established a patient stratification strategy based on the detection/identification of T
cell populations within the tumor core and the invasive margin named Immunoscore (ratio
of the markers CD3 and CD45RO, CD3 and CD8, or CD8 and CD45RO). It is currently
undergoing evaluation/implementation as a routine parameter for prognostic and pre-
dictive diagnosis in clinics for colon cancer [99,100]. To demonstrate its power the group
of Pages et al. conducted a large-scale study, where his group assessed the Immunoscore
by using a digital pathology method of a large patient cohort (n = 2681 CRC patients),
aligned it with clinical pathological data, and thereby was able to show the power of
the Immunoscore in the prognosis of survival prediction and treatment response in CRC
patients [101]. In order to provide a representative (yet not complete) overview of recent
applications, Table 2 shows further examples of studies using conventional and/or multi-
plexing IF and/or IHC staining techniques in which next-generation digital pathology was
the central method for the quantification of various immune cell markers/populations in
different cancer types and aligned with clinicopathological parameters.

Table 2. Studies using next-generation digital pathology for the assessment of the tumor immune microenvironment.

Cancer Type Markers Scanner/Microscope Quantification System Reference

Breast cancer CD4, CD8, Foxp3 Olympus BX51 (Olympus,
Tokyo, Japan)

UTHSCSA Image Tool (University
of Texas Health Science Center at

San Antonio, San Antonio,
TX, USA)

[102]

Breast cancer CD4, CD8, CD3,
CD20, FOXP3, CD68

Leica SCN400 F (Leica Biosystems
Inc., Richmond, IL, USA)

ImageJ software (NIH, Bethesda,
MD, USA) [103]

Breast cancer PD-L1 Aperio AT2 Scanner (Leica
Biosystems Inc., Richmond, IL, USA)

QuPath (University of Edinburgh,
Edinburgh, UK) [104]

Breast cancer CD8 ScanScope XT (Aperio Technologies,
Vista, CA, USA)

HALO (Indica Labs, Albuquerque,
NM, USA) [105]

Breast cancer CD3, CD20, Foxp3

NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan);

Panoramic 250 Flash (3Dhistech,
Budapest, Hungary)

ImageJ software (NIH, Bethesda,
MD, USA) [106]

Breast cancer CD3, CD8, CD20 NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

ImageJ software (NIH, Bethesda,
MD, USA) [107]

Breast cancer CD4, CD68, CD8,
FOXP3, PD-L1

Vectra 3 (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [108]

Breast cancer CD4, CD8, FOXP3,
CD20, CD33, PD-1

Vectra 3 (Akoya Biosciences,
Marlborough, MA, USA)

inForm (Akoya, Marlborough,
MA, USA) [109]

CRC CD3, CD8 n.s. Developer XD (Definiens,
Munich, Germany) [101]

CRC CD3, CD8 VENTANA iScan HT (Roche, Basel,
Switzerland)

automated image analysis
algorithm [110]
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Table 2. Cont.

Cancer Type Markers Scanner/Microscope Quantification System Reference

CRC CD8 Aperio XT Scanner (Leica
Biosystems Inc., Richmond, IL, USA)

HALO (Indica Labs, Albuquerque,
NM, USA) [105]

CRC CD3, CD8 Zeiss Axio Scan.Z1 (Zeiss, Jena,
Germany)

HALO (Indica Labs, Albuquerque,
NM, USA) [111]

CRC

CD3, CD4, CD8,
CD45RO, FOXP3,

Granzyme B, CD15,
CD20, S100, CD68,

IL17, CD57,

microscope (Leica, Wetzlar,
Germany)

TMAJ software (Johns Hopkins
University, Baltimore, MD, USA) [112]

CRC FoxP3, CD8, CD66b,
CD20, CD68

Vectra 3 (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [113]

CRC

SOX2, CD3, CD8
FoxP3, ALDH1,

CD44v6, CD133, Lgr5,
PD-L1

Aperio XT Scanner (Leica
Biosystems Inc., Richmond, IL, USA)

Aperio Imagescope (Leica
Biosystems Inc., Richmond,

IL, USA)
[114]

CRC CD8, CD11c, PD-L1 Pannoramic MIDI II (3Dhistech,
Budapest, Hungary)

StrataQuest (TissueGnostics,
Vienna, Austria) [115]

CRC CD8, CD4, CD20,
Foxp3, CD45RO,

Vectra Polaris (PerkinElmer,
Waltham, MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [116]

CRC, CRCLM CD20, CD3, Ki67,
CD27

TissueFAXS PLUS (TissueGnostics,
Vienna, Austria)

HistoQuest, TissueQuest
(TissueGnostics, Vienna, Austria) [117]

CRC, CRCLM CD8, Foxp3, CD68,
CD31

ScanScope (Aperio Technologies,
Vista, CA, USA)

GENIE (Aperio Technologies,
Vista, CA, USA) [99]

CRCLM CD45, CD20 TissueFAXS PLUS (TissueGnostics,
Vienna, Austria)

HistoQuest, TissueQuest
(TissueGnostics, Vienna, Austria) [118]

CRCLM CD3, CD4, CD8,
CD20, CD68

NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

Visilog 9.0 software (Noesis,
Saclay, France) [119]

CRCLM CD3, CD8, CD45RO,
Foxp3, CD20

NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

Developer XD (Definiens, Munich,
Germany) [120]

Gastric cancer PD-L1, CD8
digital slide scanner (3Dhistech,

Budapest, Hungary); TissueFAXS
(TissueGnostics, Vienna, Austria)

QuantCenter (3Dhistech,
Budapest, Hungary); TissueQuest
(TissueGnostics, Vienna, Austria)

[121]

Gastric cancer CD68, CD163, CD3,
MPO, Foxp3.

ScanScope CS (Aperio Technologies,
Vista, CA, USA)

ImageScope (Aperio Technologies,
Vista, CA, USA) [122]

Gastric cancer CD3, CD4, CD8, PD-1 ScanScope CS2 (Aperio
Technologies, Vista, CA, USA)

ImageScope (Aperio Technologies,
Vista, CA, USA) [122]

Gastric cancer CD8, FoxP3 ScanScope XT (Aperio Technologies,
Vista, CA, USA)

image analysis
system—ScanScope XT (Aperio
Technologies, Vista, CA, USA)

[123]

Gastric cancer CD8, Foxp3 n.s.
Aperio image analysis system

(Leica Biosystems Inc., Richmond,
IL, USA)

[124]

Gastric cancer CD8, Foxp3, CD3,
CD56

Vectra Multispectral Imaging
System version 2 (PerkinElmer,

Waltham, MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [125]

Gastric and
esophageal

cancer
CD3, CD8 n.s. HALO (Indica Labs, Albuquerque,

NM, USA [126]
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Table 2. Cont.

Cancer Type Markers Scanner/Microscope Quantification System Reference

Gastric cancer
and

metastasis
PD-L1 n.s.

Aperio Imagescope IHC
Membrane Image Analysis

software (Aperio Technologies,
Vista, CA, USA)

[127]

HCC CD3, CD8 n.s. ImagePro Plus (Media Cybernetics,
Rockville, MD, USA) [128]

HCC CD3, CD8 Nikon E600 (Nikon, Tokyo, Japan); ImageJ software (NIH, Bethesda,
MD, USA) [129]

HCC
CD3, CD15, CD20,

CD23, CD68, Foxp3,
LTß

Ariol SL-50 (Applied Imaging) Image analysis system (Applied
Imaging) [4]

HCC CD3, CD8, PD-1,
TIM3

Vectra 3 (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [130]

HCC

CD3, CD4, CD8,
CD20, CD27, CD40,
CD38, CD56, CD68,

CD138, S100,
Granzyme B, Ki67

Mantra (PerkinElmer, Waltham,
MA, USA)

ImagePro Plus (Media Cybernetics,
Rockville, MD, USA) [131]

HCC CD3, CD8, CD45RO, n.s. ImagePro Plus (Media Cybernetics,
Rockville, MD, USA) [132]

HCC FoxP3, CD4, CD8,
CD34

Olympus BX51 (Olympus,
Tokyo, Japan)

ImagePro Plus (Media Cybernetics,
Rockville, MD, USA) [133]

HNSCC FOXP3, CD8 n.s.
Visiopharm image analysis

software (Visiopharm,
Copenhagen, Denmark)

[134]

HNSCC CD3, CD8 Aperio AT2 scanner (Leica
Biosystems Inc., Richmond, IL, USA)

StrataQuest (TissueGnostics,
Vienna, Austria) [135]

Melanoma PD-L1 Philips Ultra Fast Scanner 300
(Philips, Amsterdam, Netherlands)

HALO (Indica Labs, Albuquerque,
NM, USA [136]

Melanoma CD20 TissueFAXS (TissueGnostics, Vienna,
Austria)

HistoQuest (TissueGnostics,
Vienna, Austria) [137]

Melanoma CD3, CD8, CD68,
SOX10, Ki67

Mantra (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [138]

Melanoma

CD19, CD20, CD27,
CD38, CD138, CD5,
CD8, Foxp3, CD4,

CD69, CD103,
CD45RO, CXCL13,
CD21, CD23, Bcl6

Vectra Multispectral Imaging
System version 2 (PerkinElmer,

Waltham, MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [139]

NSCLC CD8, PD-1 Philips Ultra Fast Scanner 300
(Philips, Amsterdam, Netherlands)

HALO (Indica Labs, Albuquerque,
NM, USA [140]

NSCLC CD8 NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

Calopix software (TRIBVN
Healthcare, Paris, France) [141]

NSCLC

PD-L1, TIM, CD3,
CD4, CD8, CD57,

granzyme B,
CD45RO, PD-1,

FOXP3

Aperio AT scanner (Leica
Biosystems Inc., Richmond, IL, USA)

Aperio GENIE (Leica Biosystems
Inc., Richmond, IL, USA) [142]

NSCLC CD8, CD4, FOXP3,
CD163, CCL17, IL-13

Vectra Automated Quantitative Pathology Imaging System (PerkinElmer,
Waltham, MA, USA) [143]
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Table 2. Cont.

