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Ultrasound elastography infers mechanical properties of living tissues from ultrasound radiofrequency (RF) data recorded while
the tissues are undergoing deformation. A challenging yet critical step in ultrasound elastography is to estimate the tissue
displacement (or, equivalently the time delay estimate) fields from pairs of RF data. )e RF data are often corrupted with noise,
which causes the displacement estimator to fail in many in vivo experiments. To address this problem, we present a nonlocal,
coherent denoising approach based on Bayesian estimation to reduce the impact of noise. Despite incoherent denoising al-
gorithms that smooth the B-mode images, the proposed denoising algorithm is used to suppress noise while maintaining useful
information such as speckle patterns. We refer to the proposed approach as COherent Denoising for Elastography (CODE) and
evaluate its performance when CODE is used in conjunction with the two state-of-art elastography algorithms, namely: (i) GLobal
Ultrasound Elastography (GLUE) and (ii) Dynamic Programming Analytic Minimization elastography (DPAM). Our results
show that CODE substantially improves the strain result of both GLUE and DPAM.

1. Introduction

Ultrasound elastography determines the viscoelastic prop-
erties of tissues and is useful for diagnosis of pathology and
for aiding surgeons in the operating room. Broadly speaking,
ultrasound elastography can be grouped into two categories
[1–6]: dynamic elastography and quasi-static elastography.
In this paper, we focus on two state-of-art free-hand pal-
pations and quasi-static elastographic approaches, namely,
GLobal Ultrasound Elastography(GLUE) [7] and Real-Time
Regularized Ultrasound Elastography (DPAM) [8]. Both
approaches use successive pairs of frames of ultrasound RF
data to estimate the tissue displacement (also referred to as
time delay estimates (TDE)). )e derivative of TDE provides
an estimate of the induced strain that represents the stiffness
or softness of the tissue being imaged. Figure 1 illustrates
the steps involved in quasi-static ultrasound elastography
with the handheld device shown on the left handside and
the displacement field estimates defined using the two
frames on the right.

At the heart of both GLUE and DPAM is an energy
minimization approach to determine TDE’s. A dynamic
programming approach is used in both cases to compute
TDE’s first at a coarse pixel level.)e resolution of the TDE’s
is then enhanced to the finer subpixel level through ana-
lytical minimization. Given that RF ultrasound data can be
corrupted by several factors such as thermal and electronic
noise, there is a need to compensate for noise in the RF data.
Traditional filtering techniques, such as the convolution with
a Gaussian kernel, use local continuity in the images to reduce
noise. A new class of denoising algorithms, referred to as
nonlocal means (NLM) [9], considers data from amuch larger
“nonlocal” region for denoising. NLM relies on redundancy
in images and uses the weighted average of most similar
intraframe pixels within a large nonlocal neighbourhood to
eliminate noise.

Most NLM-based denoising approaches [10–12] remove
noise from processed output of the RF data, which is referred
to as B-mode images in ultrasound literature. NLM denois-
ing reduces speckle pattern and generates smooth B-mode
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images. Ultrasound speckle is useful in several image analysis
techniques, such as ultrasound elastography [13, 14], free-
hand sensorless 3D ultrasound [15, 16], and quantitative
ultrasound [17]. In this work, we focus on ultrasound
elastography.

In this paper, we present an alternate approach, wherein
the NLM denoising algorithm is applied directly to raw RF
data instead of processed B-mode images. We refer to the
proposed approach as COherent Denoising for Elastography
(CODE) and evaluate its performance on in vivo liver ablation
data when used in conjunction with two commonly used
elastography algorithms, namely: (i) GLobal Ultrasound
Elastography (GLUE) [7] and (ii) Dynamic Programming
Analytic Minimization elastography (DPAM) [8]. CODE
exploits the complete set of information in the RF domain,
some of which is likely to be lost in the processing steps used
to generate the B-mode images. It is, therefore, our intuition
that CODE would result in superior denoising results. Using
information in RF data to generate visually informative
B-mode images is challenging [18]. To illustrate the superi-
ority of CODE, both mathematical analysis and experimental
results are included in the paper. Our comparisons corrob-
orate our intuition and verify the usefulness of CODE.

