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Taurine, a cysteine-derived zwitterionic sulfonic acid, is a common ingredient in energy drinks and is naturally found in fish and oth-
er seafood. In humans, taurine is produced mainly in the liver, and it can also be obtained from food. In target tissues, such as the ret-
ina, heart, and skeletal muscle, it functions as an essential antioxidant, osmolyte, and antiapoptotic agent. Taurine is also involved in 
energy metabolism and calcium homeostasis. Taurine plays a considerable role in bone growth and development, and high-profile 
reports have demonstrated the importance of its metabolism for bone health. However, these reports have not been collated for more 
than 10 years. Therefore, this review focuses on taurine–bone interactions and covers recently discovered aspects of taurine’s effects 
on osteoblastogenesis, osteoclastogenesis, bone structure, and bone pathologies (e.g., osteoporosis and fracture healing), with due at-
tention to the taurine–cartilage relationship.
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INTRODUCTION

Taurine, a nonessential amino acid, is a frequently used ingredi-
ent in energy drinks, as it improves athletic and mental perfor-
mance. This amino acid is also an essential regulator of physio-
logical processes and pathologies, such as metabolism and can-
cer development; this aspect was either unknown or ignored until 
the last decade, when it attracted the attention of scientists [1-3].

Taurine was discovered in Germany in 1827 by Tiedemann 
and Gmelin [4], who isolated it from ox (Bos taurus) bile. Ten 
years later, Demarcay [5] named this amino acid taurine, and 20 

years later, Jacobsen and Smith [6] found that its structure con-
tains sulfur. Since then, the natural occurrence of taurine has 
been recognized in a wide variety of invertebrate and vertebrate 
tissues [6] in some plants, algae, and fungi [7]. In mammals, ex-
cept felines and foxes, which cannot synthesize taurine, the total 
taurine pool is balanced between synthesis and absorption from 
food. In humans, taurine plays a functional role in vital organs, 
such as the brain, eyes, kidneys, and heart. It performs several 
primary physiological functions, including osmotic regulation, 
and has antioxidant, antiapoptotic, and anti-inflammatory effects 
[1]. The mechanisms through which taurine exerts these effects 
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are not completely known, but are currently being unveiled. 
This review aims to provide an overview of taurine–bone inter-
actions based on discoveries in the last decade. We summarize 
how this amino acid affects bone development and functions, as 
well as orthopedic disorders, including bone cancer.

PROPERTIES OF TAURINE

Taurine (2-aminoethane-1-sulfonic acid) is a sulfur-containing 
amino acid with a β-amino group and an acidic sulfonic group 
(R-SO3H) separated by two methylene (CH2) moieties. Unlike 
several other amino acids, taurine does not contain a carboxyl 
group; therefore, it is considered a nonproteinogenic amino 
acid. Taurine´s molecular formula is C2H7NO3S; its exact mo-
lecular mass is 125.014664 g/mol; its melting point is 300°C; 
and its solubility in water is 80.7 mg/mL. Although taurine has 
an isoelectric point of 5.15, it is considered a zwitterion at phys-
iological pH, with a pKa value of 1.05 and pKb value of 9. Tau-
rine is commercially manufactured from ethylene oxide or 

monoethanolamine [8].

BIOSYNTHESIS OF TAURINE

The primary source of taurine for humans is the diet, especially 
seafood and meat [9]. Human milk or formula compensates for 
insufficient synthesis in infants and children, which develops 
until adulthood. Endogenous synthesis in adults occurs in dis-
crete amounts, ranging from 0.4 to 1.0 mmol per day, depending 
on protein intake and hepatic function [10]. De novo production 
of taurine has been mainly found in the liver and brain; howev-
er, other tissues, including the kidney, skeletal muscle, white 
and brown adipose tissues, pineal gland, and retina, can also 
synthesize it [6]. There are three putative pathways for taurine 
production from cysteine. The first is the cysteine sulfinate 
pathway (I), which includes two reactions: decarboxylation of 
cysteine sulfinate to hypotaurine by cysteine sulfinate decarbox-
ylase, and oxidation of hypotaurine to taurine by hypotaurine 
dehydrogenase [11]. In pathway (II), cysteine sulfinate is con-