Cancer Type Markers Scanner/Microscope Quantification System Reference

NSCLC

CD3, CD4, CD8,
CD57, granzyme B,

CD45RO, PD-1,
FOXP3, CD68

Aperio AT scanner (Leica
Biosystems Inc., Richmond, IL, USA)

Aperio GENIE (Leica Biosystems
Inc., Richmond, IL, USA) [144]

NSCLC CD4, CD20, CD8,
Foxp3

NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

Tissue Studio (Definiens, Munich,
Germany) [145]

NSCLC CD68, CD163, PD-L1, Mantra (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [146]

NSCLC CD8, CD4, Foxp3,
CD68

Vectra Multispectral Imaging System
(PerkinElmer, Waltham, MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [147]

NSCLC CD3, CD8, Foxp3 ScanScope CS (Aperio Technologies,
Vista, CA, USA)

GENIE (Aperio Technologies,
Vista, CA, USA) [148]

NSCLC CD8, PD-L1 Aperio AT scanner (Leica
Biosystems Inc., Richmond, IL, USA)

Developer XD (Definiens, Munich,
Germany) [149]

pulmonary
squamous cell

carcinoma
CD8, PD-1 ScanScope (Aperio Technologies,

Vista CA, USA)
ImageScope (Aperio Technologies,

Vista, CA, USA) [150]

pulmonary
squamous cell

carcinoma

CD20, CD21, CD23,
PNAD, DC-LAMP

Vectra 3 (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [151]

Oral
squamous cell

cancer

CD3, CD8, FoxP3,
CD163, PD-L1

Vectra (PerkinElmer, Waltham,
MA, USA)

inForm (PerkinElmer, Waltham,
MA, USA) [152]

Ovarian
cancer

CD8, MHC I, FAP
ISH

Panoramic 250 (3Dhistech, Budapest,
Hungary),

Developer XD (Definiens, Munich,
Germany) [153]

Ovarian
cancer CD8 TissueFAXS (TissueGnostics, Vienna,

Austria)
HistoQuest (TissueGnostics,

Vienna, Austria) [154]

Ovarian
cancer CD8, CD45RO, CD68 Panoramic Flash (3Dhistech,

Budapest, Hungary)
Tissue Studio (Definiens, Munich,

Germany) [155]

Ovarian
cancer CD4, CD8, CD20 Aperio scanner (Leica Biosystems

Inc., Richmond, IL, USA)
ImageScope (Aperio Technologies,

Vista, CA, USA) [156]

Ovarian
cancer CD8 Vectra (PerkinElmer, Waltham,

MA, USA)
inForm (PerkinElmer, Waltham,

MA, USA) [157]

Ovarian
cancer CD8, CD103 TissueFAXS (TissueGnostics, Vienna

Austria)
Fiji, Image J software (NIH,

Bethesda, MD, USA) [158]

Ovarian
cancer CD3, CD4, CD8 n.s. CD3 Quantifier (VM Scope, Berlin,

Germany) [159]

Pancreatic
cancer

CD3, CD8, CD4,
Foxp3, CK8

Vectra Multispectral Imaging
System version 2 (PerkinElmer,

Waltham, MA, USA)

Nuance Image Analysis software;
inForm (PerkinElmer, Waltham,

MA, USA)
[160]

Pancreatic
cancer

DC-LAMP, FoxP3,
CD68, CD3, CD8,

CD4, CD20

Panoramic Flash (3Dhistech,
Budapest, Hungary)

ImageJ software (NIH, Bethesda,
MD, USA) [161]

Pancreatic
cancer CD20, CD8, PD1 dotSlide (Olympus, Tokyo, Japan) ad hoc software [162]

Pancreatic
cancer CD8 NanoZoomer (Hamamatsu

Photonics, Hamamatsu City, Japan)
HALO (Indica Labs, Albuquerque,

NM, USA [163]

Pancreatic
cancer

CD8, PD-L1, CD44,
CD133

TissueFAXS (TissueGnostics, Vienna,
Austria)

TissueQuest (TissueGnostics,
Vienna, Austria) [164]
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Table 2. Cont.

Cancer Type Markers Scanner/Microscope Quantification System Reference

Pancreatic
cancer CD3 NanoZoomer (Hamamatsu

Photonics, Hamamatsu City, Japan)
Tissue Studio (Definiens, Munich,

Germany) [165]

Pancreatic
cancer

CD3, CD8, CD20,
CD66b n.s. ImageJ software (NIH, Bethesda,

MD, USA) [166]

Pancreatic
cancer CD3, CD8 Aperio AT scanner (Leica

Biosystems Inc., Richmond, IL, USA)
ImageJ software (NIH, Bethesda,

MD, USA) [167]

Prostate
cancer

CD3, CD8, CD20,
CD56, CD68, Foxp3

ScanScope XT(Aperio Technologies,
Vista, CA, USA)

ImageScope (Aperio Technologies,
Vista, CA, USA) [168]

Prostate
cancer CD20 ScanScope XT (Aperio Technologies,

Vista, CA, USA)
ImageScope (Aperio Technologies,

Vista, CA, USA) [169]

Prostate
cancer CD3, CD8, Foxp3 NanoZoomer (Hamamatsu

Photonics, Hamamatsu City, Japan)

Aperio Digital Pathology software
(Leica Biosystems Inc., Richmond

IL, USA)
[170]

Clear cell
renal cell

carcinoma

CD8, PD-1, LAG-3,
PD-L1, PD-L2

NanoZoomer (Hamamatsu
Photonics, Hamamatsu City, Japan)

Calopix software (TRIBVN
Healthcare, Paris, France) [171]

CRC, colorectal cancer; CRCLM, colorectal cancer metastasis in the liver; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous
cell carcinoma; NSCLC, non-small cell lung cancer; n.s., not specified.

The examples summarized in Table 2, as well as the example shown in Figure 3 from
Desbois et al. [153] show the immense power of the applications of this technique utilizing
next-generation digital pathology for the assessment of the immune tumor microenviron-
ment. In order to integrate the Immunoscore or other immune cell screening strategies
also into clinical research, such fully automated next-generation digital pathology plat-
forms should be implemented into the process of quantification of the rate of infiltration
of various immune cell populations/markers. Ongoing clinical studies are aiming at the
integration of such platforms in combination with the staining of a set of immune-related
biomarkers including main subpopulation markers and immune checkpoint markers [14].

Figure 3. Analysis of the tumor immune microenvironment using next-generation digital pathology.
A representative example of the automated detection of CD8+ immune cells within the tumor
microenvironment of ovarian cancer by Developer XD (Definiens, Munich, Germany). Figure
adapted from Desbois et al., 2020 [153].
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To sum up, the need to automatically assess immune cell markers in situ, as well as
analyzing spatial relationships, and thereby providing a better understanding of various
immune cells populations and their interactions, is crucial for the detection of novel
predictive and prognostic biomarkers as well as for clinical therapy strategy.

5.3. Detection of Blood Vessels

Neoangiogenesis and the resulting vascularization are equally required by the tu-
mor, as in healthy tissues. In both types of tissue, normal and tumor, cell survival and
proliferation depend on oxygen and nutrition supply as well as on removal of carbon
dioxide and metabolic wastes. In contrast to regulated neoangiogenesis in healthy tissues,
tumor angiogenesis is characterized by an uncontrolled, ineffective, often incomplete (and
therefore leaky) growth of new blood vessels within the tumor tissue in order to supply the
tumor mass with oxygen and nutrition [172]. However, the in situ assessment of the density
of blood vessels stained by specific markers such as CD31 or CD34 was shown to correlate
with the aggressiveness of the tumor in a variety of tumor types such as CRC, breast cancer,
gastric cancer, and small cell and non-small cell lung cancer [173]. Furthermore, specific
therapies such as neutralizing antibodies targeting anti-vascular endothelial growth factor
are widely used in several cancer types [174]. However, inhibition of vessel growth has
only been shown to provide limited or even no long-term improvement for cancer types
including hepatocellular carcinoma and CRC [175,176]. However, the use of different
non-standardized methods for detection and quantitation of blood vessel density leads to
contradicting data in terms of influence on patient survival [177]. Therefore, the unbiased
automated quantification of blood vessels could help to identify patient groups that would
benefit from anti-angiogenic therapies.

Summarized in Table 3 are studies where next-generation digital pathology was used
to detected blood vessels/blood vessel densities. Thereby we want to emphasize that
the next-generation digital pathology approach is highly versatile and can be applied to
various research needs and questions, not only to single cell detection or dot (RNA ISH)
detection but also for the analysis of more complex structures such as blood vessels.

Table 3. Studies using next-generation digital pathology for the quantification of blood vessels.

Cancer Type Markers Scanner/Microscope Quantification System References

Breast cancer CD34
Olympus BX41

(Olympus,
Tokyo, Japan)

Cell D software
(Olympus,

Tokyo, Japan)
[178]

Breast cancer CD34

NanoZoomer
(Hamamatsu

Photonics,
Hamamatsu
City, Japan)

Slidepath Image
Analysis system (Leica

Biosystems Inc.,
Richmond, IL, USA)

[179]

Breast cancer CD34
TissueFAXS

(TissueGnostics,
Vienna, Austria)

HistoQuest
(TissueGnostics, Vienna,

Austria)
[180]

Breast cancer
metastasis CD31

Panoramic 250
(3Dhistech,

Budapest, Hungary)

Visiopharm image
analysis software

(Visiopharm,
Copenhagen, Denmark)

[181]

CRC CD31
Mirax slide scanner
system (3Dhistech,

Budapest, Hungary)

Image J software (NIH,
Bethesda, MD, USA) [182]

CRC CD31
TissueFAXS

(TissueGnostics,
Vienna, Austria)

StrataQuest
(TissueGnostics, Vienna,

Austria)
[183]
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Table 3. Cont.

Cancer Type Markers Scanner/Microscope Quantification System References

ESCC CD31
TissueFAXS

(TissueGnostics,
Vienna, Austria)

HistoQuest,
TissueQuest

(TissueGnostics, Vienna,
Austria)

[184]

Human tumor CD31,
CD34

Aperio (Leica
Biosystems Inc.,

Richmond, IL, USA)

Fiji, Image J software
(NIH, Bethesda,

MD, USA)
[185]

Melanoma CD31
Aperio CS Scanner

(Leica Biosystems Inc.,
Richmond, IL, USA)

Aperio image analysis
system (Leica

Biosystems Inc.,
Richmond, IL, USA)

[186]

Pancreatic
cancer CD31 n.s.

The Ariol™ image
analysis system

(Genetix, New Milton,
England)

[187]

Renal cancer CD34 Zeiss Axio Scan.Z1
(Zeiss, Jena, Germany)

Developer XD, Tissue
Studio (Definiens,

Munich, Germany)
[188]

Rectal cancer CD34
ScanScope CS (Aperio

Technologies, Vista,
CA, USA)

ImageScope (Aperio
Technologies, Vista,

CA, USA)
[189]

Tongue cancer PNAd
ScanScope T3 (Aperio

Technologies, Vista,
CA, USA)

Image J software (NIH,
Bethesda, MD, USA) [190]

CRC, colorectal cancer; n.s., not specified; ESCC, esophageal squamous cell carcinoma.

6. Conclusions

Within this review, we show several application fields that contribute to next-generation
digital pathology, including the analysis of RNA ISH, conventional and/or multiplexed
immunophenotyping, and blood vessel detection in the tumor microenvironment. Due to
new staining technologies that allow a higher number of markers, one of the new challenges
is high-dimensional data mining, which needs to be addressed by next-generation digital
pathology platform providers. Several platforms are available on the market tackling
different kinds of requests, including slide scanning, management of a large amount of
data, follow-up image analysis with integrated AI modules, as well as high-dimensional
data mining. Next-generation digital pathology has the potential to elevate research and
clinics by providing automated, unbiased, fast, reproducible, and therefore reliable image
cytometry.

The integration of data obtained by automated analyses, referring to the levels of DNA,
RNA—including non-coding RNA—and proteins, will allow the development of tools for
research and diagnostics within the scope of precision medicine, i.e., with a focus on the
molecular mechanisms involved in disease formation in individual patients rather than
averaged cohorts, in which individual yet decisive details get lost. This is the expanding
area of tissue cytometry—and the era of next-generation digital pathology.

Author Contributions: Conception and design, F.M., R.C.E. and J.B.; Writing—original draft, F.M.,
A.F., B.B., B.L. and R.N.; Writing—review and editing, R.C.E. and J.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Genes 2021, 12, 538 19 of 27

Conflicts of Interest: Some of the authors (F.M., R.C.E., B.B., R.N. and B.L.) are employees of
TissueGnostics, which is a for-profit company.

