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It is notoriously difficult to predict the behaviour of a complex self-organizing

system, where the interactions among dynamical units form a heterogeneous

topology. Even if the dynamics of each microscopic unit is known, a real

understanding of their contributions to the macroscopic system behaviour is

still lacking. Here, we develop information-theoretical methods to distinguish

the contribution of each individual unit to the collective out-of-equilibrium

dynamics. We show that for a system of units connected by a network of inter-

action potentials with an arbitrary degree distribution, highly connected units

have less impact on the system dynamics when compared with intermediately

connected units. In an equilibrium setting, the hubs are often found to dictate

the long-term behaviour. However, we find both analytically and experimen-

tally that the instantaneous states of these units have a short-lasting effect on

the state trajectory of the entire system. We present qualitative evidence of this

phenomenon from empirical findings about a social network of product recom-

mendations, a protein–protein interaction network and a neural network,

suggesting that it might indeed be a widespread property in nature.

1. Introduction
Many non-equilibrium systems consist of dynamical units that interact through a

network to produce complex behaviour as a whole. In a wide variety of such

systems, each unit has a state that quasi-equilibrates to the distribution of states

of the units it interacts with, or ‘interaction potential’, which results in the new

state of the unit. This assumption is also known as the local thermodynamic equi-

librium (LTE), originally formulated to describe radiative transfer inside stars [1,2].

Examples of systems of coupled units that have been described in this manner

include brain networks [3–6], cellular regulatory networks [7–11], immune net-

works [12,13], social interaction networks [14–20] and financial trading markets

[15,21,22]. A state change of one unit may subsequently cause a neighbour unit

to change its state, which may, in turn, cause other units to change, and so on.

The core problem of understanding the system’s behaviour is that the topology

of interactions mixes cause and effect of units in a complex manner, making it

hard to tell which units drive the system dynamics.

The main goal of complex systems research is to understand how the

dynamics of individual units combine to produce the behaviour of the

system as a whole. A common method to dissect the collective behaviour

into its individual components is to remove a unit and observe the effect

[23–32]. In this manner, it has been shown, for instance, that highly connected

units or hubs are crucial for the structural integrity of many real-world systems

[28], i.e. removing only a few hubs disconnects the system into subnetworks

which can no longer interact. On the other hand, Tanaka et al. [32] find that

sparsely connected units are crucial for the dynamical integrity of systems

where the remaining (active) units must compensate for the removed (failed)

units. Less attention has been paid to study the interplay of the unit dynamics
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and network topology, from which the system’s behaviour

emerges, in a non-perturbative and unified manner.

We introduce an information-theoretical approach to

quantify to what extent the system’s state is actually a rep-

resentation of an instantaneous state of an individual unit.

The minimum number of yes/no questions that is required

to determine a unique instance of a system’s state is called

its entropy, measured in the unit bits [33]. If a system state

St can be in state i with probability pi, then its Shannon

entropy is

HðStÞ ¼ �
X

i

pi log2 pi: ð1:1Þ

For example, to determine a unique outcome of N fair coin

flips requires N bits of information, that is, a reduction of

entropy by N bits. The more bits of a system’s state St are

determined by a prior state st0

i of a unit si at time t0, the

more the system state depends on that unit’s state. This quan-

tity can be measured using the mutual information between

st0

i and St, defined as

IðSt; st0

i Þ ¼ HðStÞ �HðStjst0

i Þ; ð1:2Þ

where H(XjY) is the conditional variant of H(X ). As time

passes (t! 1), St becomes more and more independent of

st0

i until eventually the unit’s state provides zero information

about St. This mutual information integrated over time t is a

generic measure of the extent that the system state trajectory

is dictated by a unit.

We consider large static networks of identical units whose

dynamics can be described by the Gibbs measure. The Gibbs

measure describes how a unit changes its state subject to the

combined potential of its interacting neighbours, in case the

LTE is appropriate and using the maximum-entropy prin-

ciple [34,35] to avoid assuming any additional structure.

In fact, in our LTE description, each unit may even be a sub-

system in its own right in a multi-scale setting, such as a cell

in a tissue or a person in a social network. In this viewpoint,

each unit can actually be in a large number of (unobservable)

microstates which translate many-to-one to the (observable)

macrostates of the unit. We consider that at a small timescale,

each unit probabilistically chooses its next state depending on

the current states of its neighbours, termed discrete-time

Markov networks [36]. Furthermore, we consider random

interaction networks with a given degree distribution p(k),

which denotes the probability that a randomly selected unit

has k interactions with other units, and which have a maxi-

mum degree kmax that grows less than linear in the network

size N. Self-loops are not allowed. No additional topological

features are imposed, such as degree–degree correlations or

community structures. An important consequence of these

assumptions for our purpose is that the network is ‘locally

tree-like’ [37,38], i.e. link cycles are exceedingly long.

