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ABSTRACT

Estrogen receptor-a (ERa) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this
response is unclear. To determine in vivo the ligand dependency and relative roles of different ERa domains for the osteogenic response
to mechanical loading, gene-targeted mouse models with (1) a complete ERa inactivation (ERa "), (2) specific inactivation of activation
function 1 (AF-1) in ERa (ERaAF-1°), or (3) specific inactivation of EReAF-2 (ERaAF-2°) were subjected to axial loading of tibia, in the
presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an
increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating
that E2 (ligand) is not required for this response. Female ERa. '~ mice displayed a severely reduced osteogenic response to loading with
changes in cortical area (—78% = 15%, p < 0.01) and periosteal BFR (—81% %+ 9%, p < 0.01) being significantly lower than in wild-type
(WT) mice. ERaAF-1° mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area —40% + 11%,
p < 0.05 and periosteal BFR —41% =+ 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ERaAF-2°
mice. Mechanical loading of transgenic estrogen response element (ERE)-luciferase reporter mice did not increase luciferase expression
in cortical bone, suggesting that the loading response does not involve classical genomic ERE-mediated pathways. In conclusion, ERa is
required for the osteogenic response to mechanical loading in a ligand-independent manner involving AF-1 but not AF-2. © 2013
American Society for Bone and Mineral Research.
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Introduction Subsequently, bone tissue is removed from sites where the

loading is marginal and new bone is formed at sites subjected to

ortical bone dimensions have been reported to be the main
determinant of bone strength and it is well established that
mechanical loading and estrogen receptor (ER)-mediated path-
ways are major regulators of cortical bone dimensions." = Bones
are believed to have a strain-driven feedback system that senses
the incident mechanical strain within the loaded bones.

increased loading in order to provide each bone with a
mechanically appropriate size, shape, and architecture.”
Estrogens are known to protect against bone loss and this is
primarily mediated by ERa.®"" The possible role of ERa for the
osteogenic response to loading has been evaluated in female
mice with a compromised ERa expression. These mice display a
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significantly reduced anabolic response on cortical bone area to
mechanical loading.">'® The ERa knockout mouse model used
in these experiments, developed in the Korach and Smithies
laboratories (National Institute of Health, NC, USA) (K-ERa /"),
was shown to have a low expression of truncated ER« isoforms,
possibly compromising the interpretation of the results.’® In
addition, a role for ERax in humans is supported by an association
study suggesting that genetic variants at the ER« locus modulate
the mechanosensitivity of bone."” These findings support the
hypothesis that ERec number and/or function in bone cells may
limit the bones’ adaptability to mechanical loading. In contrast,
the in vivo data concerning the role of ERB for the osteogenic
response to loading is conflicting, reflected by the fact that
mice deficient in ERB (ERR ™) either display a reduced® or
enhanced® osteogenic response to loading.

ERa stimulates gene transcription via two activation functions
(AFs), AF-1 in the N-terminal and AF-2 in the ligand binding
domain. We have recently reported that the effect of estradiol
(E2) on cortical bone in ovariectomized (ovx) mice is dependent
on AF-2 but not AF-1 in ERa.("” However, the relative roles in vivo
of ERaAF-1 and ERaAF-2 for the ERa-mediated effects of
mechanical loading in cortical bone are unknown.

The classical activation of genes via ERa includes hormone-
receptor binding followed by activation of genes with estrogen
response element (ERE)-containing promoters. Both mechanical
strain and E2 increase the transcriptional activity from an ERE-
reporter transiently transfected into an osteoblast cell-line,
indicating that both strain and E2 enhance osteoblast activity via
ERE-mediated mechanisms in vitro. However, it is not yet
determined in vivo if ERE-mediated mechanisms are involved in
the osteogenic response to mechanical loading."”

Although it is clear that ERa is required for a normal
osteogenic response to loading, contradictory data exist
concerning the role of E2 for this response. Estrogen has
been shown to increase,*® decrease,” or not affect'®'?? the
osteogenic response to exercise. Using male rats, it was shown
that low-dose E2 treatment suppresses cortical periosteal
bone formation in response to axial mechanical loading of the
ulna.®® In contrast, no effect of ovx was seen on the cortical
bone response to external loading of tibia by a four-point
bending device®” or unloading of the left hind limb in female
rats.?> Thus, it is still unclear whether estrogen is involved in the
osteogenic effect of loading.