Fig. 1. Biosynthetic pathways of taurine in humans. Orange and blue arrows indicate synthesis pathways (I) and (II) from cysteine, respec-
tively. Synthesis pathway (III) is indicated in green arrows [13] (created with BioRender.com). CBS, cystathionine β-synthase; CDO, cyste-
ine dioxygenase; CSAD, cysteine sulfinate decarboxylase; HDH, hypotaurine dehydrogenase; CAD, candysteic acid decarboxylase; ADO, 
2-aminoethanethiol dioxygenase.
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verted to cysteate and taurine by cysteine dioxygenase and cys-
teate decarboxylase, respectively. The third pathway (III) uses 
cysteamine produced by the degradation of coenzyme A, and fi-
nally, cysteamine is transformed into hypotaurine by 2-amino-
ethanethiol dioxygenase (Fig. 1) [12,13]. 

ABSORPTION, DISTRIBUTION, AND 
EXCRETION OF TAURINE

The taurine supply in the human body is covered by intestinal 
uptake and biosynthesis, mainly in the liver. After oral inges-
tion, intestinal transport moves taurine by two carriers: proton-
coupled amino acid transporter 1 (PAT1) and sodium- and chlo-
ride-dependent taurine transporter (TAUT). PAT1 has pH-de-
pendent activity on the millimolar order and functions as the 
primary transporter at higher taurine concentrations; this protein 
also transports glycine, alanine, and proline [14]. TAUT is a be-
ta-alanine transporter; unlike PAT1, its taurine affinity is in the 
micromolar range, but with low transport capacity [15]. In addi-

tion to endogenous synthesis, taurine content in the liver (ap-
proximately 10 mM) is maintained by portal vein transport and 
taurine conjugated with bile acids, which are products of cho-
lesterol catabolism. Taurine metabolism involves the formation 
of 5-glutamyl-taurine and taurocholate, and its excretion occurs 
in the kidney through urine or by the enterohepatic cycle 
through feces conjugated to bile acids (Fig. 2) [13,14,16]. 

CELLULAR FUNCTIONS OF TAURINE

Antioxidant activity
Taurine is frequently classified as an antioxidant; it scavenges 
reactive oxygen species (ROS), reduces ROS generation, and 
alleviates the harmful effects of oxidative stress. Free radical 
scavenging by taurine depends on its concentration; it is effec-
tive against peroxyl radicals (ROO•), superoxide anion (O2•−), 
nitric oxide (NO•), and peroxynitrite (ONOO−), but it does not 
scavenge H2O2 [17]. However, the main antioxidant property of 
taurine is attributed to its mitochondrial protective effect, which 

Fig. 2. Human taurine tissue content, distribution, and excretion. The plasma level of taurine is the sum of the dietary intake and the endoge-
nous synthesis by the liver, while the kidney is the primary organ for its excretion. Tissues with remarkably high taurine accumulation in-
clude the retina, heart, lung, and skeletal muscle, as well as some hematopoietic cells such as erythrocytes, platelets, and white blood cells. 
Data represents the amount per day. Data taken from [13] (created with BioRender.com).
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blocks ROS generation [18]. Taurine reacts with uridines of mi-
tochondrial tRNAs to form 5-taurinomethyluridine (τm5U) and 
5-taurinomethyl-2-thiouridine (τm5s2U), thereby improving the 
codon-anticodon interaction between the uridine-uridine-guano-
sine (UUG) codon and taurine-modified adenosine-adenosine-
uridine, optimizing the translation of encoded proteins that are 
rich in UUG regions of subunits 5 (mt-ND5) and 6 (mt-ND6) of 
the respiratory chain complex I [19]. Another antioxidant mech-
anism of taurine involves normalizing the enzymatic machinery 
against oxidative stress in the cell. Many studies have described 
the restoration of levels of catalase, glutathione peroxidase, glu-
tathione, superoxide dismutase (SOD), and thioredoxin reduc-
tase by taurine treatment after exposure to oxidative inducers 
[1,20], with the most recent studies focusing on diabetes-in-