)e rest of this paper is organized as follows. In Section
2, we introduce GLUE and DPAM as representative quasi-
static elastography approaches. Section 3 provides back-
ground on nonlocal denoising and introduces CODE as
a Bayesian estimator. In Section 4, we explore the ability of
CODE on simulation data. Experimental results using
phantom and in vivo data are included in Section 5. Finally,
we conclude the paper in Section 6.

2. Quasi-Static Elastography: GLUE and DPAM

Both DPAM and GLUE are quasi-static approaches based on
the optimization of a regularized cost function to determine
tissue displacements. )ey both aim at finding the axial and
lateral displacements (a and l) of all samples of RF data as
shown in Figure 1. DPAM uses dynamic programming (DP)
to first estimate the integer displacement of a seed-line in
terms of the number of pixels and then applies analytical
minimization (AM) to fine tune the estimated displacement
to the subpixel level. )e strain image is obtained using the
spatial differentiation of the displacement field. GLUE also
uses DP for estimating the integer tissue displacements and
refines the estimates to subpixels for the entire image si-
multaneously. In other words, GLUE solves an optimization
function where both axial and lateral displacements of every
sample of the RF frame are unknowns, that is, in the order of
a million variables. )is is in contrast to DPAM, which
refines the estimates line-by-line. )e strain image again is
calculated based on the differentiation of displacement map
similar to DPAM. Although GLUE and DPAM perform well
in most cases, they may not converge to the correct solution
in the presence of excessive noise. In the next section, we
present our denoising approach used to reduce the impact of
noise in the RF domain.

3. The Nonlocal Denoising Approach

)e central idea behind this paper is to apply coherent
denoising on RF data. Unlike incoherent denoising ap-
proaches that process the B-mode images to remove noise
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Figure 1: Illustration of ultrasound elastography. (a) A handheld device that induces an external stimulus into the tissues. (b, c) Two
successive frames I1 and I2 of RF data. )e goal of ultrasound elastography was to find the displacement (ai,j, li,j) for each pixel (i, j) in the
I1 RF frame.

2 Journal of Healthcare Engineering



(resulting in spatial averaging and significant loss of speckle
patterns), the proposed approach retains speckle patterns.
We first outline NLM, which is followed by a description of
the CODE algorithm, including an analytical justification of
why CODE provides better denoising results.

3.1. Nonlocal Means. Let v(i) be the observed value of the
discretized image for pixel i and u(i) be its true value. Due to
the presence of noise n(i), we have

v(i) � u(i) + n(i). (1)

To simplify our explanation, we focus on 1D signals, but
our results are generalizable to 2D images. In fact, the ex-
perimental results included in Section 4 are for 2D phantom
and in vivo liver ablation data. To denoise the image for each
pixel i, NLM searches a reference area of the image within
a rectangular search window Δi, which is centered around
pixel i (Figure 2). A neighbourhood Ni of known dimension
is selected around pixel i and compared to neighbourhood
Nj around pixel j for all j ∈ Δi. For pixel i, weight w(i, j) is
assigned to each pixel j.)e value of pixel i is then replaced by

NLM[v](i) � 􏽘
j∈Δi

w(i, j)∗ v(j).
(2)

)e distance metric is proportional to the square of the
Euclidian distance between the two patches. )e weight is
then calculated as

w(i, j) �
1
Zi

exp −
v Ni( 􏼁− v Nj􏼐 􏼑
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Based on (3), it is clear that the weight is the convo-
lution of a Gaussian with standard deviation a> 0 and the
squared Euclidean distance between two neighbourhoods
‖v(Ni)− v(Nj)‖

2
2, for Ni and Nj. )e smoothing parameter

h controls the contribution of the Gaussian-Euclidean
distance exponent in the weights. )e normalization factor
Zi for pixel i is given by

Z(i) � 􏽘
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where the weight is normalized to ensure that the dynamic range
of the NLM[v](i) is the same as that of its counterpart v(i).

3.2. %e Proposed Bayesian CODE Framework. Noise in
ultrasound B-mode images originates from piezoelectric
sensors and data acquisition card. Depending on the ap-
plication, the level of noise can even be higher. For example,
ablation treatment generates heat and microbubbles that
severely deteriorate RF data [19–21]. Both logarithmic
compression and envelope detection steps, applied to derive
the B-mode image, are nonlinear operations that complicate
measurement noise added by sensors and acquisition card.
Our CODE approach eliminates noise introduced by sensors
and acquisition card before the nonlinear logarithmic com-
pression and envelope detection by applying NLM directly to
RF ultrasound data.