To determine in vivo the ligand (E2) dependency and the
relative roles of different ERa domains for the osteogenic
response to mechanical loading, gene-targeted female mouse
models with (1) a complete ERa inactivation (ERa "), (2) specific
inactivation of AF-1 in ERa (ERaAF-1°), or (3) specific inactivation
of ERaAF-2 (ERaAF-2°) were subjected to short periods of cyclic
compressive loading of the tibia, three times a week for 2 weeks,
in the presence (sham) or absence (ovx) of E2.

Subjects and Methods

Animals

The mice were inbred on a C57BL/6 background and housed in a
standard animal facility under controlled temperature (22°C) and

photoperiod (12 hours of light, 12 hours of dark), and fed
ad libitum. Littermate controls were used in all groups. All animal
experiments were approved by the local Ethical Committee for
Animal Research. The generation of ERa~'~,?® ERaAF-1°2”
ERaAF-2°' and transgenic 3xERE-TAT-Luc (ERE-luciferase®®)
mice have been described. In the ovx experiments, the
mice were either sham-operated or ovariectomized under
inhalation anesthesia with isoflurane (Forene; Abbot Scandina-
via, Solna, Sweden) 5 days prior to loading. The effectiveness
of ovx was confirmed by measuring the uterine wet weight
(WT sham 77.4+11.6 mg, WT ovx 14.0 + 0.4 mg, ERa '~ sham
12.6+1.9mg, ERa™"~ ovx 7.2+ 1.1 mg).

Mechanical strain measurement during dynamic axial
loading of the tibia

The magnitude of axial mechanical strain applied to the tibia
during loading was established ex vivo in the different evaluated
mouse strains. A single-element strain gauge (EA-06-015DJ-120;
Vishay Measurement Group, PA; Load Indicator System AB,
Gothenburg, Sweden) was bonded with cyanoacrylate adhesive
in longitudinal alignment to the medial aspect of the tibia at 37%
of its length from the proximal end. Previous studies have shown
that this region corresponds to the site of greatest osteogenic
response to axial loading.?® Strains were measured across a
range of peak compressive loads between 6 and 14 N. These
peak loads were applied with a ramped trapezoidal waveform
using a servohydraulic machine (Dartec HC10; Zwick Roell,
Herefordshire, UK) with the same holding cups that were used for
in vivo loading. When the axial force is applied to the tibia, the
bone bends in the medial-lateral direction resulting in tension on
the medial surface and compression on the lateral surface.*”
From the data, a specific peak load (inN) corresponding to
3050 + 120 e at the gauge site was used for each group of mice
in the loading experiment (load in N, ERaAF-1° 12 N; WT [siblings
to ERAF-1°1 12 N; EReAF-2° 11 N; WT [siblings to EReAF-2°1 11 N;
ERo™’~ mice 10.5N; WT [siblings to ERa~~] 12 N; ovx ERa ™/~
10.5N; ovx WT [siblings to ERa "] 12N). This was selected to
engender an osteogenic response without causing damage to
the bones, joints, or the skin through which the load was applied.

In vivo loading of the tibia

While under inhalation anesthesia with isoflurane (Forene), the
right tibia of 17-week-old female ERa~’~, ERaAF-1°, ERatAF-2°
mice, and their wild-type (WT) littermates was axially loaded on
3 alternate days per week for 2 weeks for 40 cycles/day with a
trapezoid waveform, with 10 seconds of rest between cycles. The
loads were applied using a 3100 ElectroForce Test Instrument
(Bose Corporation, MN). The left tibia was used as a non-loaded
control to allow side-to-side comparisons for the effects of
loading on bone (re)modeling. The use of the contralateral limb
as a control using this protocol has been validated in our
laboratory by comparing remodeling in the bones of limbs
contralateral to those used in loading experiments with that in
normal limbs of separate animals to which no loads had
been applied.®" All mice were allowed normal cage activity in
between loading sessions. At 19 weeks of age, the mice were
euthanized and their tibias dissected free of soft tissue, fixed for
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48 hours in Blirkhardt's solution, and stored in 70% ethanol. The
ERE-luciferase mice (12 weeks old) were loaded once (40 cycles),
3 or 8 hours before euthanasia.