duced oxidative stress [21]. In contrast, the generation of tauro-
chloramine (TauCl) and taurobromide (TauBr) by the reaction 
of taurine hypochlorous and hypobromous acids derived from 
the myeloperoxidase system in activated neutrophils is an indi-
rect antioxidant mechanism of this amino acid [22]. Taurine 
haloamines significantly induce antioxidant enzyme expression, 
promoting the nuclear translocation of nuclear factor E2-related 
factor 1 (Nrf2) (Fig. 3) [23]. The following sections describe 
additional properties of these taurine analogs.

Calcium homeostasis 
Taurine can preserve intracellular calcium (Ca2+) concentrations 
by inhibiting influx from extracellular routes or releasing it from 
intracellular pools. One of the known mechanisms underlying 

Fig. 3. Cytoprotective roles of taurine against cell damage. Antioxidant activity: taurine facilitates the release of the nuclear factor E2-related 
factor (Nrf2), a redox-sensitive transcription factor, by the Kelch-like ECH-associated protein 1 (Keap1), and the translocation of Nrf2 to the 
nucleus and its binding to the antioxidant response element (ARE) activates the gene transcription of antioxidant enzymes. Anti-apoptotic 
activity: taurine’s contribution to calcium homeostasis blocks the activation of the calpain-dependent apoptotic cascade. Anti-inflammatory 
activity: taurine represses the degradation of the inhibitor of nuclear factor-κB (NF-κB) alpha (IκBα) and keeps NF-κB inactivated; it also 
prevents its translocation to the nucleus and reduces the transcription of genes encoding proinflammatory cytokines (created with BioRen-
der.com). APAF1, apoptosis protease-activating factor-1; Bax, Bcl-2-associated X protein; BCl-2, B-cell lymphoma 2; CASP3, caspase-3; 
Ikβα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; Keap1, Kelch-like ECH-associated protein 1; 
MyD88, innate immune signal transduction adaptor; Nrf2, NEMO, NF-kappa-B essential modulator; sMaF, musculoaponeurotic fibrosar-
coma; TLR, Toll-like receptor. 
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this effect is the extrusion of taurine and sodium (Na+) from the 
cell via taurine/Na+ symport, which limits Ca2+ overload through 
Na+/Ca2+ exchange in ischemia-reperfusion injuries [24]. This 
effect suggests the therapeutic use of taurine in surgery for cardi-
ac damage, heart transplantation, and myocardial infarction [25]. 
Taurine also regulates the activity of Ca2+-ATPase in the sarco-
plasmic reticulum, ultimately maintaining Ca2+ concentrations, 
which has implications for diastolic dysfunction of the heart or 
impaired fibers type I and II of the skeletal muscle [26,27]. The 
role of taurine in calcium-sensitive excitation-contraction in 
muscular pathologies has been used to test the hypothesis that 
increasing taurine intake can improve skeletal muscle function 
in a mouse model of Duchenne muscular dystrophy [28]. Tau-
rine also modulates the calcium influx produced by coupling 
glutamate to N-methyl-d-aspartate receptors, preventing mem-
brane depolarization by opening chloride channels or inhibiting 
L-, P/Q-, and N-type voltage-gated Ca2+ channels [29].