References
1. World Health Organization. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 7 Jan-

uary 2021).
2. Macconaill, L.E.; Garraway, L.A. Clinical implications of the cancer genome. J. Clin. Oncol. 2010, 28, 5219–5228. [CrossRef]
3. Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [CrossRef]
4. Finkin, S.; Yuan, D.; Stein, I.; Taniguchi, K.; Weber, A.; Unger, K.; Browning, J.L.; Goossens, N.; Nakagawa, S.; Gunasekaran,

G.; et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat.
Immunol. 2015, 16, 1235–1244. [CrossRef]

5. Dikshit, A.; Phatak, J.; Kernag, S.; Pimental, H.; Zong, H.; Todorov, C.; Hernandez, L.; Kim, J.; Zhang, B.; Anderson, C.; et al.
Abstract 2706: Spatially resolve RNA and protein simultaneously in FFPE tumor samples by combining RNAscope in situ
hybridization and immunohistochemistry assays. Cancer Res. 2020, 80, 2706. [CrossRef]

6. Morley-Bunker, A.; Pearson, J.; Currie, M.J.; Morrin, H.; Whitehead, M.R.; Eglinton, T.; Walker, L.C. Assessment of intra-tumoural
colorectal cancer prognostic biomarkers using RNA in situ hybridisation. Oncotarget 2019, 10, 1425–1439. [CrossRef]

7. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
8. Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al.

Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [CrossRef]
9. Zhan, F.; Huang, Y.; Colla, S.; Stewart, J.P.; Hanamura, I.; Gupta, S.; Epstein, J.; Yaccoby, S.; Sawyer, J.; Burington, B.; et al. The

molecular classification of multiple myeloma. Blood 2006, 108, 2020–2028. [CrossRef]
10. Michaelevski, I.; Chikvashvili, D.; Tsuk, S.; Singer-Lahat, D.; Kang, Y.; Linial, M.; Gaisano, H.Y.; Fili, O.; Lotan, I. Direct interaction

of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating. J. Biol. Chem. 2003, 278,
34320–34330. [CrossRef]

11. Waylen, L.N.; Nim, H.T.; Martelotto, L.G.; Ramialison, M. From whole-mount to single-cell spatial assessment of gene expression
in 3D. Commun. Biol. 2020, 3, 602. [CrossRef]

12. Voith von Voithenberg, L.; Fomitcheva Khartchenko, A.; Huber, D.; Schraml, P.; Kaigala, G.V. Spatially multiplexed RNA in situ
hybridization to reveal tumor heterogeneity. Nucleic Acids Res. 2020, 48, e17. [CrossRef]

13. Matos, L.L.; Trufelli, D.C.; de Matos, M.G.; da Silva Pinhal, M.A. Immunohistochemistry as an important tool in biomarkers
detection and clinical practice. Biomark Insights 2010, 5, 9–20. [CrossRef]

14. Shakya, R.; Nguyen, T.H.; Waterhouse, N.; Khanna, R. Immune contexture analysis in immuno-oncology: Applications and
challenges of multiplex fluorescent immunohistochemistry. Clin. Transl. Immunol. 2020, 9, e1183. [CrossRef]

15. Ecker, R.C.; Rogojanu, R.; Streit, M.; Oesterreicher, K.; Steiner, G.E. An improved method for discrimination of cell populations
in tissue sections using microscopy-based multicolor tissue cytometry. Cytom. Part A J. Int. Soc. Anal. Cytol. 2006, 69, 119–123.
[CrossRef]

16. Ecker, R.C.; Steiner, G.E. Microscopy-based multicolor tissue cytometry at the single-cell level. Cytom. Part A J. Int. Soc. Anal.
Cytol. 2004, 59, 182–190. [CrossRef]

17. Parwani, A.V. Next generation diagnostic pathology: Use of digital pathology and artificial intelligence tools to augment a
pathological diagnosis. Diagn. Pathol. 2019, 14, 138. [CrossRef]

18. Nagpal, K.; Foote, D.; Liu, Y.; Chen, P.-H.C.; Wulczyn, E.; Tan, F.; Olson, N.; Smith, J.L.; Mohtashamian, A.; Wren, J.H.; et al.
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2019,
2, 48. [CrossRef]

19. Jiao, Y.; Li, J.; Qian, C.; Fei, S. Deep learning-based tumor microenvironment analysis in colon adenocarcinoma histopathological
whole-slide images. Comput. Methods Programs Biomed. 2021, 204, 106047. [CrossRef]

20. Kwak, M.S.; Lee, H.H.; Yang, J.M.; Cha, J.M.; Jeon, J.W.; Yoon, J.Y.; Kim, H.I. Deep Convolutional Neural Network-Based Lymph
Node Metastasis Prediction for Colon Cancer Using Histopathological Images. Front. Oncol. 2021, 10, 3053. [CrossRef]

21. Bilal, M.; Raza, S.E.A.; Azam, A.; Graham, S.; Ilyas, M.; Cree, I.A.; Snead, D.; Minhas, F.; Rajpoot, N.M. Novel deep learning
algorithm predicts the status of molecular pathways and key mutations in colorectal cancer from routine histology images.
medRxiv 2021. [CrossRef]

22. Mittal, S.; Yeh, K.; Leslie, L.S.; Kenkel, S.; Kajdacsy-Balla, A.; Bhargava, R. Simultaneous cancer and tumor microenvironment
subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proc. Natl. Acad. Sci. USA 2018, 115,
E5651–E5660. [CrossRef]

23. Wang, S.; Rong, R.; Yang, D.M.; Fujimoto, J.; Yan, S.; Cai, L.; Yang, L.; Luo, D.; Behrens, C.; Parra, E.R.; et al. Computational
Staining of Pathology Images to Study the Tumor Microenvironment in Lung Cancer. Cancer Res. 2020, 80, 2056–2066. [CrossRef]

24. Diao, J.A.; Wang, J.K.; Chui, W.F.; Mountain, V.; Gullapally, S.C.; Srinivasan, R.; Mitchell, R.N.; Glass, B.; Hoffman, S.; Rao,
S.K.; et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular
phenotypes. Nat. Commun. 2021, 12, 1613. [CrossRef]

25. Dieu-Nosjean, M.C.; Goc, J.; Giraldo, N.A.; Sautès-Fridman, C.; Fridman, W.H. Tertiary lymphoid structures in cancer and beyond.
Trends Immunol. 2014, 35, 571–580. [CrossRef]

https://www.who.int/health-topics/cancer#tab=tab_1
http://doi.org/10.1200/JCO.2009.27.4944
http://doi.org/10.1038/onc.2008.271
http://doi.org/10.1038/ni.3290
http://doi.org/10.1158/1538-7445.Am2020-2706
http://doi.org/10.18632/oncotarget.26675
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1038/35021093
http://doi.org/10.1182/blood-2005-11-013458
http://doi.org/10.1074/jbc.M304943200
http://doi.org/10.1038/s42003-020-01341-1
http://doi.org/10.1093/nar/gkz1151
http://doi.org/10.4137/bmi.s2185
http://doi.org/10.1002/cti2.1183
http://doi.org/10.1002/cyto.a.20219
http://doi.org/10.1002/cyto.a.20052
http://doi.org/10.1186/s13000-019-0921-2
http://doi.org/10.1038/s41746-019-0112-2
http://doi.org/10.1016/j.cmpb.2021.106047
http://doi.org/10.3389/fonc.2020.619803
http://doi.org/10.1101/2021.01.19.21250122
http://doi.org/10.1073/pnas.1719551115
http://doi.org/10.1158/0008-5472.can-19-1629
http://doi.org/10.1038/s41467-021-21896-9
http://doi.org/10.1016/j.it.2014.09.006


Genes 2021, 12, 538 20 of 27

26. Tan, W.C.C.; Nerurkar, S.N.; Cai, H.Y.; Ng, H.H.M.; Wu, D.; Wee, Y.T.F.; Lim, J.C.T.; Yeong, J.; Lim, T.K.H. Overview of multiplex
immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 2020, 40, 135–153.
[CrossRef]

27. Remark, R.; Lupo, A.; Alifano, M.; Biton, J.; Ouakrim, H.; Stefani, A.; Cremer, I.; Goc, J.; Regnard, J.F.; Dieu-Nosjean, M.C.; et al.
Immune contexture and histological response after neoadjuvant chemotherapy predict clinical outcome of lung cancer patients.
Oncoimmunology 2016, 5, e1255394. [CrossRef]

28. Glass, G.; Papin, J.A.; Mandell, J.W. SIMPLE: A sequential immunoperoxidase labeling and erasing method. J. Histochem.
Cytochem. 2009, 57, 899–905. [CrossRef]

29. Remark, R.; Merghoub, T.; Grabe, N.; Litjens, G.; Damotte, D.; Wolchok, J.D.; Merad, M.; Gnjatic, S. In-depth tissue profiling using
multiplexed immunohistochemical consecutive staining on single slide. Sci. Immunol. 2016, 1, aaf6925. [CrossRef]

30. Sun, Z.; Nyberg, R.; Wu, Y.; Bernard, B.; Redmond, W.L. Developing an enhanced 7-color multiplex IHC protocol to dissect
immune infiltration in human cancers. PLoS ONE 2021, 16, e0247238. [CrossRef]

31. Blenman, K.R.M.; Bosenberg, M.W. Immune Cell and Cell Cluster Phenotyping, Quantitation, and Visualization Using In Silico
Multiplexed Images and Tissue Cytometry. Cytom. Part A J. Int. Soc. Anal. Cytol. 2019, 95, 399–410. [CrossRef]

32. Lin, J.R.; Izar, B.; Wang, S.; Yapp, C.; Mei, S.; Shah, P.M.; Santagata, S.; Sorger, P.K. Highly multiplexed immunofluorescence imag-
ing of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 2018, 7. [CrossRef]

33. Gerdes, M.J.; Sevinsky, C.J.; Sood, A.; Adak, S.; Bello, M.O.; Bordwell, A.; Can, A.; Corwin, A.; Dinn, S.; Filkins, R.J.; et al.
Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 2013, 110,
11982–11987. [CrossRef]

34. Goltsev, Y.; Samusik, N.; Kennedy-Darling, J.; Bhate, S.; Hale, M.; Vazquez, G.; Black, S.; Nolan, G.P. Deep Profiling of Mouse
Splenic Architecture with CODEX Multiplexed Imaging. Cell 2018, 174, 968–981.e915. [CrossRef]

35. Parra, E.R.; Francisco-Cruz, A.; Wistuba, I.I. State-of-the-Art of Profiling Immune Contexture in the Era of Multiplexed Staining
and Digital Analysis to Study Paraffin Tumor Tissues. Cancers 2019, 11, 247. [CrossRef]

36. Du, Z.; Lin, J.R.; Rashid, R.; Maliga, Z.; Wang, S.; Aster, J.C.; Izar, B.; Sorger, P.K.; Santagata, S. Qualifying antibodies for
image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 2019, 14, 2900–2930. [CrossRef]

37. Bhargava, R.; Madabhushi, A. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology. Annu. Rev.
Biomed. Eng. 2016, 18, 387–412. [CrossRef]

38. Ghaznavi, F.; Evans, A.; Madabhushi, A.; Feldman, M. Digital Imaging in Pathology: Whole-Slide Imaging and Beyond. Annu.
Rev. Pathol. Mech. Dis. 2013, 8, 331–359. [CrossRef]

39. Fertig, R.M.; Sangueza, O.; Gaudi, S.; Gamret, A.C.; Cervantes, J.; Jukic, D.M. Whole Slide Imaging. Am. J. Dermatopathol. 2018, 40,
938–939. [CrossRef]

40. Hamilton, P.W.; Bankhead, P.; Wang, Y.; Hutchinson, R.; Kieran, D.; McArt, D.G.; James, J.; Salto-Tellez, M. Digital pathology and
image analysis in tissue biomarker research. Methods 2014, 70, 59–73. [CrossRef]

41. Meshcheryakova, A.; Mungenast, F.; Ecker, R.; Mechtcheriakova, D. Tissue Image Cytometry. In COMULIS IoP-IPEM
Ebook/Textbook: A Compendium of Imaging Modalities for Biological and Preclinicial Research; accepted for publication.