Micro-computed tomography

Cortical micro-computed tomography (wCT) analyses were
performed on the mid-diaphyseal part of the tibia by using a
Skyscan 1072 scanner (Skyscan N.V., Aartselaar, Belgium), imaged
with an X-ray tube voltage of 100 kV and current 98 A, with a 1-
mm aluminum filter.*? The scanning angular rotation was 180
degrees and the angular increment was 0.9 degrees. The voxel
size was 6.51 um isotropically. Datasets were reconstructed
using a modified Feldkamp algorithm®® and segmented into
binary images using adaptive local thresholding.®%

Histomorphometric analyses

Bone formation rate (BFR) at the periosteal and endosteal surfaces
of the cortical bone in the mid-diaphyseal region of tibia were
evaluated by using dynamic histomorphometric analyses. Tibiae
were fixed in Birckhardt's fixative, dehydrated in increasing
concentrations of EtOH, and embedded in plastic (L R White Resin;
Agar Scientific, Stansted, UK). For the measurement of dynamic
parameters, the mice were double-labeled with calcein and
alizarin, which were injected (intraperitoneally [i.p.]) into the mice
at the first day (30 mg/kg/d of calcein) and last day (30 mg/kg/d of
alizarin) of loading. Histomorphometric analyses of cortical bone
were performed using transverse cross-sections in the mid-
diaphyseal region of the tibiae. The parameters were measured
using the OsteoMeasure histomorphometry analysis system with
software version 2.2 (OsteoMetrics Inc, Decatur, GA, USA), and
following the guidelines of the American Society for Bone and
Mineral Research.®*

Peripheral quantitative computed tomography

Peripheral quantitative computed tomography (pQCT) scans
were performed with the PQCT XCT RESEARCH M (version 4.5B;
Norland, Fort Atkinson, WI, USA), operating at a resolution of
70 um as described.""? Cortical bone parameters (cortical bone
mineral content, cortical bone area, polar moment of inertia, and
polar moment of resistance) were analyzed ex vivo in the mid-
diaphyseal region of tibia.*®

Protein preparation and luciferase analysis

Cortical diaphyseal bone from the tibia was homogenized in lysis
buffer (25 mM Tris pH 7.8, 1.5 mM EDTA, 10% glycerol, 1% Triton
X-100, 2mM dithiothreitol [DTT] and complete protease
inhibitors; Roche #1169749800 Roche Diagnistics, Mannhein,
Germany) and separated by centrifugation at 10,650g for 30
minutes. The supernatant was stored at —20°C until further
analysis. Protein from cell fractions was prepared using Reporter
Lysis buffer from the Luciferase Assay (#E4550; Promega,
Madison, WI, USA) according to the manufacturer’s instructions.
The protein content was measured using BioRad DC protein
assay (#500-0116). The luciferase activity measurements were
performed using a standard Luciferase Assay (#E4030; Promega)
according to the manufacturer’s instructions and measured on a
luminometer (Turner Designs TD-20/20; Promega).

Cell culture and in vitro loading of osteoblasts

Osteoblasts were cultured from explants of cortical bone of
femurs and tibiae of 6-month-old female mice as described.®”
Briefly, attendant soft tissue was removed from the bones and
bone marrow was flushed out with PBS. The bones were cut into
approximately 1-mm? fragments and cultured in o modified
essential medium (a-MEM) (Gibco, Invitrogen, Auckland, New
Zealand) supplemented with 10% fetal bovine serum (FBS)
(Sigma-Aldrich, Stockholm, Sweden), 2mM glutamax (Gibco),
50 wg/mL gentamicin (Gibco), and 100 U/mL penicillin-100 pg/
mL streptomycin (PEST; Gibco) for 1 week. Bone fragments were
then removed, media changed, and 4 days thereafter the cells
were passaged and used for in vitro loading. First passage
osteoblasts were cultured on custom-made plastic slides
(250,000 cells/slide) and subjected to a single brief period of
600 cycles of four-point bending at a frequency of 1Hz as
described.®83% The waveform of each strain cycle consisted of a
ramped square wave with strain rates on and off of 23,000 p.e/s,
dwell times on and off of 0.4 and 0.75 seconds, respectively, and
a peak strain of 3400 pe. Following strain treatment, the cells
were maintained in the same media and cultured for 1, 3, or 8
hours (n=10-16 per time point). Static control cells were
maintained similarly but not subjected to the strain stimulus. To
compare the expression of Sost and DMPT in these cells with the
expression of those transcripts in long bone, RNA was extracted
from flushed control murine tibiae as described by our
group,®**% and converted to cDNA as described for the in
vitro studies below (with reverse transcriptase [RT] as a positive
control or lacking RT as a negative control). Using the culture
conditions required for the in vitro loading procedure, these cells
do not express the osteocyte marker Sost. However, these cells
do express DMP1, a marker of cells that are highly differentiated
along the osteoblastic lineage (Supplemental Fig. STA). DMP1
expression was not different between WT and ERaAF1° cells
(Supplemental Fig. S1B) and the expression of this gene was not
significantly influenced by strain in either genotype at the time
points tested (Supplemental Fig. S10).