We show analytically that for this class of systems, the

impact of a unit’s state on the short-term behaviour of

the whole system is a decreasing function of the degree k
of the unit for sufficiently high k. That is, it takes a relatively

short time-period for the information about the instantaneous

state of such a high-degree unit to be no longer present in the

information stored by the system. A corollary of this finding

is that if one would observe the system’s state trajectory for a

short amount of time, then the (out-of-equilibrium) behav-

iour of the system cannot be explained by the behaviour of

the hubs. In other words, if the task is to optimally predict
the short-term system behaviour after observing a subset of

the units’ states, then high-degree units should not be chosen.

We validate our analytical predictions using numerical

experiments of random networks of 6000 ferromagnetic

Ising spins where the number of interactions k of a spin is dis-

tributed as a power-law p(k)/ k2g. Ising-spin dynamics are

extensively studied and are often used as a first approxi-

mation of the dynamics of a wide variety of complex

physical phenomena [37]. We find further qualitative evi-

dence in the empirical data of the dynamical importance of

units as function of their degree in three different domains,

namely viral marketing in social networks [39], evolutionary

conservation of human proteins [40] and the transmission of

a neuron’s activity in neural networks [41].
2. Results
2.1. Information dissipation time of a unit
As a measure of the dynamical importance of a unit s, we cal-

culate its information dissipation time (IDT), denoted D(s). In

words, it is the time it takes for the information about the

state of the unit s to disappear from the network’s state. As

another way of describing it, it is the time it takes for the net-

work as a whole to forget a particular state of a single unit.

Here, we derive analytically a relation between the number

of interactions of a unit and the IDT of its state. Our

method to calculate the IDT is a measure of cause and

effect and not merely of correlation; see appendix for details.

2.1.1. Terminology
A system S consists of units s1, s2, . . . among which some

pairs of units, called edges, E ¼ (si, sj), (sk, sl), . . . interact

with each other. Each interaction is undirected, and the

number of interactions that involve unit si is denoted by ki,

called its degree, which equals k with probability p(k), called

the degree distribution. The set of ki units that si interacts

with directly is denoted by hi ¼ {x : ðsi; xÞ [ E}. The state of

unit si at time t is denoted by st
i, and the collection

St ¼ st
1; s

t
2; . . . ; st

N forms the state of the system. Each unit

probabilistically chooses its next state based on the current

state of each of its nearest-neighbours in the interaction net-

work. Unit si chooses the next state x with the conditional

probability distribution pðstþ1
i ¼ xjht

iÞ. This is also known as

a Markov network.

2.1.2. Unit dynamics in the local thermodynamic equilibrium
Before we can proceed to show that D(s) is a decreasing func-

tion of the degree k of the unit s, we must first define the class

of unit dynamics in more detail. That is, we first specify an

expression for the conditional probabilities pðstþ1 ¼ rjhtÞ.
We focus on discrete-time Markov networks, so the

dynamics of each unit is governed by the same set of

conditional probabilities pðstþ1 ¼ rjhtÞ with the Markov prop-

erty. In our LTE description, a unit chooses its next state

depending on the energy of that state, where the energy land-

scape induced by the states of its nearest-neighbours through

its interactions. That is, each unit can quasi-equilibrate its

state to the states of its neighbours. The higher the energy

of a state at a given time, the less probable the unit chooses

the state. Stochasticity can arise if multiple states have an

equal energy, and additional stochasticity is introduced by
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means of the temperature of the heat bath that surrounds the

network.

The consequence of this LTE description that is relevant to

our study is that the state transition probability of a unit is an

exponential function with respect to the energy. That is, in a

discrete-time description, st chooses stþ1 ¼ r as the next state

with a probability

pðstþ1 ¼ rjhtÞ/ exp
X
sj[h

�eðrjst
jÞ

T
, ð2:1Þ

where T is the temperature of the network’s heat bath andP
j eðrjst

jÞ is the energy of state r given the states of its inter-

acting neighbours st
j [ ht. As a result, the energy landscape

of r does not depend on individual states of specific neigh-

bour units; it depends on the distribution of neighbour states.

2.1.3. Information as a measure of dynamical impact
The instantaneous state of a system St consists of H(St) bits of

Shannon information. In other words, H(St) answers to

unique yes/no questions (bits) must be specified in order to

determine a unique state St. As a consequence, the more

bits about St are determined by the instantaneous state st0

i
of a unit si at time t0 � t, the more the system state St depends

on the unit’s state st0

i .

The impact of a unit’s state st0

i on the system state St at a

particular time t can be measured by their mutual information

IðSt; st0

i Þ. In the extreme case that st0

i fully determines the state

St, the entropy of the system state coincides with the entropy of

the unit state, and the dynamical impact is maximum at

HðStÞ ¼ Hðst0

i Þ ¼ IðStjst0

i Þ. In the other extreme case, the unit

state st0

i is completely irrelevant to the system state St, the

information is minimum at IðSt; st0

i Þ ¼ 0.