42. Stevens, S.S. On the Theory of Scales of Measurement. Science 1946, 103, 677–680. [CrossRef]
43. Meshcheryakova, A.; Zimmermann, P.; Ecker, R.; Mungenast, F.; Heinze, G.; Mechtcheriakova, D. An Integrative MuSiCO

Algorithm: From the Patient-Specific Transcriptional Profiles to Novel Checkpoints in Disease Pathobiology. In Systems Biology;
Rajewsky, N., Jurga, S., Barciszewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 351–372. [CrossRef]

44. Pantanowitz, L.; Sharma, A.; Carter, A.B.; Kurc, T.; Sussman, A.; Saltz, J. Twenty Years of Digital Pathology: An Overview of the
Road Travelled, What is on the Horizon, and the Emergence of Vendor-Neutral Archives. J. Pathol. Inform. 2018, 9, 40. [CrossRef]

45. Meijering, E. A bird’s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 2020, 18, 2312–2325. [CrossRef]
46. Zhang, M.; Zhou, Y.; Zhao, J.; Man, Y.; Liu, B.; Yao, R. A survey of semi- and weakly supervised semantic segmentation of images.

Artif. Intell. Rev. 2020, 53, 4259–4288. [CrossRef]
47. Wilson, G.; Cook, D. A Survey of Unsupervised Deep Domain Adaptation. Assoc. Comput. Mach. 2020, 11. [CrossRef]
48. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
49. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.

2019, 10. [CrossRef]
50. Wang, J.; Su, X.; Zhao, L.; Zhang, J. Deep Reinforcement Learning for Data Association in Cell Tracking. Front. Bioeng. Biotechnol.

2020, 8, 298. [CrossRef]
51. Wong, M.L.; Medrano, J.F. Real-time PCR for mRNA quantitation. BioTechniques 2005, 39, 75–85. [CrossRef]
52. Wang, F.; Flanagan, J.; Su, N.; Wang, L.C.; Bui, S.; Nielson, A.; Wu, X.; Vo, H.T.; Ma, X.J.; Luo, Y. RNAscope: A novel in situ RNA

analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. JMD 2012, 14, 22–29. [CrossRef]
53. Grün, D.; van Oudenaarden, A. Design and Analysis of Single-Cell Sequencing Experiments. Cell 2015, 163, 799–810. [CrossRef]
54. Jin, L.; Lloyd, R.V. In situ hybridization: Methods and applications. J. Clin. Lab. Anal. 1997, 11, 2–9. [CrossRef]
55. Kenny, D.; Shen, L.P.; Kolberg, J.A. Detection of viral infection and gene expression in clinical tissue specimens using branched

DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 2002, 50, 1219–1227. [CrossRef]
56. Thomsen, R.; Nielsen, P.S.; Jensen, T.H. Dramatically improved RNA in situ hybridization signals using LNA-modified probes.

RNA 2005, 11, 1745–1748. [CrossRef]

http://doi.org/10.1002/cac2.12023
http://doi.org/10.1080/2162402x.2016.1255394
http://doi.org/10.1369/jhc.2009.953612
http://doi.org/10.1126/sciimmunol.aaf6925
http://doi.org/10.1371/journal.pone.0247238
http://doi.org/10.1002/cyto.a.23668
http://doi.org/10.7554/eLife.31657
http://doi.org/10.1073/pnas.1300136110
http://doi.org/10.1016/j.cell.2018.07.010
http://doi.org/10.3390/cancers11020247
http://doi.org/10.1038/s41596-019-0206-y
http://doi.org/10.1146/annurev-bioeng-112415-114722
http://doi.org/10.1146/annurev-pathol-011811-120902
http://doi.org/10.1097/dad.0000000000001008
http://doi.org/10.1016/j.ymeth.2014.06.015
http://doi.org/10.1126/science.103.2684.677
http://doi.org/10.1007/978-3-319-92967-5_18
http://doi.org/10.4103/jpi.jpi_69_18
http://doi.org/10.1016/j.csbj.2020.08.003
http://doi.org/10.1007/s10462-019-09792-7
http://doi.org/10.1145/3400066
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.1145/3298981
http://doi.org/10.3389/fbioe.2020.00298
http://doi.org/10.2144/05391rv01
http://doi.org/10.1016/j.jmoldx.2011.08.002
http://doi.org/10.1016/j.cell.2015.10.039
http://doi.org/10.1002/(SICI)1098-2825(1997)11:1&lt;2::AID-JCLA2&gt;3.0.CO;2-F
http://doi.org/10.1177/002215540205000909
http://doi.org/10.1261/rna.2139705


Genes 2021, 12, 538 21 of 27

57. Yin, V.P. In Situ Detection of MicroRNA Expression with RNAscope Probes. Methods Mol. Biol. 2018, 1649, 197–208. [CrossRef]
58. Cassidy, A.; Jones, J. Developments in in situ hybridisation. Methods 2014, 70, 39–45. [CrossRef]
59. Wang, H.; Su, N.; Wang, L.C.; Wu, X.; Bui, S.; Nielsen, A.; Vo, H.T.; Luo, Y.; Ma, X.J. Dual-color ultrasensitive bright-field RNA in

situ hybridization with RNAscope. Methods Mol. Biol. 2014, 1211, 139–149. [CrossRef]
60. Carossino, M.; Loynachan, A.T.; James MacLachlan, N.; Drew, C.; Shuck, K.M.; Timoney, P.J.; Del Piero, F.; Balasuriya, U.B.

Detection of equine arteritis virus by two chromogenic RNA in situ hybridization assays (conventional and RNAscope(®)) and
assessment of their performance in tissues from aborted equine fetuses. Arch. Virol. 2016, 161, 3125–3136. [CrossRef]

61. Deleage, C.; Wietgrefe, S.W.; Del Prete, G.; Morcock, D.R.; Hao, X.P.; Piatak, M., Jr.; Bess, J.; Anderson, J.L.; Perkey, K.E.; Reilly,
C.; et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. Pathog. Immun. 2016, 1, 68–106. [CrossRef]

62. Roe, C.J.; Siddiqui, M.T.; Lawson, D.; Cohen, C. RNA In Situ Hybridization for Epstein-Barr Virus and Cytomegalovirus:
Comparison With In Situ Hybridization and Immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. AIMM 2019, 27,
155–159. [CrossRef]

63. Wang, H.; Wang, M.X.; Su, N.; Wang, L.C.; Wu, X.; Bui, S.; Nielsen, A.; Vo, H.T.; Nguyen, N.; Luo, Y.; et al. RNAscope for in situ
detection of transcriptionally active human papillomavirus in head and neck squamous cell carcinoma. J. Vis. Exp. JoVE 2014.
[CrossRef]

64. Zhang, W.; Svensson Akusjärvi, S.; Sönnerborg, A.; Neogi, U. Characterization of Inducible Transcription and Translation-
Competent HIV-1 Using the RNAscope ISH Technology at a Single-Cell Resolution. Front. Microbiol. 2018, 9, 2358. [CrossRef]

65. Venteicher, A.S.; Tirosh, I.; Hebert, C.; Yizhak, K.; Neftel, C.; Filbin, M.G.; Hovestadt, V.; Escalante, L.E.; Shaw, M.L.; Rodman,
C.; et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017, 355.
[CrossRef]

66. Zeisel, A.; Hochgerner, H.; Lönnerberg, P.; Johnsson, A.; Memic, F.; van der Zwan, J.; Häring, M.; Braun, E.; Borm, L.E.; La Manno,
G.; et al. Molecular Architecture of the Mouse Nervous System. Cell 2018, 174, 999–1014.e1022. [CrossRef]

67. Lee, J.C.; Jeng, Y.M.; Su, S.Y.; Wu, C.T.; Tsai, K.S.; Lee, C.H.; Lin, C.Y.; Carter, J.M.; Huang, J.W.; Chen, S.H.; et al. Identification
of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J. Pathol. 2015, 235, 539–545.
[CrossRef]

68. Wu, G.; Barnhill, R.L.; Lee, S.; Li, Y.; Shao, Y.; Easton, J.; Dalton, J.; Zhang, J.; Pappo, A.; Bahrami, A. The landscape of fusion
transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing. Mod. Pathol. 2016, 29,
359–369. [CrossRef]

69. Nasir, A.; Reising, L.O.; Nedderman, D.M.; Fulford, A.D.; Uhlik, M.T.; Benjamin, L.E.; Schade, A.E.; Holzer, T.R. Heterogeneity
of Vascular Endothelial Growth Factor Receptors 1, 2, 3 in Primary Human Colorectal Carcinoma. Anticancer Res. 2016, 36,
2683–2696.

70. Wang, Z.; Portier, B.P.; Gruver, A.M.; Bui, S.; Wang, H.; Su, N.; Vo, H.T.; Ma, X.J.; Luo, Y.; Budd, G.T.; et al. Automated quantitative
RNA in situ hybridization for resolution of equivocal and heterogeneous ERBB2 (HER2) status in invasive breast carcinoma. J.
Mol. Diagn. JMD 2013, 15, 210–219. [CrossRef]

71. Barry, E.R.; Morikawa, T.; Butler, B.L.; Shrestha, K.; de la Rosa, R.; Yan, K.S.; Fuchs, C.S.; Magness, S.T.; Smits, R.; Ogino, S.; et al.
Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 2013, 493, 106–110. [CrossRef]

72. Jang, B.G.; Lee, B.L.; Kim, W.H. Distribution of LGR5+ cells and associated implications during the early stage of gastric
tumorigenesis. PLoS ONE 2013, 8, e82390. [CrossRef]

73. Ziskin, J.L.; Dunlap, D.; Yaylaoglu, M.; Fodor, I.K.; Forrest, W.F.; Patel, R.; Ge, N.; Hutchins, G.G.; Pine, J.K.; Quirke, P.; et al. In
situ validation of an intestinal stem cell signature in colorectal cancer. Gut 2013, 62, 1012–1023. [CrossRef]

74. Payne, R.E.; Wang, F.; Su, N.; Krell, J.; Zebrowski, A.; Yagüe, E.; Ma, X.J.; Luo, Y.; Coombes, R.C. Viable circulating tumour cell
detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. Br. J.
Cancer 2012, 106, 1790–1797. [CrossRef]

75. Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al.
Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339, 580–584.
[CrossRef]

76. Kim, S.Y.; Theunissen, J.W.; Balibalos, J.; Liao-Chan, S.; Babcock, M.C.; Wong, T.; Cairns, B.; Gonzalez, D.; van der Horst, E.H.;
Perez, M.; et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J.
2015, 5, e316. [CrossRef]

77. Naipal, K.A.; Verkaik, N.S.; Ameziane, N.; van Deurzen, C.H.; Ter Brugge, P.; Meijers, M.; Sieuwerts, A.M.; Martens, J.W.;
O’Connor, M.J.; Vrieling, H.; et al. Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP
inhibitor treatment. Clin. Cancer Res. 2014, 20, 4816–4826. [CrossRef]