RNA preparation and analyses of Cox-2, Egr2, and
IL-17 mRNA levels

Total RNA was extracted and genomic DNA removed from static
and strained cells as previously described using RNEasy Plus kits
(Qiagen, Sussex, UK) according to the manufacturer’s instruc-
tions.383241) RNA quality and quantity was determined using a
NanoDrop ND1000 (Thermo, UK) and 2 g of RNA was converted
to cDNA using Superscript Il (Invitrogen, Paisley, UK). Quantita-
tive RT PCR (QRT-PCR) was then performed as described.®8394" p
relative standard curve was constructed for each gene using
serial dilutions of their amplicons, and these standards were
included in each run. Samples of unknown concentrations were
quantified relative to these standard curves. The expression
levels for all the genes analyzed were normalized to the
reference gene $2-MG. The primer sequences for Egr2 were as
described.®*® Those for Ptgs2 (Cox-2) and f2-MG were as follows:
Cox-2 forward GCTCAGTTGAACGCCTTTTGA and reverse CACA-
GCCTACCAAAACAGCCA, B2-MG forward ATGGCTCGCTCGGT-
GACCCT and reverse TTCTCCGGTGGGTGGCGTGA. The IL-11
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primers were as described.“”? The Sost primers were as follows:
forward TGCCGCGAGCTGCACTACAC and reverse CCCACTT-
CACGCGCCCGAT. The DMP1-primers were as follows: forward
CACCACCACCACCCACGAACA and reverse GGCCTCTGTCGT-
AGCCCAGC.

Results

Endogenous estradiol is not required for the cortical
osteogenic response to mechanical loading in
female mice

To determine the role of endogenous E2 in the cortical
osteogenic response to loading, sham-operated (sham) and
ovx WT mice were subjected to short periods of cyclic
compressive loading of the right tibia, three times a week for
2 weeks while the left tibia was used as non-loaded control. uCT
analyses of the mid-diaphyseal region of the tibia demonstrated
that loading increased the cortical bone area by 26% (p < 0.01)
compared with the control tibia in sham mice (Fig. 1A). Similar
results were seen when the tibiae were analyzed by pQCT,
demonstrating that the increased cortical bone area resulted in
augmented cortical bone mineral content, polar moment of
inertia and polar moment of resistance (see sham group
Supplemental Table S1). To evaluate the effects of loading on the
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Cortlcal Bone Area
{% of control)
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periosteal and endosteal surfaces, dynamic histomorphometric
analyses were performed. The results demonstrate that the
increased cortical bone area was mainly the result of a
pronounced increased periosteal BFR and a slightly increased
endosteal BFR (Fig. 1B, C). In sham mice, 81% of the loading-
induced increase in cortical area was due to periosteal expansion
and the remainder was due to endosteal new bone formation.
The effect of loading on the periosteal BFR was reflected by a
combination of increased mineralizing surface and mineral
apposition rate (Supplemental Fig. S2). Importantly, the cortical
osteogenic response to loading was unaffected in ovx mice
compared with sham mice (Fig. 1 and Supplemental Fig. S2).

ERa is required for the cortical osteogenic response to
mechanical loading in female mice

We next evaluated the role of ERx in the cortical osteogenic
response to loading using mice with a complete ERa
inactivation.?® ERa ™~ mice displayed a severely reduced
osteogenic response to loading with significantly smaller
changes in cortical area (—78% + 15%, p < 0.01) and BFRs at
both the periosteal (—81% +9%, p<0.01), and endosteal
(—55% + 12%, p < 0.05,) surfaces compared with the loading
response in WT mice (Fig. 2). Changes in both mineralizing
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20 4 ~|~ [J Loaded
=
g 18 4
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E 101
=
E o5 \
@
0,0
Sham Owvx Sham Owx
Periosteal Endosteal