The decay of this mutual information over time (as t!1)

is then a measure of the extent that the system’s state trajec-

tory is affected by an instantaneous state of the unit. In

other words, it measures the ‘dynamical importance’ of the

unit. If the mutual information reaches zero quickly, then

the state of the unit has a short-lasting effect on the collective

behaviour of the system. The longer it takes for the mutual

information to reach zero, the more influential is the unit to

the system’s behaviour. We call the time it takes for the

mutual information to reach zero the IDT of a unit.

2.1.4. Defining the information dissipation time of a unit
At each time step, the information stored in a unit’s state st

i is

partially transmitted to the next states of its nearest-

neighbours [42,43], which, in turn, transmit it to their

nearest-neighbours, and so on. The state of unit s at time t
dictates the system state at the same time t to the amount of

Ik
0 ; IðSt; stÞ ¼ Iðst; stÞ ¼ HðstÞ; ð2:2Þ

with the understanding that unit s has k interactions. We use

the notation Ik
0 instead of Is

0; because all units that have k inter-

actions are indistinguishable in our model. At time t þ 1, the

system state is still influenced by the unit’s state st, the

amount of which is given by

Ik
1 ¼ Iðhtþ1; stÞ: ð2:3Þ

As a result, a unit with k connections locally dissipates its infor-

mation at a ratio Ik
1=Ik

0 per time step. Here, we use the

observation that the information about a unit’s state st, which

is at first present at the unit itself at the maximum amount
H(st), can be only transferred at time t þ 1 to the direct

neighbours h of s, through nearest-neighbour interactions.

At subsequent time steps (t þ 2 and onward), the infor-

mation about the unit with an amount of Ik
1 will dissipate

further into the network at a constant average ratio

Î ¼
X

m
qðmÞ � I

mþ1
1

Imþ1
0

: ð2:4Þ

from its neighbours, neighbours-of-neighbours, etc. This is

due to the absence of degree–degree correlations or other

structural bias in the network. That is, the distribution q(m)

of the degrees of a unit’s neighbours (and neighbours-of-

neighbours) does not depend on its own degree k. Here,

qðmÞ ¼ ðmþ 1Þpðmþ 1Þkml�1 is the probability distribution

of the number of additional interactions that a nearest-

neighbour unit contains besides the interaction with unit s,

or the interaction with a neighbour of unit s, etc., called the

excess degree distribution [44]. As a consequence, the disse-

mination of information of all nodes occurs at an equal

ratio per time step except for the initial amount of infor-

mation Ik
1, which the k neighbour states contain at time

t þ 1, which depends on the degree k of the unit. Note that

this definition of Î ignores the knowledge that the source

node has exactly k interactions, which at first glance may

impact the ability of the neighbours to dissipate information.

However, this simplification is self-consistent, namely we will

show that Ik
1 diminishes for increasing k: this reduces the dis-

sipation of information of its direct neighbours, which, in

turn, reduces Ik
1 for increasing k, so that our conclusion that

Ik
1 diminishes for increasing k remains valid. See also appen-

dix A for a second line of reasoning, about information

flowing back to the unit s.

In general, the ratio per time step at which the infor-

mation about st
i dissipates from t þ 2 and onward equals Î

up to an ‘efficiency factor’ that depends on the state–state

correlations implied by the conditional transition probabil-

ities pðstþ1
k jst

jÞ. For example, if st
A dictates 20% of the

information stored in its neighbour state stþ1
B , and stþ1

B , in

turn, dictates 10% of the information in stþ2
C , then Iðst

A; stþ2
C Þ

may not necessarily equal 20% � 10% ¼ 2% of the infor-

mation Hðstþ2
C Þ stored in stþ2

C . That is, in one extreme, stþ1
B

may use different state variables to influence stþ2
C than

the variables that were influenced by st
A, in which case

Iðst
A; stþ2

C Þ is zero, and the information transmission is ineffi-

cient. In the other extreme, if stþ1
B uses only state variables

that were set by st
A to influence stþ2

C , then passing on A’s

information is optimally efficient and Iðst
A; stþ2

C Þ ¼ 10%.

Therefore, we assume that at every time step from time

t þ 2 onward, the ratio of information about a unit that is

passed on is ceff � Î; i.e. corrected by a constant factor

0 � ceff � 1=Î that depends on the similarity of dynamics of

the units. It is non-trivial to calculate ceff but its bounds are

sufficient for our proceeding.