78. Carossino, M.; Ip, H.S.; Richt, J.A.; Shultz, K.; Harper, K.; Loynachan, A.T.; Del Piero, F.; Balasuriya, U.B.R. Detection of
SARS-CoV-2 by RNAscope(®) in situ hybridization and immunohistochemistry techniques. Arch. Virol. 2020, 165, 2373–2377.
[CrossRef]

79. Boukerroucha, M.; Josse, C.; ElGuendi, S.; Boujemla, B.; Frères, P.; Marée, R.; Wenric, S.; Segers, K.; Collignon, J.; Jerusalem,
G.; et al. Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers.
BMC Cancer 2015, 15, 755. [CrossRef]

http://doi.org/10.1007/978-1-4939-7213-5_13
http://doi.org/10.1016/j.ymeth.2014.04.006
http://doi.org/10.1007/978-1-4939-1459-3_12
http://doi.org/10.1007/s00705-016-3014-5
http://doi.org/10.20411/pai.v1i1.100
http://doi.org/10.1097/pai.0000000000000568
http://doi.org/10.3791/51426
http://doi.org/10.3389/fmicb.2018.02358
http://doi.org/10.1126/science.aai8478
http://doi.org/10.1016/j.cell.2018.06.021
http://doi.org/10.1002/path.4465
http://doi.org/10.1038/modpathol.2016.37
http://doi.org/10.1016/j.jmoldx.2012.10.003
http://doi.org/10.1038/nature11693
http://doi.org/10.1371/journal.pone.0082390
http://doi.org/10.1136/gutjnl-2011-301195
http://doi.org/10.1038/bjc.2012.137
http://doi.org/10.1126/science.1228522
http://doi.org/10.1038/bcj.2015.39
http://doi.org/10.1158/1078-0432.ccr-14-0571
http://doi.org/10.1007/s00705-020-04737-w
http://doi.org/10.1186/s12885-015-1740-9


Genes 2021, 12, 538 22 of 27

80. Fabbri, E.; Brognara, E.; Montagner, G.; Ghimenton, C.; Eccher, A.; Cantù, C.; Khalil, S.; Bezzerri, V.; Provezza, L.; Bianchi, N.; et al.
Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer 2015, 15, 661. [CrossRef]

81. Lessard, L.; Liu, M.; Marzese, D.M.; Wang, H.; Chong, K.; Kawas, N.; Donovan, N.C.; Kiyohara, E.; Hsu, S.; Nelson, N.; et al. The
CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. J. Investig.
Dermatol. 2015, 135, 2464–2474. [CrossRef]

82. Xing, Z.; Park, P.K.; Lin, C.; Yang, L. LncRNA BCAR4 wires up signaling transduction in breast cancer. RNA Biol. 2015, 12,
681–689. [CrossRef]

83. Welti, J.; Rodrigues, D.N.; Sharp, A.; Sun, S.; Lorente, D.; Riisnaes, R.; Figueiredo, I.; Zafeiriou, Z.; Rescigno, P.; de Bono, J.S.; et al.
Analytical Validation and Clinical Qualification of a New Immunohistochemical Assay for Androgen Receptor Splice Variant-7
Protein Expression in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 70, 599–608. [CrossRef]

84. Guedes, L.B.; Morais, C.L.; Almutairi, F.; Haffner, M.C.; Zheng, Q.; Isaacs, J.T.; Antonarakis, E.S.; Lu, C.; Tsai, H.; Luo, J.; et al.
Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer. Clin. Cancer
Res. 2016, 22, 4651–4663. [CrossRef]

85. Anderson, C.M.; Zhang, B.; Miller, M.; Butko, E.; Wu, X.; Laver, T.; Kernag, C.; Kim, J.; Luo, Y.; Lamparski, H.; et al. Fully
Automated RNAscope In Situ Hybridization Assays for Formalin-Fixed Paraffin-Embedded Cells and Tissues. J. Cell. Biochem.
2016, 117, 2201–2208. [CrossRef]

86. Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. CB 2020, 30, R921–R925. [CrossRef]
87. Du, Z.; Abedalthagafi, M.; Aizer, A.A.; McHenry, A.R.; Sun, H.H.; Bray, M.A.; Viramontes, O.; Machaidze, R.; Brastianos, P.K.;

Reardon, D.A.; et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma.
Oncotarget 2015, 6, 4704–4716. [CrossRef]

88. Patel, K.R.; Liu, T.C.; Vaccharajani, N.; Chapman, W.C.; Brunt, E.M. Characterization of inflammatory (lymphoepithelioma-like)
hepatocellular carcinoma: A study of 8 cases. Arch. Pathol. Lab. Med. 2014, 138, 1193–1202. [CrossRef]

89. De Monte, L.; Wörmann, S.; Brunetto, E.; Heltai, S.; Magliacane, G.; Reni, M.; Paganoni, A.M.; Recalde, H.; Mondino, A.; Falconi,
M.; et al. Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in
Pancreatic Cancer Patients. Cancer Res. 2016, 76, 1792–1803. [CrossRef]

90. Ukpo, O.C.; Thorstad, W.L.; Lewis, J.S., Jr. B7-H1 expression model for immune evasion in human papillomavirus-related
oropharyngeal squamous cell carcinoma. Head Neck Pathol. 2013, 7, 113–121. [CrossRef]

91. Kim, J.; Li, N.; He, M.; Zhang, B.; Su, N.; Ma, X.-J.; Park, E. Abstract A24: Evaluation of the expression of immune functional
markers in the tumor microenvironment. Cancer Immunol. Res. 2017, 5, A24. [CrossRef]

92. Staudt, N.D.; Jo, M.; Hu, J.; Bristow, J.M.; Pizzo, D.P.; Gaultier, A.; VandenBerg, S.R.; Gonias, S.L. Myeloid cell receptor LRP1/CD91
regulates monocyte recruitment and angiogenesis in tumors. Cancer Res. 2013, 73, 3902–3912. [CrossRef]

93. Shames, D.S.; Carbon, J.; Walter, K.; Jubb, A.M.; Kozlowski, C.; Januario, T.; Do, A.; Fu, L.; Xiao, Y.; Raja, R.; et al. High heregulin
expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas
of the head and neck. PLoS ONE 2013, 8, e56765. [CrossRef]

94. Lee, Y.; Shin, J.H.; Longmire, M.; Wang, H.; Kohrt, H.E.; Chang, H.Y.; Sunwoo, J.B. CD44+ Cells in Head and Neck Squamous Cell
Carcinoma Suppress T-Cell-Mediated Immunity by Selective Constitutive and Inducible Expression of PD-L1. Clin. Cancer Res.
2016, 22, 3571–3581. [CrossRef]

95. bitesizebio.com. New-ISH on the Block: Introduction to RNAscope®. Available online: https://bitesizebio.com/40621/new-ish-
on-the-block-introduction-to-rnascope (accessed on 7 January 2021).

96. Annese, T.; Tamma, R.; De Giorgis, M.; Ruggieri, S.; Maiorano, E.; Specchia, G.; Ribatti, D. RNAscope dual ISH-IHC technology to
study angiogenesis in diffuse large B-cell lymphomas. Histochem. Cell Biol. 2020, 153, 185–192. [CrossRef]

97. Chan, S.; Filézac de L’Etang, A.; Rangell, L.; Caplazi, P.; Lowe, J.B.; Romeo, V. A method for manual and automated multiplex
RNAscope in situ hybridization and immunocytochemistry on cytospin samples. PLoS ONE 2018, 13, e0207619. [CrossRef]

98. Yang, J.Q.; Wu, M.; Han, F.Y.; Sun, Y.M.; Zhang, L.; Liu, H.X. High risk HPV detection by RNAscope in situ hybridization
combined with Cdc2 protein expression by immunohistochemistry for prognosis of oropharyngeal squamous cell carcinoma. Int.
J. Clin. Exp. Pathol. 2020, 13, 2192–2200.

99. Angell, H.K.; Gray, N.; Womack, C.; Pritchard, D.I.; Wilkinson, R.W.; Cumberbatch, M. Digital pattern recognition-based image
analysis quantifies immune infiltrates in distinct tissue regions of colorectal cancer and identifies a metastatic phenotype. Br. J.
Cancer 2013, 109, 1618–1624. [CrossRef]

100. Bindea, G.; Mlecnik, B.; Fridman, W.-H.; Galon, J. The prognostic impact of anti-cancer immune response: A novel classification
of cancer patients. Semin. Immunopathol. 2011, 33, 335–340. [CrossRef]

101. Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International
validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391,
2128–2139. [CrossRef]

102. Seo, A.N.; Lee, H.J.; Kim, E.J.; Kim, H.J.; Jang, M.H.; Lee, H.E.; Kim, Y.J.; Kim, J.H.; Park, S.Y. Tumour-infiltrating CD8+
lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer.
Br. J. Cancer 2013, 109, 2705–2713. [CrossRef]

http://doi.org/10.1186/s12885-015-1659-1
http://doi.org/10.1038/jid.2015.200
http://doi.org/10.1080/15476286.2015.1053687
http://doi.org/10.1016/j.eururo.2016.03.049
http://doi.org/10.1158/1078-0432.ccr-16-0205
http://doi.org/10.1002/jcb.25606
http://doi.org/10.1016/j.cub.2020.06.081
http://doi.org/10.18632/oncotarget.3082
http://doi.org/10.5858/arpa.2013-0371-OA
http://doi.org/10.1158/0008-5472.can-15-1801-t
http://doi.org/10.1007/s12105-012-0406-z
http://doi.org/10.1158/2326-6074.tumimm16-a24
http://doi.org/10.1158/0008-5472.can-12-4233
http://doi.org/10.1371/journal.pone.0056765
http://doi.org/10.1158/1078-0432.ccr-15-2665
https://bitesizebio.com/40621/new-ish-on-the-block-introduction-to-rnascope
https://bitesizebio.com/40621/new-ish-on-the-block-introduction-to-rnascope
http://doi.org/10.1007/s00418-019-01834-z
http://doi.org/10.1371/journal.pone.0207619
http://doi.org/10.1038/bjc.2013.487
http://doi.org/10.1007/s00281-011-0264-x
http://doi.org/10.1016/s0140-6736(18)30789-x
http://doi.org/10.1038/bjc.2013.634


Genes 2021, 12, 538 23 of 27

103. García-Martínez, E.; Gil, G.L.; Benito, A.C.; González-Billalabeitia, E.; Conesa, M.A.; García García, T.; García-Garre, E.; Vicente,
V.; Ayala de la Peña, F. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response
and prognosis of breast cancer. Breast Cancer Res. BCR 2014, 16, 488. [CrossRef]

104. Humphries, M.P.; Hynes, S.; Bingham, V.; Cougot, D.; James, J.; Patel-Socha, F.; Parkes, E.E.; Blayney, J.K.; O’Rorke, M.A.; Irwin,
G.W.; et al. Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good
Outcome in ER-/HER2+ Breast Cancer. J. Oncol. 2018, 2018, 2937012. [CrossRef]

105. Rasmusson, A.; Zilenaite, D.; Nestarenkaite, A.; Augulis, R.; Laurinaviciene, A.; Ostapenko, V.; Poskus, T.; Laurinavicius, A.
Immunogradient Indicators for Antitumor Response Assessment by Automated Tumor-Stroma Interface Zone Detection. Am. J.
Pathol. 2020, 190, 1309–1322. [CrossRef]