Fig. 1. Endogenous estradiol is not required for the cortical osteogenic response to mechanical loading in female mice. (A) w.CT analyses of cortical cross-
sectional bone area of the mid-diaphyseal region of the non-loaded (Control) and loaded (Loaded) tibia in sham operated (Sham) and ovariectomized
(Ovx) wild-type mice (n = 10). (B, C) Dynamic histomorphometric analyses of the cortical periosteal and endosteal surfaces (n = 4-5). In B, bone formation
rate (BFR) data are presented as mean + SEM; “p < 0.05 versus Control, Student's t test. In C, representative sections show similar loading-induced bone
formation in Sham and Ovx mice both at the periosteal and endosteal surfaces (calcein/green and alizarin/red). The white bars represent 200 um.
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Fig. 2. ERa is required for the cortical osteogenic response to mechanical loading in female mice. (A) wCT analyses of cortical cross-sectional bone area of
the mid-diaphyseal region of the non-loaded (Control) and loaded (Loaded) tibia in wild-type (WT) and estrogen receptor-a inactivated (ERa™"7) mice
(n=8-10). (B, C) Dynamic histomorphometric analyses of the cortical periosteal and endosteal surfaces (n = 6-8). In B, bone formation rate (BFR) data are
presented as mean & SEM. The WT group in this figure is the same as the one described as Sham in Fig. 1; *p < 0.05 versus Control; #p < 0.05 effect of

loading in ERa ™/~ versus effect of loading in WT mice, Student’s t test. In C, representative sections show that the loading-induced bone formation was
severely reduced at the periosteal and slightly reduced at the endosteal surface in ERa ™/~ compared with WT mice (calcein/green and alizarin/red). The

white bars represent 200 pm.

surface and mineral apposition rate were reduced at the
periosteum in ERa’~ compared with WT mice. Mineral
apposition rate was also reduced endosteally in ERa™'~ mice
(Supplemental Fig. S3). pQCT analyses further demonstrate that
the cortical osteogenic response was impaired in ERa™'~ mice,
with load-related changes in several cortical bone parameters
being severely reduced, including cortical bone mineral content,
polar moment of inertia, and polar moment of resistance
(Supplemental Table S2). The loading-related increase in cortical
bone area was also significantly reduced in ovx ERa /" mice
compared with ovx WT mice (—55% +8%, p <0.01). These
findings demonstrate that ER« is required for a normal cortical
osteogenic response in both the presence and absence of
endogenous E2 (ligand).

ERa AF-1 but not AF-2 is required for the cortical
osteogenic response to mechanical loading in
female mice

To characterize which domains of ERa are involved in the cortical
bone response to axial loading, mouse models with specific
inactivation of either AF-1 or AF-2 were evaluated. EReAF-1° mice

displayed reduced osteogenic response to loading with changes
in cortical area (—40% + 11%, p < 0.05), and BFRs at both the
periosteal (—41% + 8%, p <0.01), and endosteal (—45% =+ 8%,
p < 0.01) surfaces compared with WT mice (Fig. 3). Increases in
periosteal mineral apposition rate, but not mineralizing surface,
were significantly reduced in ERaAF-1° mice compared with WT
mice (Supplemental Fig. S4). Changes in cortical bone mineral
content, polar moment of inertia and polar moment of resistance
were also significantly reduced in ERaAF-1° mice compared with
WT mice (Supplemental Table S3). In contrast, in EReAF-2° mice
the cortical periosteal osteogenic response to loading was
unaffected compared with WT mice (cortical bone area:
+11421%, periosteal BFR —22% + 22%, nonsignificant; Fig. 4,
Supplemental Fig. S5, and Supplemental Table S4). These findings
demonstrate that ERaxAF-1 but not ERaAF-2 is required for a
normal cortical periosteal osteogenic response to mechanical
loading in female mice.

Loading does not affect ERE activation in cortical bone

To determine if the cortical osteogenic loading response involves
activation of classical genomic ERE-mediated pathways, sham
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Fig. 3. ERaAF-1 is required for the cortical osteogenic response to mechanical loading in female mice. (A) wCT analyses of cortical cross-sectional bone
area of the mid-diaphyseal region of the non-loaded (Control) and loaded (Loaded) tibia in wild-type mice (WT) and in mice with specific inactivation of the
estrogen receptor-a AF-1 (ERaAF-1°, n=9-10). (B, O) Dynamic histomorphometric analyses of the cortical periosteal and endosteal surfaces (n=9). In B,
bone formation rate (BFR) data are presented as mean 4 SEM; * p < 0.05 versus Control; # p < 0.05 effect of loading in ERaAF-1° versus effect of loading in
WT mice, Student's t test. In C, representative sections show that the loading-induced bone formation was reduced both at the periosteal and endosteal
surfaces in ERxAF-1° compared with WT mice (calcein/green and alizarin/red). The white bar represents 200 wm.

and ovx mice expressing a luciferase gene under control of an
ERE-containing promoter were loaded for 3 or 8 hours before
sacrifice. As expected, the ERE-activity was significantly higher in
sham mice compared to ovx mice. However, loading did not
affect luciferase expression significantly in cortical bone of sham
or ovx mice (Fig. 5).