Next, we can define the IDT of a unit. The number of time

steps it takes for the information in the network about unit s
with degree k to reach an arbitrarily small constant 1 is

DðsÞ ¼ logceff �Î
1

Ik
1

" #
¼ log 1� log Ik

1

log ceff þ log Î
: ð2:5Þ

Note that D(s) is not equivalent to the classical correlation

length. The correlation length is a measure of the time it

takes for a unit to lose a certain fraction of its original
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Figure 1. The dynamical impact D(s) of a ferromagnetic Ising spin s as function of its connectivity ks, from evaluating the analytical D(s) in equation (2.5) as well as from
numerical experiments. For the analytical calculations, we used Glauber dynamics to describe the behaviour of the units; for the computer experiments, we used the Metro-
polis – Hastings algorithm. For the latter, we simulate a network of 6000 spins with a power-law degree distribution p(k)/k21.6; the plots are the result of six realizations,
each of which generated 90 000 time series of unit states that lead up to the same system state, which was chosen randomly after equilibration. The grey area is within two
times the standard error of the mean IDT of a unit with a given connectivity. (a) T ¼ 2.0, (b) T ¼ 2.5, (c) T ¼ 2.75, (d) T ¼ 9.0, (e) T ¼ 12 and (f ) T ¼ 14.
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correlation with the system state, instead of the time it takes

for the unit to reach a certain absolute value of correlation.

For our purpose of comparing the dynamical impact of

units, the correlation length would not be a suitable measure.

For example, if unit A has a large initial correlation with the

system state and another unit B has a small initial correlation,

but the halftime of their correlation is equal, then, in total, we

consider A to have more impact on the system’s state because

it dictates more bits of information of the system state.
2.2. Diminishing information dissipation time of hubs
As a function of the degree k of unit s, the unit’s IDT satisfies

DðsÞ/ constþ log Ik
1; ð2:6Þ

because Î, c and 1 are independent of the unit’s degree. Here,

the proportionality factor equals �ðlog ceff þ log ÎÞ�1, which is

non-negative, because the dissipation ratio ceff � Î is at most 1,

and the additive constant equals 2log1, which is positive as

long as 1 , 1. Because the logarithm preserves order, to show

that the IDT diminishes for high-degree units, it is sufficient

to show that Ik
1 decreases to a constant, as k!1, which we

do next.

The range of the quantity Ik
1 is

0 � Ik
1 �

X
stþ1

j [htþ1
i

Iðstþ1
j ; st

iÞ; ð2:7Þ

due to the conditional independence among the neighbour states

stþ1
j given the node state st

i . In the average case, the upper bound

can be written as k � kIðstþ1
j ; st

iÞlkj
; and we can write Ik

1 as

Ik
1 ¼ UðkÞ � k � TðkÞ, where

TðkÞ ¼ kIðstþ1
j ; st

iÞlkj
; ð2:8Þ

where T(k) is the information in a neighbour unit’s next state

averaged over its degree, and U(k) is the degree of ‘uniqueness’

of the next states of the neighbours. The operator k � lkj
denotes

an average over the degree kj of a neighbour unit sj, i.e. weighted

by the excess degree distribution q(kj 2 1). In one extreme, the

uniqueness function U(k) equals unity in case the information
of a neighbour does not overlap with that of any other neighbour

unit of st
i , i.e. the neighbour states do not correlate. It is less than

unity to the extent that information does overlap between neigh-

bour units, but is never negative. See §S3 in the electronic

supplementary material for a detailed derivation of an exact

expression and bounds of the uniqueness function U(k).

Because the factor U(k) . k is at most a linear growing func-

tion of k, a sufficient condition for D(si) to diminish as k!1

is for T(k) to decrease to zero more strongly than linear in k.

After a few steps of algebra (see appendix), we find that

Tðk þ 1Þ ¼ a � TðkÞ, where a � 1: ð2:9Þ

Here, equality for a only holds in the degenerate case

where only a single state is accessible to the units. In

words, we find that the expected value of T(k) converges

downward to a constant at an exponential rate as k!1.

Because each term is multiplied by a factor a � 1, this conver-

gence is downward for most systems but never upward even

for degenerate system dynamics.

2.3. Numerical experiments with networks of
Ising spins

For our experimental validation, we calculate the IDT D(s) of

6000 ferromagnetic spins with nearest-neighbour interactions

in a heavy-tailed network in numerical experiments and find

that it, indeed, diminishes for highly connected spins. In

figure 1, we show the numerical results and compare them

with the analytical results, i.e. evaluating equation (2.5).