106. Martinet, L.; Filleron, T.; Le Guellec, S.; Rochaix, P.; Garrido, I.; Girard, J.P. High endothelial venule blood vessels for tumor-
infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J. Immunol. 2013,
191, 2001–2008. [CrossRef]

107. Martinet, L.; Garrido, I.; Filleron, T.; Le Guellec, S.; Bellard, E.; Fournie, J.J.; Rochaix, P.; Girard, J.P. Human solid tumors contain
high endothelial venules: Association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res.
2011, 71, 5678–5687. [CrossRef]

108. Sobral-Leite, M.; Van de Vijver, K.; Michaut, M.; van der Linden, R.; Hooijer, G.K.J.; Horlings, H.M.; Severson, T.M.; Mulligan,
A.M.; Weerasooriya, N.; Sanders, J.; et al. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to
mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology 2018, 7, e1509820. [CrossRef]

109. He, T.F.; Yost, S.E.; Frankel, P.H.; Dagis, A.; Cao, Y.; Wang, R.; Rosario, A.; Tu, T.Y.; Solomon, S.; Schmolze, D.; et al. Multi-panel
immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: Evolution of tumor immune
profiles and patient prognosis. PLoS ONE 2020, 15, e0229955. [CrossRef]

110. Yoon, H.H.; Shi, Q.; Heying, E.N.; Muranyi, A.; Bredno, J.; Ough, F.; Djalilvand, A.; Clements, J.; Bowermaster, R.; Liu, W.W.; et al.
Intertumoral Heterogeneity of CD3(+) and CD8(+) T-Cell Densities in the Microenvironment of DNA Mismatch-Repair-Deficient
Colon Cancers: Implications for Prognosis. Clin. Cancer Res. 2019, 25, 125–133. [CrossRef]

111. Nearchou, I.P.; Lillard, K.; Gavriel, C.G.; Ueno, H.; Harrison, D.J.; Caie, P.D. Automated Analysis of Lymphocytic Infiltration,
Tumor Budding, and Their Spatial Relationship Improves Prognostic Accuracy in Colorectal Cancer. Cancer Immunol. Res. 2019, 7,
609–620. [CrossRef]

112. Chen, Y.; Yuan, R.; Wu, X.; He, X.; Zeng, Y.; Fan, X.; Wang, L.; Wang, J.; Lan, P.; Wu, X. A Novel Immune Marker Model Predicts
Oncological Outcomes of Patients with Colorectal Cancer. Ann. Surg. Oncol. 2016, 23, 826–832. [CrossRef]

113. Edin, S.; Kaprio, T.; Hagström, J.; Larsson, P.; Mustonen, H.; Böckelman, C.; Strigård, K.; Gunnarsson, U.; Haglund, C.; Palmqvist,
R. The Prognostic Importance of CD20(+) B lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell subsets.
Sci. Rep. 2019, 9, 19997. [CrossRef]

114. Miller, T.J.; McCoy, M.J.; Hemmings, C.; Bulsara, M.K.; Iacopetta, B.; Platell, C.F. The prognostic value of cancer stem-like cell
markers SOX2 and CD133 in stage III colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and
CD3. Pathology 2017, 49, 721–730. [CrossRef]

115. Miller, T.J.; Anyaegbu, C.C.; Lee-Pullen, T.F.; Spalding, L.J.; Platell, C.F.; McCoy, M.J. PD-L1+ dendritic cells in the tumor
microenvironment correlate with good prognosis and CD8+ T cell infiltration in colon cancer. Cancer Sci. 2020. [CrossRef]

116. Herrera, M.; Mezheyeuski, A.; Villabona, L.; Corvigno, S.; Strell, C.; Klein, C.; Hölzlwimmer, G.; Glimelius, B.; Masucci, G.;
Sjöblom, T.; et al. Prognostic Interactions between FAP+ Fibroblasts and CD8a+ T Cells in Colon Cancer. Cancers 2020, 12, 3238.
[CrossRef]

117. Mungenast, F.; Meshcheryakova, A.; Beer, A.; Salzmann, M.; Tamandl, D.; Gruenberger, T.; Pietschmann, P.; Koperek, O.; Birner,
P.; Kirsch, I.; et al. The Immune Phenotype of Isolated Lymphoid Structures in Non-Tumorous Colon Mucosa Encrypts the
Information on Pathobiology of Metastatic Colorectal Cancer. Cancers 2020, 12, 3117. [CrossRef]

118. Meshcheryakova, A.; Tamandl, D.; Bajna, E.; Stift, J.; Mittlboeck, M.; Svoboda, M.; Heiden, D.; Stremitzer, S.; Jensen-Jarolim, E.;
Grünberger, T.; et al. B cells and ectopic follicular structures: Novel players in anti-tumor programming with prognostic power
for patients with metastatic colorectal cancer. PLoS ONE 2014, 9, e99008. [CrossRef]

119. Tanis, E.; Julié, C.; Emile, J.F.; Mauer, M.; Nordlinger, B.; Aust, D.; Roth, A.; Lutz, M.P.; Gruenberger, T.; Wrba, F.; et al. Prognostic
impact of immune response in resectable colorectal liver metastases treated by surgery alone or surgery with perioperative
FOLFOX in the randomised EORTC study 40983. Eur. J. Cancer 2015, 51, 2708–2717. [CrossRef]

120. Mlecnik, B.; Van den Eynde, M.; Bindea, G.; Church, S.E.; Vasaturo, A.; Fredriksen, T.; Lafontaine, L.; Haicheur, N.; Marliot, F.;
Debetancourt, D.; et al. Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. J.
Natl. Cancer Inst. 2018, 110, 97–108. [CrossRef]

121. Ma, J.; Li, J.; Qian, M.; Han, W.; Tian, M.; Li, Z.; Wang, Z.; He, S.; Wu, K. PD-L1 expression and the prognostic significance in
gastric cancer: A retrospective comparison of three PD-L1 antibody clones (SP142, 28–8 and E1L3N). Diagn. Pathol. 2018, 13, 91.
[CrossRef]

122. Kim, J.W.; Nam, K.H.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, S.H.; Chang, H.; Lee, J.O.; Kim, Y.J.; Lee, H.S.; et al. Prog-
nostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor
microenvironment in gastric cancer. Gastric Cancer 2016, 19, 42–52. [CrossRef]

http://doi.org/10.1186/s13058-014-0488-5
http://doi.org/10.1155/2018/2937012
http://doi.org/10.1016/j.ajpath.2020.01.018
http://doi.org/10.4049/jimmunol.1300872
http://doi.org/10.1158/0008-5472.can-11-0431
http://doi.org/10.1080/2162402x.2018.1509820
http://doi.org/10.1371/journal.pone.0229955
http://doi.org/10.1158/1078-0432.ccr-18-1984
http://doi.org/10.1158/2326-6066.cir-18-0377
http://doi.org/10.1245/s10434-015-4889-1
http://doi.org/10.1038/s41598-019-56441-8
http://doi.org/10.1016/j.pathol.2017.08.007
http://doi.org/10.1111/cas.14781
http://doi.org/10.3390/cancers12113238
http://doi.org/10.3390/cancers12113117
http://doi.org/10.1371/journal.pone.0099008
http://doi.org/10.1016/j.ejca.2015.08.014
http://doi.org/10.1093/jnci/djx123
http://doi.org/10.1186/s13000-018-0766-0
http://doi.org/10.1007/s10120-014-0440-5


Genes 2021, 12, 538 24 of 27

123. Kim, K.J.; Lee, K.S.; Cho, H.J.; Kim, Y.H.; Yang, H.K.; Kim, W.H.; Kang, G.H. Prognostic implications of tumor-infiltrating FoxP3+
regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum. Pathol. 2014, 45, 285–293. [CrossRef]

124. Koh, J.; Ock, C.Y.; Kim, J.W.; Nam, S.K.; Kwak, Y.; Yun, S.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, W.H.; et al. Clinicopathologic
implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III
gastric cancer patients. Oncotarget 2017, 8, 26356–26367. [CrossRef]

125. Wang, M.; Huang, Y.K.; Kong, J.C.; Sun, Y.; Tantalo, D.G.; Yeang, H.X.A.; Ying, L.; Yan, F.; Xu, D.; Halse, H.; et al. High-dimensional
analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. Clin. Transl. Immunol. 2020, 9,
e1127. [CrossRef]

126. Svensson, M.C.; Warfvinge, C.F.; Fristedt, R.; Hedner, C.; Borg, D.; Eberhard, J.; Micke, P.; Nodin, B.; Leandersson, K.; Jirström, K.
The integrative clinical impact of tumor-infiltrating T lymphocytes and NK cells in relation to B lymphocyte and plasma cell
density in esophageal and gastric adenocarcinoma. Oncotarget 2017, 8, 72108–72126. [CrossRef]

127. Kim, H.-N.; Jang, J.; Heo, Y.J.; Kim, B.; Jung, H.; Jang, Y.; Kang, S.Y.; Kim, S.T.; Lee, J.; Kang, W.K.; et al. PD-L1 expression in
gastric cancer determined by digital image analyses: Pitfalls and correlation with pathologist interpretation. Virchows Arch. 2020,
476, 243–250. [CrossRef]

128. Sun, C.; Xu, J.; Song, J.; Liu, C.; Wang, J.; Weng, C.; Sun, H.; Wei, H.; Xiao, W.; Sun, R.; et al. The predictive value of centre
tumour CD8+ T cells in patients with hepatocellular carcinoma: Comparison with Immunoscore. Oncotarget 2015, 6, 35602–35615.
[CrossRef]

129. Gabrielson, A.; Wu, Y.; Wang, H.; Jiang, J.; Kallakury, B.; Gatalica, Z.; Reddy, S.; Kleiner, D.; Fishbein, T.; Johnson, L.; et al.
Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol. Res. 2016, 4, 419–430.
[CrossRef]

130. Ma, J.; Zheng, B.; Goswami, S.; Meng, L.; Zhang, D.; Cao, C.; Li, T.; Zhu, F.; Ma, L.; Zhang, Z.; et al. PD1(Hi) CD8(+) T cells
correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J. Immunother. Cancer 2019, 7, 331.
[CrossRef]

131. Garnelo, M.; Tan, A.; Her, Z.; Yeong, J.; Lim, C.J.; Chen, J.; Lim, K.H.; Weber, A.; Chow, P.; Chung, A.; et al. Interaction between
tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 2017, 66, 342–351. [CrossRef]

132. Yao, Q.; Bao, X.; Xue, R.; Liu, H.; Liu, H.; Li, J.; Dong, J.; Duan, Z.; Ren, M.; Zhao, J.; et al. Prognostic value of immunoscore to
identify mortality outcomes in adults with HBV-related primary hepatocellular carcinoma. Medicine 2017, 96, e6735. [CrossRef]

133. Huang, Y.; Wang, F.M.; Wang, T.; Wang, Y.J.; Zhu, Z.Y.; Gao, Y.T.; Du, Z. Tumor-infiltrating FoxP3+ Tregs and CD8+ T cells affect
the prognosis of hepatocellular carcinoma patients. Digestion 2012, 86, 329–337. [CrossRef]