We now provide an analytical explanation of why NLM
denoising is adapted for the RF domain. Let g(x) and o(x)

be vectorized ground truth and observed patches of size n

centered at pixel xi of RF data (Figure 2). We define them as
g(x) � g(xk) with xk ∈ Ng(x) and o(x) � o(xk), where
xk ∈ No(x) and No, Ng􏽮 􏽯 are the neighbourhoods
(patches) of size (

�
n

√
×

�
n

√
) around the central pixel x in

ground truth and observed images. Our goal is to derive the
Bayesian estimator 􏽢g(x) for patch g(x) based on the observed
patch o(x). Defining the optimal estimator by minimizing the
posterior expected loss as

E[L(g(x), 􏽢g (x))] � 􏽐
g(x)∈Γ

[L(g(x), 􏽢g(x))]p(g(x)|o(x)),

(5)

where Γ constitutes all possible outcomes of g(x), the loss
function is given by

L(g(x), 􏽢g (x)) � ‖g(x)− 􏽢g(x)‖2 . (6)

Substituting (6) in (5), the optimal Bayesian estimator is

􏽢g (x)opt � argmin
􏽢g(x)

􏽘
g(x)

‖g(x)− 􏽢g(x)‖
2
p(g(x)|o(x))

� 􏽘
g(x)

g(x)p(g(x)|o(x)).
(7)

Equation (7) can be expressed as

􏽢g (x)opt � 􏽘
g(x)

g(x)
p(g(x), o(x))

p(o(x))

�
􏽐g(x)g(x)p(o(x)|g(x))p(g(x))

􏽐g(x)p(o(x)|g(x))p(g(x))
.

(8)

Only a subset of Γ is accessible in the search region of the
central pixel xi. We refer to this subset as the search region,
SR(x) � g1(x), g2(x), g3(x), . . . , gK(x)􏼈 􏼉. Assuming that
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Figure 2: Illustration for the patch and vectorized indices used in
the proposed CODE approach for n � 9.
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cardinality of SR is K and p(g(x)) is uniformly distributed,
that is, p(gi(x)) � 1/K, for all(0≤ i≤K), (8) simplifies to

􏽢g xi( 􏼁 �
􏽐

K
j�1 g xj􏼐 􏼑p o xi( 􏼁

􏼌􏼌􏼌􏼌g xj􏼐 􏼑􏼐 􏼑

􏽐
K
j�1 p o xi( 􏼁

􏼌􏼌􏼌􏼌g xj􏼐 􏼑􏼐 􏼑
, (9)

where 􏽢g(xi) is the optimal estimator based on the uniform
distribution assumption. Given the ground truth is not
accessible, we substitute the observed value of the neigh-
bourhood patches to get

􏽢g xi( 􏼁 �
􏽐

K
j�1 o xj􏼐 􏼑p o xi( 􏼁

􏼌􏼌􏼌􏼌o xj􏼐 􏼑􏼐 􏼑

􏽐
K
j�1 p o xi( 􏼁

􏼌􏼌􏼌􏼌o xj􏼐 􏼑􏼐 􏼑
. (10)

Given that the noise in the RF data is modelled as an
additive Gaussian noise [22, 23], we have

o(x) � g(x) + v(x), (11)

where v(x) is the additive white Gaussian noise with vari-
ance σ2. By assuming that the likelihood can be factorized as

p o xi( 􏼁
􏼌􏼌􏼌􏼌o xj􏼐 􏼑􏼐 􏼑 � 􏽙

n

k�1
p o xi,k􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌o xj,k􏼐 􏼑􏼒 􏼓, (12)

where xi,k ∈ N(xi) and xj,k ∈ N(xj) are the counterpart
pixels in the patches with central pixels xi and xj. )ere-
fore, p(o(xi)|o(xj)) is multivariant normal distributed
p(o(xi)|o(xj)) ∼ N(o(xj), σ2In). Notation In is the identity
matrix. )us, the filter in (10) can be adapted to remove the
noise of RF data as

􏽢g xi( 􏼁 �
1
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(13)

Equation (13) is also known as the NLM algorithm. By
considering the normal distributed assumption, (13) can be
adapted for denoising the RF data by replacing h2 � 2σ2.