The role of ERaAF-1 for the in vitro effect of strain on
Cox-2, Egr2, and IL-11 mRNA expression

COX2-mediated prostaglandin synthesis is known to activate a
large number of rapidly diverging signaling pathways, which
has recently been reported to be relevant to the regulation of
Sost and Ocn by strain.®® WT and ERaAF-1° cells subjected
to strain significantly upregulated Cox-2 mRNA expression
after 1 hour relative to static controls (Fig. 6). Cox-2 remained
similarly upregulated at 3 hours after strain, but returned
to levels not significantly different from static controls by
8 hours. The upregulation of Cox-2 mRNA in ERaAF-1° cells
was not significantly different from that observed in WT
at any time point, but Cox-2 mRNA up-regulation remained

significant 8 hours after strain in the ERaAF-1° cells. There
was a nonsignificant tendency of reduced strain induced
upregulation of Cox-2 mRNA in ERaAF-1° cells compared
with WT cells at the 3-hour time point (ERaAF-1° cells
showed 61% 4 12% of the upregulation observed in WT cells;
Fig. 6A).

Of all the early strain target genes differentially regulated by
loading, Egr2/Krox-20 is associated with more pathways and
functions than any other transcription factor.*® Egr2 upregula-
tion followed a similar time course as Cox-2 in WT and ERaAF-1°
cells, with a significant upregulation observed 1 and 3 hours,
but not 8 hours after strain in both cases (Fig. 6B). However,
this response was significantly (p < 0.05) reduced in ERoAF-1°
cells compared with WT cells at the 3-hour time point (ERaAF-1°
cells showed 52%+12% of the upregulation observed in
WT cells, Fig. 6B).

IL-17 has been shown to be regulated by unloading and
reloading in vivo®? and by fluid flow in vitro.**™*% JL-17 was
upregulated within 1 hour of strain and remained upregulated
up to 8 hours later in WT cells, but not at any time point in ERaAF-
19 cells (Fig. 60).
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Fig. 5. Effect of loading on ERE-mediated luciferase activity in cortical
bone. Transgenic ERE-luciferase mice were loaded 8 hours before eutha-
nasia. Luciferase activity per milligram of protein is given for the non-
loaded (Control) and loaded (Loaded) tibial diaphyseal cortical bone in
gonadal intact (Sham) and ovariectomized (Ovx) transgenic ERE-lucifer-
ase mice (n=7). RLU =relative luciferase units. Data are presented as
mean # SEM. *p < 0.05 versus Sham, Student's t test.

Discussion

ERa is crucial for bones’ adaptive response to loading but the
relative roles of different ERa domains and the role of
endogenous estrogens for this response are unclear. Using
domain-specific ERa-inactivated mouse models subjected to a
standardized axial tibia loading procedure, we herein demon-
strate that AF-1 but not AF-2 in ERa is required for a normal
cortical periosteal osteogenic response to mechanical loading
and that endogenous E2 is dispensable for this response. In
addition, we provide evidence that the loading response does
not appear to involve activation of classical genomic ERE-
mediated pathways in vivo.

Previous studies concerning the involvement of E2 in the
osteogenic effect of loading have yielded conflicting results, and
one may speculate that the divergent results are the conse-
quence of differences in loading procedures (exercise, four-point
bending, unloading, or axial loading), the bone evaluated
(vertebra, ulna, or tibia), age (prepubertal or postpubertal) and
gender.(4'2°‘22'24/25'45) Furthermore, none of these studies
included parallel evaluation of the ligand and ERa dependency
for the osteogenic response to loading using the same loading
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Fig. 6. The role of ERaAF-1 for the effect of strain in vitro on Cox-2, Egr2, and IL-11 mRNA expression. Passage 1 osteoblasts from wild-type (WT) mice and
mice with specific inactivation of the estrogen receptor-a AF-1 (ERaAF-1°) were cultured on custom-made plastic slides and subjected to a single brief
period of 600 cycles of four-point bending at a frequency of 1 Hz. The percentage upregulation of (A) Cox-2, (B) Egr2, and (C) IL-17 mRNA levels at the
indicated time points following strain is given. The percentage upregulation for this purpose is defined as: (value for each strained slide - mean static
value)/mean static value * 100. Bars represent the mean upregulation & SEM (n = 10-16 from 2-3 mice at each time point). °p < 0.05, Pp <0.01 for the
upregulation at that time point; *p < 0.05 for the differences of effect of strain in ERaAF-1° versus the effect of strain in WT at that time point.