134. Amin, D.; Richa, T.; Mollaee, M.; Zhan, T.; Tassone, P.; Johnson, J.; Luginbuhl, A.; Cognetti, D.; Martinez-Outschoorn, U.; Stapp,
R.; et al. Metformin Effects on FOXP3(+) and CD8(+) T Cell Infiltrates of Head and Neck Squamous Cell Carcinoma. Laryngoscope
2020, 130, E490–E498. [CrossRef]

135. Zhang, X.M.; Song, L.J.; Shen, J.; Yue, H.; Han, Y.Q.; Yang, C.L.; Liu, S.Y.; Deng, J.W.; Jiang, Y.; Fu, G.H.; et al. Prognostic and
predictive values of immune infiltrate in patients with head and neck squamous cell carcinoma. Hum. Pathol. 2018, 82, 104–112.
[CrossRef]

136. Koelzer, V.H.; Gisler, A.; Hanhart, J.C.; Griss, J.; Wagner, S.N.; Willi, N.; Cathomas, G.; Sachs, M.; Kempf, W.; Thommen, D.S.; et al.
Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 2018, 73, 397–406. [CrossRef]

137. Garg, K.; Maurer, M.; Griss, J.; Brüggen, M.C.; Wolf, I.H.; Wagner, C.; Willi, N.; Mertz, K.D.; Wagner, S.N. Tumor-associated B cells
in cutaneous primary melanoma and improved clinical outcome. Hum. Pathol. 2016, 54, 157–164. [CrossRef]

138. Gartrell, R.D.; Marks, D.K.; Hart, T.D.; Li, G.; Davari, D.R.; Wu, A.; Blake, Z.; Lu, Y.; Askin, K.N.; Monod, A.; et al. Quantitative
Analysis of Immune Infiltrates in Primary Melanoma. Cancer Immunol. Res. 2018, 6, 481–493. [CrossRef]

139. Griss, J.; Bauer, W.; Wagner, C.; Simon, M.; Chen, M.; Grabmeier-Pfistershammer, K.; Maurer-Granofszky, M.; Roka, F.; Penz, T.;
Bock, C.; et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat.
Commun. 2019, 10, 4186. [CrossRef]

140. Thommen, D.S.; Koelzer, V.H.; Herzig, P.; Roller, A.; Trefny, M.; Dimeloe, S.; Kiialainen, A.; Hanhart, J.; Schill, C.; Hess, C.; et al. A
transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated
with PD-1 blockade. Nat. Med. 2018, 24, 994–1004. [CrossRef]

141. Goc, J.; Germain, C.; Vo-Bourgais, T.K.; Lupo, A.; Klein, C.; Knockaert, S.; de Chaisemartin, L.; Ouakrim, H.; Becht, E.; Alifano,
M.; et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license
the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 2014, 74, 705–715. [CrossRef]

142. Sepesi, B.; Cuentas, E.P.; Canales, J.R.; Behrens, C.; Correa, A.M.; Vaporciyan, A.; Weissferdt, A.; Kalhor, N.; Moran, C.; Swisher,
S.; et al. Programmed Death Cell Ligand 1 (PD-L1) Is Associated With Survival in Stage I Non-Small Cell Lung Cancer. Semin.
Thorac. Cardiovasc. Surg. 2017, 29, 408–415. [CrossRef]

143. Kinoshita, T.; Kudo-Saito, C.; Muramatsu, R.; Fujita, T.; Saito, M.; Nagumo, H.; Sakurai, T.; Noji, S.; Takahata, E.; Yaguchi,
T.; et al. Determination of poor prognostic immune features of tumour microenvironment in non-smoking patients with lung
adenocarcinoma. Eur. J. Cancer 2017, 86, 15–27. [CrossRef]

144. Parra, E.R.; Behrens, C.; Rodriguez-Canales, J.; Lin, H.; Mino, B.; Blando, J.; Zhang, J.; Gibbons, D.L.; Heymach, J.V.; Sepesi,
B.; et al. Image Analysis-based Assessment of PD-L1 and Tumor-Associated Immune Cells Density Supports Distinct Intratumoral
Microenvironment Groups in Non-small Cell Lung Carcinoma Patients. Clin. Cancer Res. 2016, 22, 6278–6289. [CrossRef]

http://doi.org/10.1016/j.humpath.2013.09.004
http://doi.org/10.18632/oncotarget.15465
http://doi.org/10.1002/cti2.1127
http://doi.org/10.18632/oncotarget.19437
http://doi.org/10.1007/s00428-019-02653-2
http://doi.org/10.18632/oncotarget.5801
http://doi.org/10.1158/2326-6066.cir-15-0110
http://doi.org/10.1186/s40425-019-0814-7
http://doi.org/10.1136/gutjnl-2015-310814
http://doi.org/10.1097/md.0000000000006735
http://doi.org/10.1159/000342801
http://doi.org/10.1002/lary.28336
http://doi.org/10.1016/j.humpath.2018.07.012
http://doi.org/10.1111/his.13528
http://doi.org/10.1016/j.humpath.2016.03.022
http://doi.org/10.1158/2326-6066.cir-17-0360
http://doi.org/10.1038/s41467-019-12160-2
http://doi.org/10.1038/s41591-018-0057-z
http://doi.org/10.1158/0008-5472.can-13-1342
http://doi.org/10.1053/j.semtcvs.2017.05.008
http://doi.org/10.1016/j.ejca.2017.08.026
http://doi.org/10.1158/1078-0432.ccr-15-2443


Genes 2021, 12, 538 25 of 27

145. Kinoshita, T.; Muramatsu, R.; Fujita, T.; Nagumo, H.; Sakurai, T.; Noji, S.; Takahata, E.; Yaguchi, T.; Tsukamoto, N.; Kudo-Saito,
C.; et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in
completely resected non-small-cell lung cancer. Ann. Oncol. 2016, 27, 2117–2123. [CrossRef]

146. Cao, L.; Che, X.; Qiu, X.; Li, Z.; Yang, B.; Wang, S.; Hou, K.; Fan, Y.; Qu, X.; Liu, Y. M2 macrophage infiltration into tumor islets
leads to poor prognosis in non-small-cell lung cancer. Cancer Manag. Res. 2019, 11, 6125–6138. [CrossRef]

147. Barua, S.; Fang, P.; Sharma, A.; Fujimoto, J.; Wistuba, I.; Rao, A.U.K.; Lin, S.H. Spatial interaction of tumor cells and regulatory T
cells correlates with survival in non-small cell lung cancer. Lung Cancer 2018, 117, 73–79. [CrossRef]

148. O’Callaghan, D.S.; Rexhepaj, E.; Gately, K.; Coate, L.; Delaney, D.; O’Donnell, D.M.; Kay, E.; O’Connell, F.; Gallagher, W.M.;
O’Byrne, K.J. Tumour islet Foxp3+ T-cell infiltration predicts poor outcome in nonsmall cell lung cancer. Eur. Respir. J. 2015, 46,
1762–1772. [CrossRef]

149. Althammer, S.; Tan, T.H.; Spitzmüller, A.; Rognoni, L.; Wiestler, T.; Herz, T.; Widmaier, M.; Rebelatto, M.C.; Kaplon, H.; Damotte,
D.; et al. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy. J. Immunother. Cancer 2019, 7,
121. [CrossRef]

150. Kim, M.Y.; Koh, J.; Kim, S.; Go, H.; Jeon, Y.K.; Chung, D.H. Clinicopathological analysis of PD-L1 and PD-L2 expression in
pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer
2015, 88, 24–33. [CrossRef]

151. Silin, a, K.; Soltermann, A.; Attar, F.M.; Casanova, R.; Uckeley, Z.M.; Thut, H.; Wandres, M.; Isajevs, S.; Cheng, P.; Curioni-
Fontecedro, A.; et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired
by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 2018, 78, 1308–1320. [CrossRef]

152. Feng, Z.; Bethmann, D.; Kappler, M.; Ballesteros-Merino, C.; Eckert, A.; Bell, R.B.; Cheng, A.; Bui, T.; Leidner, R.; Urba, W.J.; et al.
Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight 2017, 2. [CrossRef]

153. Desbois, M.; Udyavar, A.R.; Ryner, L.; Kozlowski, C.; Guan, Y.; Dürrbaum, M.; Lu, S.; Fortin, J.P.; Koeppen, H.; Ziai, J.; et al.
Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat.
Commun. 2020, 11, 5583. [CrossRef]

154. Bachmayr-Heyda, A.; Aust, S.; Heinze, G.; Polterauer, S.; Grimm, C.; Braicu, E.I.; Sehouli, J.; Lambrechts, S.; Vergote, I.; Mahner,
S.; et al. Prognostic impact of tumor infiltrating CD8+ T cells in association with cell proliferation in ovarian cancer patients–a
study of the OVCAD consortium. BMC Cancer 2013, 13, 422. [CrossRef]

155. Montfort, A.; Owen, S.; Piskorz, A.M.; Supernat, A.; Moore, L.; Al-Khalidi, S.; Böhm, S.; Pharoah, P.; McDermott, J.; Balkwill,
F.R.; et al. Combining measures of immune infiltration shows additive effect on survival prediction in high-grade serous ovarian
carcinoma. Br. J. Cancer 2020, 122, 1803–1810. [CrossRef]

156. Kroeger, D.R.; Milne, K.; Nelson, B.H. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures,
Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 2016, 22, 3005–3015. [CrossRef]

157. Webb, J.R.; Milne, K.; Kroeger, D.R.; Nelson, B.H. PD-L1 expression is associated with tumor-infiltrating T cells and favorable
prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 2016, 141, 293–302. [CrossRef]

158. Komdeur, F.L.; Wouters, M.C.; Workel, H.H.; Tijans, A.M.; Terwindt, A.L.; Brunekreeft, K.L.; Plat, A.; Klip, H.G.; Eggink, F.A.;
Leffers, N.; et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+
T cells that can be targeted for cancer immunotherapy. Oncotarget 2016, 7, 75130–75144. [CrossRef]

159. Stanske, M.; Wienert, S.; Castillo-Tong, D.C.; Kreuzinger, C.; Vergote, I.; Lambrechts, S.; Gabra, H.; Gourley, C.; Ganapathi, R.N.;
Kolaschinski, I.; et al. Dynamics of the Intratumoral Immune Response during Progression of High-Grade Serous Ovarian Cancer.
Neoplasia 2018, 20, 280–288. [CrossRef]

160. Carstens, J.L.; Correa de Sampaio, P.; Yang, D.; Barua, S.; Wang, H.; Rao, A.; Allison, J.P.; LeBleu, V.S.; Kalluri, R. Spatial
computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 2017, 8, 15095.
[CrossRef]

161. Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu,
Y.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017, 551, 512–516.
[CrossRef]

162. Castino, G.F.; Cortese, N.; Capretti, G.; Serio, S.; Di Caro, G.; Mineri, R.; Magrini, E.; Grizzi, F.; Cappello, P.; Novelli, F.; et al.
Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 2016, 5, e1085147.
[CrossRef]

163. Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee,
E.M.; et al. Programmed Cell Death Ligand-1 (PD-L1) and CD8 Expression Profiling Identify an Immunologic Subtype of
Pancreatic Ductal Adenocarcinomas with Favorable Survival. Cancer Immunol. Res. 2019, 7, 886–895. [CrossRef]

164. Hou, Y.C.; Chao, Y.J.; Hsieh, M.H.; Tung, H.L.; Wang, H.C.; Shan, Y.S. Low CD8+ T Cell Infiltration and High PD-L1 Expression
Are Associated with Level of CD44+/CD133+ Cancer Stem Cells and Predict an Unfavorable Prognosis in Pancreatic Cancer.
Cancers 2019, 11, 541. [CrossRef]