)erefore, the adapted filter for denoising the RF data
(CODE) is

􏽢g xi( 􏼁 �
1

C xi( 􏼁
􏽘
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K
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2
/2σ2􏼐 􏼑

.

(14)

)is filter is based on the noise statistics of RF data.
CODE is, therefore, the optimal denoising approach for
removing noise in (11) within the RF domain.

Kevrann et al. [12] and Coupe et al. [10] have developed
similar Bayesian estimators but for reducing the speckles
pattern in the B-mode image. Aligned with themathematical
Bayesian estimator, the properties of noise in RF data show
the usefulness of CODE for removing noise from the RF
ultrasound data.

4. Simulation Validation for Code

To assess the performance of the CODE approach, the Field
II [24] software is used to simulate RF data from a lesion
phantom of size 60, 50, and 10mm in axial, lateral, and out-
of-plane directions, respectively. )e phantoms consist of
two classes of background and target tissues. To determine
the precision and sensitivity of the CODE, three different
setups with 5, 10, and 15 scatterers per resolution cell dis-
tributed randomly within the phantom are used. Different
realizations for each group of scatterers are generated. )e
RF output of Field II is corrupted by adding additive white
Gaussian noise with a SNR of 5 dB.

Figure 3 shows the results of NLM applied to B-mode
images. As expected, NLM performs incoherent averaging
and removes speckle pattern. )is is desired for many ap-
plications such as segmentation and registration [25], but
not in elastography. Figure 3 also shows the results of ap-
plying a Gaussian kernel to the RF data. Since averaging is
performed in the RF domain, the speckle pattern is retained.
Finally, the results of CODE denoising are also shown in this
figure, which visually outperforms other methods in terms of

(a) (b) (c) (d) (e)

Figure 3: Field II simulation results.)e noisy input has substantially less contrast than the ground truth image. NLM is designed to remove
speckle and therefore substantially reduces image detail. CODE output is closest to the ground truth. (a) Ground truth, (b) noisy, (c) NLM,
(d) Gaussian on RF, and (e) CODE.
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similarity to the original B-mode image. Figure 4 compares
the histogram of the B-mode of these three images. Since the
distribution of noise-free image (ground truth) is known, we
used the following chi-square test as a quantitative pa-
rameter for comparison:

χ2 � 􏽘
m

t�1

Ot −Et( 􏼁
2

Et

, (15)

where Ot is the observed value, Et is the expected value, and
m is the number of bins (256 bins of grey levels for simulated
images). )e chi-squared criterion for distribution and sum
of squared difference (SSD) between original and filtered
images using NLM, Gaussian with kernel width of 5 and
smoothing parameter 1, and CODE with search region 21,
kernel width 5, and smoothing parameter 5, are compared in
Table 1. In both cases (chi-squared and SSD), CODE out-
performs the conventional NLM approach and Gaussian
denoising applied directly on RF data, as demonstrated in
theory in Section 3.2.

Moreover, with respect to simulations in Field II, the
ground truth is available to study error variance of all 3 dis-
tributions of scatterers. )e error variance is measured using
normalized root mean square error (NRMSE) defined as

NRMSE G, Id( 􏼁 �

��������������������������������
􏽐

n
i�1 􏽐

m
j�1 Id(i, j)−G(i, j)( 􏼁

2
􏼐 􏼑/(m∗ n)

􏽱

max(G)−min(G)
,

(16)

where G is ground truth of Field II, Id is either noisy image
or denoised version using NLM or Gaussian denoising.
Table 2 shows that the error variance for the CODE method
is minimum in comparison with other denoising.

5. Phantom and In Vivo Elastography

We study 3 different cases of phantom data, in vivo liver
ablation data, and tendon data for both GLUE and DPAM.
)e results are provided in Figures 5–10. )e window size of
3 provides correct strainmap, for CODEmeanwhile requires
the minimum computational budget. To be fair in com-
parison, the window size is the same for both NLM and
Gaussian denoising.