Cell death
Closely related to its antioxidant activity, taurine maintains nor-
mal cellular function and regulates apoptosis (Fig. 3). The inter-
ruption of the respiratory chain by a deficiency in complex I has 
been demonstrated in taurine-deficient models. In fact, mito-
chondrial damage leads to increased membrane permeability, 
inducing cytochrome c release, apoptosome formation, and acti-
vation of caspase-9 and caspase-3 [30]. Taurine also inhibits 
apoptosis induced by toxic agents, such as tert-butyl hydroper-
oxide [31], acrylamide [32], and arsenic [33], in cell cultures 
that activate the phosphatidylinositol 3-kinase pathway/Akt and 
inhibit nuclear translocation of nuclear factor-kappa B (NF-κB). 
Interestingly, taurine supplementation protects osteocyte-like 
cells from cell death triggered by ROS in vitro [34]. This non-
classical amino acid is also involved in neuronal cell death pro-
tection against elevated circulating corticosteroids due to chron-
ic stress, by positively regulating extracellular signal-regulated 
kinase and Nrf2 [35]. Therefore, taurine has been suggested as a 
potential neuroprotective agent, particularly for glaucoma treat-
ment [36]. More recently, taurine has been demonstrated to limit 
arsenic-induced cell death by downregulating pyroptosis and 
autophagy in vitro and in vivo, thereby reducing hepatotoxicity 
[37]. In addition, taurine has been proposed as a potential thera-
peutic agent for treating alcohol-induced cell death and nonal-
coholic fatty liver disease resulting from obesity [38,39].

Energy metabolism
Although taurine biosynthesis is limited in humans, it also plays 

a vital role in energy metabolism. Under taurine deficiency, 
skeletal and heart muscles, liver, and adipose tissue show meta-
bolic and physical dysfunction, highlighting the downregulation 
of genes involved in fatty acid metabolism [40]. Taurine supple-
mentation in the diet can also strengthen energy metabolism for 
muscle performance, cardiac function, and liver activity 
[25,41,42]. For example, in obesity models, taurine treatment 
lowers fatty acid oxidation, decreases weight, and improves hy-
perglycemia and hyperinsulinemia. Details of these effects and 
their molecular mechanisms have recently been compiled else-
where [40,43].

Inflammation
Although the antioxidant properties of the taurine derivatives, 
TauCl and TauBr, have already been noted, their anti-inflamma-
tory properties are remarkable. TauCl inhibits the overproduc-
tion of inflammatory mediators, such as tumor necrosis factor-α, 
interleukin-1, -2, -6, -8, 10, and -12, monocyte chemo-attractant 
protein-1 and -2, cyclooxygenase (COX)-2, and prostaglandin 
E2 (PGE2) [44]. The regulation of all these molecules converg-
es on the inactivation of IkappaB kinase, which phosphorylates 
the inhibitor kappa B-alpha, thereby preventing its degradation 
and promoting its union with NF-κB involved in the synthesis 
of proinflammatory mediators (Fig. 3) [45]. The beneficial ef-
fects of taurine have recently been explained by the brain injury 
and inflammation mechanisms in patients with type 2 diabetes 
[21,46]. Furthermore, new insights have been gained into how 
the microbiome regulates taurine and healthy aging. Ahmadi et 
al. [47] reported that a human-origin probiotic cocktail from a 
healthy infant gut prevented high-fat diet-induced inflammation 
in elderly mice in a manner dependent on increased taurine 
abundance in the gut, favoring healthy aging. Additionally, topi-
cally applied taurine can regulate skin inflammation caused by 
ultraviolet light exposure, enabling this amino acid to be suit-
able for the amelioration of dermatitis and other skin patholo-
gies [48]. The anti-inflammatory role of taurine has been ad-
dressed in other conditions, such as adult mouse lungs exposed 
to cigarette smoke [49], carbon tetrachloride-induced testicular 
and kidney damage [50], and ulcerative colitis-colorectal cancer 
[51]. As the inflammatory effect of taurine has become marked-
ly relevant, it is now being used as a biopharmaceutical coupled 
to collagen sponges to improve wound healing and tissue prolif-
eration [52]. Furthermore, evidence from clinical trials has 
shown that taurine can significantly decrease the levels of pro-
tein C reactive and malondialdehyde 56 days after its supple-
mentation, thereby exhibiting beneficial effects on inflammato-
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ry and oxidative stress [53].