165. Ino, Y.; Oguro, S.; Yamazaki-Itoh, R.; Hori, S.; Shimada, K.; Hiraoka, N. Reliable evaluation of tumor-infiltrating lymphocytes in
pancreatic cancer tissue biopsies. Oncotarget 2019, 10, 1149–1159. [CrossRef]

http://doi.org/10.1093/annonc/mdw319
http://doi.org/10.2147/cmar.s199832
http://doi.org/10.1016/j.lungcan.2018.01.022
http://doi.org/10.1183/13993003.00176-2014
http://doi.org/10.1186/s40425-019-0589-x
http://doi.org/10.1016/j.lungcan.2015.01.016
http://doi.org/10.1158/0008-5472.can-17-1987
http://doi.org/10.1172/jci.insight.93652
http://doi.org/10.1038/s41467-020-19408-2
http://doi.org/10.1186/1471-2407-13-422
http://doi.org/10.1038/s41416-020-0822-x
http://doi.org/10.1158/1078-0432.ccr-15-2762
http://doi.org/10.1016/j.ygyno.2016.03.008
http://doi.org/10.18632/oncotarget.12077
http://doi.org/10.1016/j.neo.2018.01.007
http://doi.org/10.1038/ncomms15095
http://doi.org/10.1038/nature24462
http://doi.org/10.1080/2162402x.2015.1085147
http://doi.org/10.1158/2326-6066.cir-18-0822
http://doi.org/10.3390/cancers11040541
http://doi.org/10.18632/oncotarget.26646


Genes 2021, 12, 538 26 of 27

166. Miksch, R.C.; Schoenberg, M.B.; Weniger, M.; Bösch, F.; Ormanns, S.; Mayer, B.; Werner, J.; Bazhin, A.V.; D’Haese, J.G. Prognostic
Impact of Tumor-Infiltrating Lymphocytes and Neutrophils on Survival of Patients with Upfront Resection of Pancreatic Cancer.
Cancers 2019, 11, 39. [CrossRef]

167. Tahkola, K.; Leppänen, J.; Ahtiainen, M.; Väyrynen, J.; Haapasaari, K.M.; Karttunen, T.; Kellokumpu, I.; Helminen, O.; Böhm, J.
Immune cell score in pancreatic cancer-comparison of hotspot and whole-section techniques. Virchows Arch. 2019, 474, 691–699.
[CrossRef]

168. Gannon, P.O.; Poisson, A.O.; Delvoye, N.; Lapointe, R.; Mes-Masson, A.M.; Saad, F. Characterization of the intra-prostatic
immune cell infiltration in androgen-deprived prostate cancer patients. J. Immunol. Methods 2009, 348, 9–17. [CrossRef]

169. Woo, J.R.; Liss, M.A.; Muldong, M.T.; Palazzi, K.; Strasner, A.; Ammirante, M.; Varki, N.; Shabaik, A.; Howell, S.; Kane, C.J.; et al.
Tumor infiltrating B-cells are increased in prostate cancer tissue. J. Transl. Med. 2014, 12, 30. [CrossRef]

170. Kaur, H.B.; Guedes, L.B.; Lu, J.; Maldonado, L.; Reitz, L.; Barber, J.R.; De Marzo, A.M.; Tosoian, J.J.; Tomlins, S.A.; Schaeffer,
E.M.; et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in
prostate cancer. Mod. Pathol. 2018, 31, 1539–1552. [CrossRef]

171. Giraldo, N.A.; Becht, E.; Pagès, F.; Skliris, G.; Verkarre, V.; Vano, Y.; Mejean, A.; Saint-Aubert, N.; Lacroix, L.; Natario, I.; et al.
Orchestration and Prognostic Significance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal
Cell Cancer. Clin. Cancer Res. 2015, 21, 3031–3040. [CrossRef]

172. Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; et al. Role of tumor microenvironment
in tumorigenesis. J. Cancer 2017, 8, 761–773. [CrossRef]

173. Winter, J.; Kneitz, H.; Bröcker, E.B. Blood vessel density in Basal cell carcinomas and benign trichogenic tumors as a marker for
differential diagnosis in dermatopathology. J. Skin Cancer 2011, 2011, 241382. [CrossRef]

174. Jain, R.K. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell 2014, 26, 605–622.
[CrossRef]

175. Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol.
Life Sci. CMLS 2020, 77, 1745–1770. [CrossRef]

176. Tolaney, S.M.; Boucher, Y.; Duda, D.G.; Martin, J.D.; Seano, G.; Ancukiewicz, M.; Barry, W.T.; Goel, S.; Lahdenrata, J.; Isakoff,
S.J.; et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer
patients. Proc. Natl. Acad. Sci. USA 2015, 112, 14325–14330. [CrossRef]

177. Iakovlev, V.V.; Gabril, M.; Dubinski, W.; Scorilas, A.; Youssef, Y.M.; Faragalla, H.; Kovacs, K.; Rotondo, F.; Metias, S.; Arsanious,
A.; et al. Microvascular density as an independent predictor of clinical outcome in renal cell carcinoma: An automated image
analysis study. Lab. Investig. 2012, 92, 46–56. [CrossRef]

178. Niemiec, J.; Sas-Korczynska, B.; Harazin-Lechowska, A.; Martynow, D.; Adamczyk, A. Lymphatic and Blood Vessels in Male
Breast Cancer. Anticancer Res. 2015, 35, 1041–1048.

179. Mohammed, Z.M.A.; Orange, C.; McMillan, D.C.; Mallon, E.; Doughty, J.C.; Edwards, J.; Going, J.J. Comparison of visual and
automated assessment of microvessel density and their impact on outcome in primary operable invasive ductal breast cancer.
Hum. Pathol. 2013, 44, 1688–1695. [CrossRef]

180. Haisan, A.; Rogojanu, R.; Croitoru, C.; Jitaru, D.; Tarniceriu, C.; Danciu, M.; Carasevici, E. Digital microscopy assessment of
angiogenesis in different breast cancer compartments. BioMed Res. Int. 2013, 2013, 286902. [CrossRef]

181. Entenberg, D.; Oktay, M.H.; D’Alfonso, T.; Ginter, P.S.; Robinson, B.D.; Xue, X.; Rohan, T.E.; Sparano, J.A.; Jones, J.G.; Condeelis,
J.S. Validation of an Automated Quantitative Digital Pathology Approach for Scoring TMEM: A Prognostic Biomarker for
Metastasis. Cancers 2020, 12, 846.

182. Den Uil, S.H.; van den Broek, E.; Coupé, V.M.H.; Vellinga, T.T.; Delis-van Diemen, P.M.; Bril, H.; Belt, E.J.T.; Kranenburg, O.;
Stockmann, H.B.A.C.; Belien, J.A.M.; et al. Prognostic value of microvessel density in stage II and III colon cancer patients: A
retrospective cohort study. BMC Gastroenterol. 2019, 19, 146. [CrossRef]

183. Buchberger, E.; Payrhuber, D.; El Harchi, M.; Zagrapan, B.; Scheuba, K.; Zommer, A.; Bugyik, E.; Dome, B.; Kral, J.B.; Schrottmaier,
W.C.; et al. Inhibition of the transcriptional repressor complex Bcl-6/BCoR induces endothelial sprouting but does not promote
tumor growth. Oncotarget 2017, 8, 552–564. [CrossRef]

184. Tzeng, H.T.; Tsai, C.H.; Yen, Y.T.; Cheng, H.C.; Chen, Y.C.; Pu, S.W.; Wang, Y.S.; Shan, Y.S.; Tseng, Y.L.; Su, W.C.; et al.
Dysregulation of Rab37-Mediated Cross-talk between Cancer Cells and Endothelial Cells via Thrombospondin-1 Promotes Tumor
Neovasculature and Metastasis. Clin. Cancer Res. 2017, 23, 2335–2345. [CrossRef]

185. Kather, J.N.; Marx, A.; Reyes-Aldasoro, C.C.; Schad, L.R.; Zöllner, F.G.; Weis, C.A. Continuous representation of tumor microvessel
density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget 2015, 6, 19163–19176. [CrossRef]

186. Marinaccio, C.; Giudice, G.; Nacchiero, E.; Robusto, F.; Opinto, G.; Lastilla, G.; Maiorano, E.; Ribatti, D. Interval sentinel lymph
nodes in melanoma: A digital pathology analysis of Ki67 expression and microvascular density. Clin. Exp. Med. 2016, 16, 383–389.
[CrossRef]

187. Di Maggio, F.; Arumugam, P.; Delvecchio, F.R.; Batista, S.; Lechertier, T.; Hodivala-Dilke, K.; Kocher, H.M. Pancreatic stellate cells
regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma. Pancreatology 2016, 16, 995–1004. [CrossRef]

http://doi.org/10.3390/cancers11010039
http://doi.org/10.1007/s00428-019-02549-1
http://doi.org/10.1016/j.jim.2009.06.004
http://doi.org/10.1186/1479-5876-12-30
http://doi.org/10.1038/s41379-018-0083-x
http://doi.org/10.1158/1078-0432.ccr-14-2926
http://doi.org/10.7150/jca.17648
http://doi.org/10.1155/2011/241382
http://doi.org/10.1016/j.ccell.2014.10.006
http://doi.org/10.1007/s00018-019-03351-7
http://doi.org/10.1073/pnas.1518808112
http://doi.org/10.1038/labinvest.2011.153
http://doi.org/10.1016/j.humpath.2012.11.023
http://doi.org/10.1155/2013/286902
http://doi.org/10.1186/s12876-019-1063-4
http://doi.org/10.18632/oncotarget.13477
http://doi.org/10.1158/1078-0432.ccr-16-1520
http://doi.org/10.18632/oncotarget.4383
http://doi.org/10.1007/s10238-015-0379-9
http://doi.org/10.1016/j.pan.2016.05.393


Genes 2021, 12, 538 27 of 27

188. Schraml, P.; Athelogou, M.; Hermanns, T.; Huss, R.; Moch, H. Specific immune cell and lymphatic vessel signatures identified by
image analysis in renal cancer. Mod. Pathol. 2019, 32, 1042–1052. [CrossRef]

189. Arimoto, A.; Uehara, K.; Tsuzuki, T.; Aiba, T.; Ebata, T.; Nagino, M. Role of bevacizumab in neoadjuvant chemotherapy and its
influence on microvessel density in rectal cancer. Int. J. Clin. Oncol. 2015, 20, 935–942. [CrossRef]

190. Lee, S.Y.; Chao-Nan, Q.; Seng, O.A.; Peiyi, C.; Bernice, W.H.M.; Swe, M.S.; Chii, W.J.; Jacqueline, H.S.G.; Chee, S.K. Changes in
specialized blood vessels in lymph nodes and their role in cancer metastasis. J. Transl. Med. 2012, 10, 206. [CrossRef]

http://doi.org/10.1038/s41379-019-0214-z
http://doi.org/10.1007/s10147-015-0818-3
http://doi.org/10.1186/1479-5876-10-206

	Introduction 
	Multiplexing Techniques as Useful Tools for High-Content Phenotyping 
	Advanced Imaging for Digital Pathology 
	Role of Machine Learning 
	Current Applications of Next-Generation Digital Pathology 
	RNA In Situ Hybridization (ISH) 
	Assessment of the Tumor Immune Microenvironment 
	Detection of Blood Vessels 

	Conclusions 
	References