The analytical calculations use the single-site Glauber

dynamics [45] to describe how each spin updates its state

depending on the states of its neighbours. In this dynamics,

at each time step, a single spin chooses its next state accord-

ing to its stationary distribution of state, which would be

induced if its nearest-neighbour spin states would be fixed

to their instantaneous value (LTE). We calculate the upper

bound of D(s) by setting U(k) ¼ 1, that is, all information

about a unit’s state is assumed to be unique that optimizes

its IDT. A different constant value for U(k) would merely

scale the vertical axis.
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We perform computer simulations to produce time series

of the states of 6000 ferromagnetic Ising spins and measure

the dynamical importance of each unit by regression. For

each temperature value, we generate six random networks

with p(k)/ k2g for g ¼ 1.6 and record the state of each spin

at 90 000 time steps. The state of each unit is updated using

the Metropolis–Hastings algorithm instead of the Glauber

update rule to show generality. In the Metropolis–Hastings

algorithm, a spin will always flip its state if it lowers the inter-

action energy; higher energy states are chosen with a

probability that decreases exponentially as function of the

energy increase. Of the resulting time series of the unit

states, we computed the time di where Iðstþdi
1 ; :::; stþdi

N ; st
iÞ ¼ 1

of each unit si by regression. This is semantically equivalent

to D(si) but does not assume a locally tree-like structure or a

uniform information dissipation rate Î. In addition, it ignores

the problem of correlation (see appendix A). See section S1

in the electronic supplementary material for methodological

details; see section S2 in the electronic supplementary material

for results using higher values of the exponent g. The results

are presented in figure 1.
2.4. Empirical evidence
We present empirical measurements from the literature of the

impact of units on the behaviour of three different systems,

namely networks of neurons, social networks and protein

dynamics. These systems are commonly modelled using a

Gibbs measure to describe the unit dynamics. In each case,

the highly connected units turn out to have a saturating or

decreasing impact on the behaviour of the system. This

provides qualitative evidence that our IDT, indeed, character-

izes the dynamical importance of a unit, and, consequently,

that highly connected units have a diminishing dynamical

importance in a wide variety of complex systems. In each

study, it remains an open question which mechanism is

responsible for the observed phenomenon. Our work pro-

poses a new candidate explanation for the underlying cause

for each case, namely that it is an inherent property of the

type of dynamics that govern the units.

The first evidence is found in the signal processing of

in vitro networks of neurons [41]. The denser neurons are

placed in a specially prepared Petri dish, the more connec-

tions (synapses) each neuron creates with other neurons. In

their experiments, Ivenshitz and Segal found that sparsely
connected neurons are capable of transmitting their electrical

potential to neighbouring neurons, whereas densely con-

nected neurons are unable to trigger network activity even

if they are depolarized in order to discharge several action

potentials. Their results are summarized in figure 2. In

search for the underlying cause, the authors exclude some

obvious candidates, such as the ratio of excitatory versus

inhibitory connections, the presence of compounds that

stimulate neuronal excitability and the size of individual

postsynaptic responses. Although the authors do find tell–

tale correlations, for example, between the network density

and the structure of the dendritic trees, they conclude that

the phenomenon is not yet understood. Note that in this

experiment, the sparsely connected neuron is embedded in

a sparsely connected neural network, whereas the densely

connected neuron is in a dense network. A further validation

would come from a densely connected neuron embedded in

a sparse network in order to disentangle the network’s

contribution from the individual effect.

Second, in a person-to-person recommendation network

consisting of four million persons, Leskovec et al. [39] found

that the most active recommenders are not necessarily the

most successful. In the setting of word-of-mouth market-

ing among friends in the social networks, the adoption rate

of recommendations saturates or even diminishes for the

highly active recommenders, which is shown in figure 3 for

four product categories. This observation is remarkable,

because in the dataset, the receiver of a recommendation

does not know how many other persons receive it as well.

As a possible explanation, the authors hypothesize that

widely recommended products may not be suitable for

viral marketing. Nevertheless, the underlying cause remains

an open question. We propose an additional hypothesis,

namely that highly active recommenders have a diminishing

impact on the opinion forming of others in the social net-

work. In fact, the model of Ising spins in our numerical

experiments is a widely used model for opinion forming in

social networks [14–16,18,20]. As a consequence, the results

in figure 1 may be interpreted as estimating the dynamical

impact of a person’s opinion as function of the number of

friends that he debates his opinion with.

The third empirical evidence is found in the evolutionary

conservation of human proteins [40]. According to the neutral

model of molecular evolution, most successful mutations in

proteins are irrelevant to the functioning of the system of
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protein–protein interactions [46]. This means that the evolutio-

nary conservation of a protein is a measure of the intolerance of

the organism to a mutation to that protein, i.e. it is a measure

of the dynamical importance of the protein to the reproduci-

bility of the organism [47]. Brown & Jurisica [40] measured

the conservation of human proteins by mapping the human

protein–protein interaction network to that of mice and rats

using ‘orthologues’, which is shown in figure 4. Two proteins

in different species are orthologous if they descend from a

single protein of the last common ancestor. Their analysis

reveals that the conservation of highly connected proteins is

inversely related with their connectivity. Again, this is consist-

ent with our analytical prediction. The authors conjecture that

this effect may be due to the overall high conservation rate,

approaching the maximum of 1 and therefore affecting the

statistics. We suggest that it may indeed be an inherent property

of protein interaction dynamics.