procedure. In the present study, ligand and ERa dependency
were tested using an identical axial loading procedure of the
tibia in postpubertal female mice. Loading increased the cortical
bone area as a result of a pronounced increase in periosteal bone
formation and slightly increased endosteal bone formation. This
osteogenic response was similar in intact and ovx WT mice. In
contrast, ERa™~ mice displayed a severely reduced cortical
osteogenic response. These studies clearly demonstrate that
ERa, but not endogenous E2, is required for the cortical
osteogenic response to axial loading in the tibia of adult female
mice.

Three previous studies have demonstrated that female
K-ERa™’~ mice with compromised ERa expression display a
reduced cortical osteogenic response to axial loading in the
ulna.">" However, the K-ERa "/~ mouse model has a low
expression of truncated ERa isoforms with unknown function,
potentially affecting the results. In the present study, we used a
complete ERa™’~ mouse model, and confirmed that ERa is
indeed essential for the full osteogenic response to axial
loading. These findings in ERo ™'~ mice are consistent with the
demonstration in vitro that osteoblast-like cells derived from
ERa-depleted mice fail to proliferate in response to mechanical
strain, and that this response can be restored by transfection of
functional ERa..™

Previous in vitro studies suggest that ERa requires both AF-1
and AF-2 to mediate a proliferative response to strain.®” In
addition, ligand-independent activation of ERa has been shown

to occur via both AF-1 and AF-2.“5% However, the in vivo roles
of AF-1 and AF-2 in mediating the osteogenic response to
loading were not possible to evaluate until the recent
development of mouse models with separate and specific
inactivation of either of these AFs.""*”) In the present study, the
loading response was evaluated using these ERaAF-1° and
ERaAF-2° mouse models. Importantly, AF-1 but not AF-2 was
required for a normal cortical loading response on the periosteal
surface. Our findings provide strong evidence that ERa mediates
the periosteal osteogenic response to loading by its AF-1 but not
AF-2. A role of ERaAF-1 in the loading response is supported by
in vitro findings demonstrating that strain phosphorylates Ser'?
(mouse Ser'?>=Human Ser''®) within AF-1 in ERa and that
phosphorylation of this serine in ERaAF-1 directs recruitment of
promoter complexes and gene-specific transcription.®%>"

Although these experiments establish AF-1 to be the
dominant transactivation domain in the ERa-mediated response
of cortical bone to mechanical loading, other domains of ERa
are probably also important for a normal loading response. This
notion is supported by our observation that the loading response
was more severely reduced in mice with complete ERa
inactivation (ERa '~ 22 80% reduction) than in mice with specific
AF-1 inactivation in ERa (ERaAF-1°2240% reduction).

We have recently demonstrated that the effect of E2 on
cortical bone mass requires AF-2 but not AF-1 in ERe.” The
dissimilar roles of AF-1 and AF-2 for the loading response,
requiring AF-1 but not AF-2, and E2 response, requiring AF-2 but
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not AF-1, in cortical bone, demonstrate that the signaling
pathways for these ERa-mediated mechanisms differ. Separate
ERa-mediated mechanisms are also supported by our finding
that the cortical loading-response is E2 (ligand) independent.