Phantom data in Figures 5 and 6 are obtained from
a CIRS breast phantom (Norfolk, VA) under free-hand
palpation. )ere is excessive out-of-plane motion between
the two processed images, and therefore, the DP step fails.
)is leads to failure in both DPAM and GLUE, which is
apparent as black horizontal artifacts in (a), (c) and black
artifact at right down corner of (d) for both mentioned
figures. However, CODE removes the noise from the RF data
and leads to a strain image with low noise and high contrast.
)e phantom contains a cyst in the middle with certain
elasticity surrounded by another tissue. )ose artifacts as
described are failing to depict the tissue around the cyst or
the cyst elasticity by showing different elasticities.

Patient data in Figures 7 and 8 were acquired from
a patient undergoing open-surgical radiofrequency thermal
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Figure 4: (a) Histograms of NLM, ground truth, and noisy data. (b) Histograms of Gaussian denoising, ground truth, and noisy data.
Finally, (c) is the same as (b) except the histogram of NLM replaced by that of CODE.

Table 1: Values of chi-square and SSD for reconstructed images..

Scatterer
Chi2 SSD

NLM Gaussian CODE NLM Gaussian CODE
5/mm3 9702.33 167.78 95.49 76250.03 2240.55 2119.90
10/mm3 86361.68 253.65 60.18 7482.55 2242.51 1909.44
15/mm3 6108.31 294.90 27.63 7961.00 2300.42 1536.20
)e ground truth was obtained from a Field II simulation

Table 2: Using Field II ground truth for evaluation of NRMSE for
different denoising and noisy images.

Method 5/mm3 10/mm3 15/mm3

Noisy 0.1501 0.1298 0.1284
NLM 0.3210 0.3208 0.3182
Gaussian 0.1595 0.1478 0.1442
CODE 0.1354 0.1216 0.1203
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ablation for primary or secondary liver cancer. )ese data
are available online [8]. )e Institutional Ethical Review
Board at Johns Hopkins University approved all experi-
mental procedures involving human subjects. For the pa-
tient data, ablation procedure generates substantial amount
of noise in the RF data [19–21]. As a result of excessive noise,
DP fails, which generates the horizontal black and white
bands in the top left of (a), (c), and (d). Although the en-
vironment is extremely noisy, the well-adapted CODE
method denoises the RF data in a way that both algorithms

are able to get the correct strain map for patient data. )e
ablation operation coagulates the tissue, which makes the
tissue stiffer. )e coagulated tissue is often referred to as
ablation lesion, and its size should be bigger than the tumor
to ensure that the entire tumor is ablated. )e strain images
in Figures 7(b) and 8(b) clearly show the ablation lesion as
a dark region with low strain (i.e., hard). CODE helps to
remove noise in RF data, which leads to less noisy strain
images. Such strain images can help the surgeon to minimize
the cancer recurrence rate. However, NLM and Gaussian fail
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Figure 5: Denoising results for phantom data: (a) DPAM alone; (b) DPAMwith CODE; (c) DPAMwith Gaussian; (d) DPAMwith NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11. For
(c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but they are applied on B-mode.
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Figure 6: Denoising results for phantom data: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE with Gaussian; (d) GLUE with NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11.
For (c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but it is applied on B-mode.
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to reconstruct the strain map and show sudden changes in
tissue that are misleading and violate tissue continuity.

We also evaluate CODE on data collected from patellar
tendon. )ese data were collected at the PERFORM Centre
at Concordia University. Ethics approval was obtained for
this study from Quebec’s Ministere de la Sante et des Ser-
vices Sociaux, and all subjects signed a consent form to
participate. Data are collected using an Alpinion ECube
ultrasound machine (Bothell, WA) with a L3-12 linear
transducer at the centre frequency of 11MHz with sampling

frequency of 40MHz.)e results are shown in Figures 9 and
10. )e probe is held stationary, and the subject flexes his
knee joint during data collection. CODE removes the noise
in the RF data and results in a more meaningful strain image.