lated using a Gaussian smoothing kernel with a standard deviation of 10 data
points. To evaluate the significance of the downward trend of both conservation
rates, we performed a least-squares linear regression of the original data points
starting from the peaks in the trend lines up to k ¼ 70. For the fraction of
orthologues with mice, the slope of the regression line is 20.00347+
0.00111 (mean and standard error); with rats, the slope is 20.00937+
0.00594. The vertical bars denote the number of proteins with k interactions
in the human protein – protein interaction network (logarithmic scale). The
data for these plots were kindly provided by Brown & Jurisica [40].
3. Discussion
We find that various research areas encounter a diminishing

dynamical impact of hubs that is unexplained. Our analy-

sis demonstrates that this phenomenon could be caused

by the combination of unit dynamics and the topology of

their interactions. We show that in large Markov networks,

the dynamical behaviour of highly connected units have a

low impact on the dynamical behaviour of the system as

a whole, in the case where units choose their next state

depending on the interaction potential induced by their

nearest-neighbours.
For highly connected units, this type of dynamics enables

the LTE assumption, originally used for describing radiative

transport in a gas or plasma. To illustrate LTE, there is no
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single temperature value that characterizes an entire star: the

outer shell is cooler than the core. Nonetheless, the mean free

path of a moving photon inside a star is much smaller than

the temperature gradient, so on a small timescale, the pho-

ton’s movement can be approximated using a local

temperature value. A similar effect is found in various sys-

tems of coupled units, such as social networks, gene

regulatory networks and brain networks. In such systems,

the internal dynamics of a unit is often faster than a change

of the local interaction potential, leading to a multi-scale

description. Intuitive examples are the social interactions in

blog websites, discussion groups or product recommendation

services. Here, changes that affect a person are relatively slow

so that he can assimilate his internal state-of-mind (the unit’s

microstate) to his new local network of friendships and the

set of personal messages he received, before he makes

the decision to add a new friend or send a reply (the unit’s

macrostate). Indeed, this intuition combined with our

analysis is consistent with multiple observations in social

networks. Watts & Doods [48] numerically explored the

importance of ‘influentials’, a minority of individuals who

influence an exceptional number of their peers. They find

counter to intuition that large cascades of influence are

usually not driven by influentials, but rather by a critical

mass of easily influenced individuals. Granovetter [49]

found that even though hubs gather information from differ-

ent parts of the social network and transmit it, the clustering

and centrality of a node provide better characteristics for dif-

fusing innovation [50]. Rogers [51] found experimentally that

the innovator is usually an individual in the periphery of the

network, with few contacts with other individuals.

Our approach can be interpreted in the context of how

dynamical systems intrinsically process information [42,43,

52–56]. That is, the state of each unit can be viewed as a

(hidden) storage of information. As one unit interacts with

another unit, part of its information is transferred to the

state of the other unit (and vice versa). Over time, the infor-

mation that was stored in the instantaneous state of one unit

percolates through the interactions in the system, and at the

same time it decays owing to thermal noise or randomness.

The longer this information is retained in the system state,

the more the unit’s state determines the state trajectory of

the system. This is a measure of the dynamical importance

of the unit, which we quantify by D(s).

Our work contributes to the understanding of the behav-

iour of complex systems at a conceptual level. Our results

suggest that the concept of information processing can be

used, as a general framework, to infer how dynamical units

work together to produce the system’s behaviour. The

inputs to this inference are both the rules of unit dynamics

as well as the topology of interactions, which contrasts with

most complex systems research. A popular approach to

infer the importance of units in general are topology-only

measures such as connectedness and betweenness-centrality

[28,30,57–62], following the intuition that well-connected or

centrally located units must be important to the behaviour

of the system. We demonstrate that this intuition is not

necessarily true. A more realistic approach is to consider

to simulate a simple process on the topology, such as the

percolation of particles [63], magnetic spin interactions

[3,6,14,20,37,64–72] or the synchronization of oscillators

[37,60,73–80]. The dynamical importance of a unit in a

such model is then translated to that of the complex system
under investigation. Among the ‘totalistic’ approaches that

consider the dynamics and interaction topology simul-

taneously, a common method to infer a unit’s dynamical

importance is to perform ‘knock-out’ experiments [29–31].

That is, experimentally removing or altering a unit and

observing the difference in the system’s behaviour. This is a

measure of how robust the system is to a perturbation, how-

ever, and care must be taken to translate robustness into

dynamical importance. In case the perturbation is not part

of the natural behaviour of the system, then the perturbed

system is not a representative model of the original system.