The classical genomic mechanism of ERa action involves
regulation of ERE-containing promoters. Earlier in vitro studies
demonstrated that both strain and E2 increase the transcription-
al activity from an ERE-reporter transiently transfected into an
osteoblast cell-line, indicating that both strain and E2 enhance
osteoblast activity via ERE-mediated mechanisms in vitro." To
determine in vivo if the loading response involves activation of
ERE-mediated pathways, the tibias of mice expressing a
luciferase gene under the control of an ERE-containing promoter
were loaded for 3 or 8 hours before euthanasia. We found that
luciferase expression in cortical bone was not affected by
loading, suggesting that the loading response does not require
activation of classical genomic ERE-mediated pathways. A
limitation with this substudy, exploring ERE-mediated pathways,
was that only the 3-hour and 8-hour time points postloading
were evaluated. However, we have in earlier experiments seen
that E2-induced luciferase activity is maximal approximately 8
hours after treatment with E2.5%

Although the present in vivo findings establish that the
ERaAF-1 is important for the cortical osteogenic response to
loading, there is no functional in vivo data evaluating the
downstream mediators of this effect. Nevertheless, our recent in
vitro data has demonstrated that the insulin-like growth factor
(IGF)-I receptor physically associates with ERa in osteoblasts and
we hypothesized that mechanical strain “primes” ERa via an
unidentified mechanism (possibly involving its translocation to
the membrane) to interact with the IGF-l receptor.®® Based
on the present in vivo data, one might speculate that it is the AF-
1 in ERa that interacts with the IGF-l receptor and that this
interaction lowers the threshold levels of IGF-I necessary to
stimulate IGF-l receptor activation, resulting in initiation of
phosphatidylinositol 3-kinase/protein kinase B (AKT)-dependent
activation of B-catenin and altered lymphoid-enhancing factor/T
cell factor transcription, which in turn results in increased cortical
bone formation.®®

Activation of COX-2/PGE2 signaling is a robust response
observed in numerous osteoblastic cell types subjected to
various forms of mechanical stimulation. ERa has the potential
to contribute to this pathway through various mechanisms, in
the first instance by promoting Cox-2 mRNA upregulation.®¥
There was a tendency of reduced upregulation of Cox-2 mRNA in
ERaAF-1° osteoblasts compared with WT osteoblasts subjected
to strain in vitro at the 3-hour time point but it did not reach
statistical significance. The rather similar upregulation of Cox-2
observed in WT and ERaAF-1° osteoblasts subjected to strain in
vitro might suggest that AF-1 functions of ERa are not required
for this response in vitro. Alternatively, ERa's AF-1 mediated
functions may contribute to this pathway downstream of COX-2.
This is consistent with the finding that ligand-independent
functions of ERa mediate ERK activation in osteoblastic cells
subjected to strain.*" ERK activation downstream of PGE2 is
involved in various strain responses including Egr2 mRNA
upregulation.®®* Contribution of ERaAF-1 to these responses is
demonstrated by the blunting of Egr2 upregulation in the ERaAF-

1° cells relative to WT controls. In addition to Pge2, Egr2
expression is also regulated by IGF and Wnt signaling,®® both of
which involve ERa.®**® That ERa normally facilitates a large
number of interrelated pathways involved in the transcriptional
regulation of Egr2 is consistent with the finding that the
transcriptomic response to loading is blunted and delayed in the
bones of mice lacking ERe.“? IL-11 is involved in osteoblastic
differentiation and has recently been shown to be mechanically
regulated.*>*® Whereas osteoblastic cells from WT mice
upregulated IL-11 at all time points tested following strain, cells
from ERaAF-1° mice did not show any significant changes in /L-
11 at any time point, suggesting that the AF-1 domain of ERa is
required for this response. Mechanically-induced IL-717 upregula-
tion by fluid flow shear stress requires AP-1 sites, and mutations
of these sites in the IL-11 promoter prevent its upregulation.#>>®
Given that ERa is able to direct transcription through AP-1
sites,®”) this suggests a mechanism whereby the loss of ERa AF-1
may directly impair regulation of gene expression. This is
consistent with the demonstration that strain increases AP-1
reporter construct activity in WT osteoblastic cells, but not in
similarly derived cells lacking ERa.®”

In conclusion, ERa is required for the cortical periosteal
osteogenic response to mechanical loading in a ligand-
independent manner by its AF-1 but not AF-2. The dissimilar
roles of AF-1 and AF-2 in the loading response in cortical bone
(requiring AF-1 but not AF-2), and the E2 response (requiring AF-
2 but not AF-1), demonstrate that the signaling pathways for
these ERa-mediated mechanisms differ. In addition, we provide
evidence which suggests that the cortical loading response does
not involve activation of classical genomic ERE-mediated
pathways. Further understanding of the ERa-mediated signaling
pathways in the regulation of the cortical osteogenic response to
loading might result in novel anabolic treatments targeting the
cortical bone dimensions, which are the main determinants of
bone strength.
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