6. Conclusions

In this paper, we have proposed a denoising algorithm,
referred to as the CODE (COherent Denoising for Elas-
tography) approach for ultrasound elastography. CODE is
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Figure 7: Same as Figure 5 except in vivo liver ablation, patient data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM with
Gaussian; (d) DPAM with NLM.
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Figure 8: Same as Figure 6 except in vivo liver ablation, patient data are used: (a) GLUE alone; (b) GLUE with CODE; (c) DPAM alone;
(d) DPAM with CODE.
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applied directly to the RF data and has the ability to
eliminate noise, while retaining relevant speckle patterns.
)is is demonstrated using phantom and experiments based
on in vivo clinical data. )e results of CODE are used for
GLUE and DPAM, which verifies the effectiveness of the
proposed CODE. More clinical studies are needed to fully
verify the benefits of the CODE algorithm.
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Figure 9: Same as Figure 5 except in vivo liver ablation, patient tendon data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM
with Gaussian; (d) DPAM with NLM.
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Figure 10: Same as Figure 6 except in vivo liver ablation, patient tendon data are used: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE
with Gaussian; (d) GLUE with NLM.
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means filter, image redundancy and adaptive dictionaries for
noise removal,” in Proceedings of the Scale Space and Vari-
ational Methods in Computer Vision (SSVM 2007), pp. 520–
532, Ischia, Italy, May-June 2007.

[13] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager,
“Ultrasound elastography using multiple images,” Medical
Image Analysis, vol. 18, no. 2, pp. 314–329, 2014.

[14] J. Ophir, S. K. Alam, B. S. Garra et al., “Elastography: imaging
the elastic properties of soft tissues with ultrasound,” Journal
of Medical Ultrasonics, vol. 29, no. 4, pp. 155–171, 2002.

[15] N. Afsham, M. Najafi, P. Abolmaesumi, and R. Rohling, “A
generalized correlation-based model for out-of-plane motion
estimation in freehand ultrasound,” IEEE Transactions on
Medical Imaging, vol. 33, no. 1, pp. 186–199, 2014.

[16] H. Rivaz, R. Zellars, G. Hager, G. Fichtinger, and E. Boctor,
“9c-1 beam steering approach for speckle characterization and
out-of-plane motion estimation in real tissue,” in Proceedings
of the Ultrasonics Symposium, 2007, pp. 781–784, IEEE, New
York, NY, USA, October 2007.

[17] M. L. Oelze and J. Mamou, “Review of quantitative ultra-
sound: Envelope statistics and backscatter coefficient imaging
and contributions to diagnostic ultrasound,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 63, no. 2, pp. 336–351, 2016.

[18] C.Wachinger, T. Klein, andN.Navab, “)e 2D analytic signal for
envelope detection and feature extraction on ultrasound images,”
Medical Image Analysis, vol. 16, no. 6, pp. 1073–1084, 2012.

[19] T. Varghese, U. Techavipoo, W. Liu et al., “Elastographic
measurement of the area and volume of thermal lesions
resulting from radiofrequency ablation: pathologic correlation,”
American Journal of Roentgenology, vol. 181, no. 3, pp. 701–707,
2003.

[20] J. Jiang, T. Varghese, C. L. Brace et al., “Young’s modulus
reconstruction for radio-frequency ablation electrode-
induced displacement fields: a feasibility study,” IEEE
Transactions on Medical Imaging, vol. 28, no. 8, pp. 1325–
1334, 2009.

[21] H. Rivaz, I. Fleming, L. Assumpcao et al., “Ablation moni-
toring with elastography: 2D in-vivo and 3D ex-vivo studies,”
in Proceedings of the Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2008), pp. 458–466,
New York, NY, USA, September 2008.

[22] F. Viola andW. F. Walker, “A comparison of the performance
of time-delay estimators in medical ultrasound,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 50, no. 4, pp. 392–401, 2003.

[23] C. A. Teixeira, L. Mendes, M. G. Ruano, andW. C. Pereira, “A
method for sub-sample computation of time displacements
between discrete signals based only on discrete correlation
sequences,” Biomedical Signal Processing and Control, vol. 31,
pp. 560–568, 2017.

[24] J. A. Jensen, “Field: a program for simulating ultrasound
systems,” in 10th Nordicbaltic Conference on Biomedical
Imaging, vol. 4, no. S1, Tampere, Finland, June 1996.

[25] H. Zhou and H. Rivaz, “Registration of pre-and postresection
ultrasound volumes with noncorresponding regions in neu-
rosurgery,” IEEE Journal of Biomedical and Health In-
formatics, vol. 20, no. 5, pp. 1240–1249, 2016.

Journal of Healthcare Engineering 9