To illustrate, we find that highly connected ferromagnetic

spins hardly explain the observed dynamical behaviour of a

system, even though removing such a spin would have a

large impact on the average magnetization, stability and

critical temperature [81,82]. In summary, our work is an

important step towards a unified framework for understand-

ing the interplay of the unit dynamics and network topology

from which the system’s behaviour emerges.
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Appendix A
A.1. Limiting behaviour of pðstþ1

i ¼ qÞ as
k!1

Using equation (2.1), the prior probability of a unit’s state can

be written as

pðstþ1
i ¼ qÞ ¼

X
r;fr1 ;:::;rkg[S

k

pðht
i ¼ rÞ � e

�
Pk

j¼1

eðq;rjÞ=T

� Z�1
k , ðA 1Þ

where Zk is the partition function for a unit with k edges. As

k� jSj; the set of interaction energies starts to follow a

stationary distribution of nearest-neighbour states, and the

expression can be approximated as

pðst
i ¼ qÞ ¼ e�kkeql=T � Z�1

k . ðA 2Þ

Here, keql is the expected interaction energy of the state q with

one neighbour, averaged over the neighbours’ state distri-

bution. If an edge is added to such a unit, the expression

becomes (the subscript k þ 1 denotes the degree of the node

as a reminder)

pkþ1ðst
i ¼ qÞ ¼ e�ðkþ1Þkeql=T � Z�1

kþ1

¼ e�keql=T � e�kkeql=T � Z�1
kþ1: ðA 3Þ

In words, the energy term for each state q is multiplied by a

factor e�keql=T that depends on the state but is constant with

respect to k. (The partition function changes with k to suitably

normalize the new terms, but it does not depend on q and so
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is not responsible for moving probability mass.) That is, as k
grows, the probability of the state q with the lowest expected

interaction energy approaches unity; the probabilities of all

other states will approach zero. The approaches are exponen-

tial, because the multiplying factors do not depend on k.

If there are m states with the lowest interaction energies

(multiplicity m), then each probability of these states will

approach 1/m.
ing.org
JR
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A.2. Deriving an upper bound on a in
T(k þ 1) ¼ a . T(k)

First, we write T(k) as an expected mutual information between

the state of a unit and the next state of its neighbour, where the

average is taken over the degree of the neighbour unit:

TðkÞ ¼ kHðst
iÞ �Hðst

i jstþ1
j Þlkj

: ðA 4Þ

We will now study how T(k) behaves as k grows for large

k. By definition, both entropy terms are non-negative, and

Hðst
i jstþ1

j Þ � Hðst
iÞ. In §A.1 of this appendix, we find that the

prior probabilities of the state of a high-degree unit exponen-

tially approach either zero from above or a constant from

below. In the following, we assume that this constant is

unity for the sake of simplicity, i.e. that there is only one

state with the lowest possible interaction energy.

Hðst
iÞ ¼ �

X
q[S

pðst
i ¼ qÞ log pðst

i ¼ qÞ;

¼ �
X

q[S
þ

ð1� b�k
q Þ logð1� b�k

q Þ �
X

q[S
�

b�k
q log b�k

q ;

¼ �
X

q[S
þ

ð1� b�k
q Þ logð1� b�k

q Þ þ k
X

q[S
�

b�k
q log bq;

� k
X

q[S
�

b�k
q log bq;

¼ Oðk � x�kÞ:
ðA 5Þ

In words, the first entropy term eventually goes to zero

exponentially as function of the degree of a unit. Because

this entropy term is the upper bound on the function T(k),

there are three possibilities for the behaviour of T(k). The

first option is that T(k) is zero for all k, which is a degenerate

system without dynamical behaviour. The second option is

that T(k) is a monotonically decreasing function of k, and

the third option is that T(k) first increases and then decreases

as function of k. In both cases, for large k the function, T(k)

must approach zero exponentially.

In summary, we find that for large k

Tðk þ 1Þ ¼ a � TðkÞ;where a , 1: ðA 6Þ

The assumption of multiplicity unity of the lowest inter-

action energy is not essential. If this assumption is relieved,

then in step 3 of equation (A 5), then the first term does not

become zero but a positive constant. It may be possible that

a system where T(k) equals this constant across k is not degen-

erate, in contrast to the case of multiplicity unity, so in this

case, we must relax the condition in equation (A 6) to include

the possibility that all units are equally important, i.e. a � 1.

This still makes it impossible for the impact of a unit to keep

increasing as its degree grows.
A.3. Information flowing back to a
high-degree unit

In the main text, we simplify the information flow through the

network by assuming that the information at the amount Ik
1

stored in the neighbours of a unit flows onward into the net-

work, and does not flow back to the unit. Here, we rationalize

that this assumption is appropriate for high-degree units.

Suppose that at time t þ 1, the neighbour unit sj stores

Iðst
i ; stþ1

j Þ bits of information about the state st
i . At time

t þ 2, part of this information will be stored by two variables:

the unit’s own state stþ2
i and the combined variable of neigh-

bour-of-neighbour states fs j1; :::; s jkjg. In order for the IDT

D(si) of unit si to be affected by the information that flows

back, this information must add a (significant) amount to

the total information at time t þ 2. We argue however that

this amount is insignificant, i.e.

Iðst
i ; Stþ2Þ � Iðst

i ; fstþ2
j1 ;:::; stþ2

jkj
gÞ

¼ Iðst
i ; stþ2

i jfstþ2
j1 ;:::; stþ2

jkj
gÞ !ki!1

0: ðA 7Þ

The term Iðst
i ; stþ2

i jfstþ2
j1 ;:::; stþ2

jkj
gÞ is the conditional mutual

information. Intuitively, it is the information that stþ2
i stores

about st
i which is not already present in the states

fstþ2
j1 ;:::; stþ2

jkj
g.

The maximum amount of information that a variable can

store about other variables is its entropy, by definition. It fol-

lows from sections A.1 and A.2 of appendix that the entropy

of a high-degree unit is lower than the average entropy of a

unit. In fact, in the case of multiplicity unity of the lowest inter-

action energy the capacity of a unit goes to zero as k!1. For

this case, this proves that Iðst
i ; stþ2

i jfstþ2
j1 ;:::; stþ2

jkj
gÞ, indeed, goes

to zero. For higher multiplicities, we observe that the entropy

Hðstþ2
i Þ is still (much) smaller than the total entropy of the

neighbours of a neighbour Hðstþ2
j1 Þ þHðstþ2

j2 jstþ2
j1 Þ þ � � � There-

fore, the information Iðst
i ; stþ2

i Þ that flows back is (much)

smaller than Iðst
i ; fstþ2

j1 ;:::; stþ2
jkj
gÞ, and the conditional variant

is presumably smaller still. Therefore, we assume that also in

this case, the information that flows back has an insignificant

effect on D(si).
A.4. A note on causation versus correlation
In the general case, the mutual information Iðst

x; st0
y Þ between the

state of unit sx at time t0 and another unit’s state sy at time t is the

sum of two parts: Icausal, which is information that is due to a

causal relation between the state variables, and Icorr, which is

information due to ‘correlation’ that does not overlap with the

causal information. Correlation occurs if the units sx and sy

both causally depend on a third ‘external’ variable e in a similar

manner, i.e. such that I(e; ðst
x; s

t0
y Þ

T) , Iðe; st
xÞ þ Iðe; st0

y Þ. This can

lead to a non-zero mutual information Iðst
x; st0

y Þ among the two

units, even if the two units would not directly depend on each

other in a causal manner [83,84].

For this reason, we do not directly calculate the depen-

dence of IðSt; st0Þ on the time variable t in order to calculate

the IDT of a unit s. It would be difficult to tell how much

of this information is non-causal at every time point. In

order to find this out, we would have to understand exactly

how each bit of information is passed onward through the

system, from one state variable to the next, which we do

not yet understand at this time.
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To prevent measuring the non-causal information present

in the network, we use local single-step ‘kernels’ of infor-

mation diffusion, namely the Ik
1=Ik

0 as discussed previously.

The information Ik
0 is trivially of causal nature (i.e. non-

causal information is zero), because it is fully stored in the

state of the unit itself. Although, in the general case, Ik
1 may

consist of a significant non-causal part, in our model, we

assume this to be zero or at most an insignificant amount.

The rationale is that units do not self-interact (no self-

loops), and the network is locally tree-like: if sx and sy are

direct neighbours, then there is no third sz with ‘short’ inter-

action pathways to both sx and sy. The only way that non-

causal (i.e. not due to sx
t influencing stþ1

y ) information can

be created between st
x and stþ1

y is through the pair of inter-

action paths st0
z ! � � � ! st�1

y ! st
x and st0

z ! � � � ! stþ1
y ,

where t’ , t 2 1. That is, one and the same state variable st0
z

must causally influence both st
x and stþ1

y , where it can reach

sx only through sy. We expect any thusly induced non-
3

causal information in Iðstþ1
y ; st

xÞ is insignificant compared

with the causal information through st
x ! stþ1

y , and the

reason is threefold. First, the minimum lengths of the two

interaction paths from sz are two and three interactions,

respectively, where information is lost through each inter-

action due to its stochastic nature. Second, of the

information that remains, not all information Iðst0
z ; st

xÞ may

overlap with Iðst0
z ; stþ1

y Þ, but even if it does, then the ‘corre-

lation part’ of the mutual information Iðstþ1
y ; st

xÞ due to this

overlap is upper bounded by their minimum:

min {Iðst0
z ; st

xÞ; Iðst0
z ; stþ1

y Þ}. Third, the mutual information due

to correlation may, in general, overlap with the causal infor-

mation, i.e. both pieces of information may be partly about

the same state variables. That is, the Icorr part of Iðstþ1
y ; st

xÞ,
which is the error of our assumption, is only that part of the

information-due-to-correlation that is not explained by (con-

tained in) Icausal. The final step is the observation that Ik
1 is the

combination of all Iðstþ1
y ; st

xÞ for all neighbour units sy [ hx.
0568
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