Osmotic regulation
Osmoregulation in cells involves the maintenance of salt and 
water balance, with adjustment of their osmolyte content to 
minimize injury to the membrane under osmotic disequilibrium. 
Unlike charged osmolytes, taurine is a neutral zwitterion re-
leased or introduced by cells to compensate for deviations from 
normotonicity, which can occur by different mechanisms [54]. 
Swelling-induced taurine efflux is energy-independent, temper-
ature-sensitive, and pH-sensitive, and is regulated by non-hy-
drolytic adenosine triphosphate (ATP) binding via a volume-
regulated anion channel [55]. Although taurine efflux is be-
lieved to be Ca2+-independent, it was recently demonstrated that 
it depends on Ca2+ in an insensitive fraction of human retinal 
Müller cells [56]. Under conditions of hypertonicity, taurine ac-
cumulation is mediated by TAUT based on in vivo studies and 
cultured astrocytes, which has been suggested to be a concerted 
uptake/biosynthesis interaction; however, this notion has not 
been well established [57]. Fig. 3 summarizes the functions of 
taurine in cell protection. 

TAURINE AND BONE 

Bone is a mineralized connective tissue that constitutes the skel-
etal system and provides mechanical support and protection for 
organs and bone marrow, as well as conferring strength, tough-
ness, and capacity for continuous growth and remodeling 
throughout post-fetal life [58]. Osteoblasts, osteoclasts, and os-
teocytes, the bone cells, are immersed in an organic and inor-
ganic matrix composed of collagen type I, a smaller proportion 
of non-collagen proteins, and nanosized hydroxyapatite crystals 
[59]. 

Two processes are involved in bone growth: intramembra-
nous ossification and endochondral ossification. Intramembra-
nous ossification involves the transition from mesenchymal 
cells to osteoblasts, mainly by the action of the Runt-related 
transcription factor 2 (RUNX2) [60], while endochondral ossi-
fication involves the formation of a hyaline cartilage template, 
which is replaced by mineralized bone tissue by the action of 
SRY-box transcription factor (SOX9) [61]. Once the bone has 
formed, bone remodeling is described as either the formation of 
bone by osteoblasts or resorption by osteoclasts.

Different amino acids act as precursors of bioactive macro-
molecules, such as second messengers, cytokines, or neu-
rotransmitters, that control various cellular processes that affect 

the skeletal system [62]. Although taurine is not a structural 
component of proteins, it is metabolically involved in many 
processes that influence bone development [63]. Interestingly, 
the influence of taurine on bone growth was elucidated less than 
10 years ago by Roman-Garcia, who found that vitamin B12 
deficiency induced growth retardation and osteoporosis in a 
mice model parallel with low taurine production by the liver. 
This effect results in the abrogation of the growth hormone–in-
sulin-like growth factor I axis (GH/IGF-I) and GH resistance. 
As GH controls taurine synthesis in a vitamin-B12 dependent 
manner, this amino acid is consequently an upstream regulator 
of IGF-I production in the liver and a regulator in osteoblasts 
[64]. Although this study helps to understand the role of taurine 
in bone development at the molecular level, the impact of tau-
rine at the macro level and on the microstructure has scarcely 
been explored. Furthermore, few studies have been conducted 
in the last two decades. At the time of this review, the only study 
that evaluated the impact of taurine ingestion on human bones 
revealed significantly higher serum osteocalcin levels in pa-
tients with type II diabetes than in controls, suggesting that tau-
rine may modulate bone mineralization [65]. This finding is 
supported by studies using animal models, which revealed the 
positive effects of taurine on bone development. For instance, in 
a mouse model of protein malnutrition, increases in growth 
plate thickness and improvement in bone volume, trabecular 
number, connection density, and total porosity were observed 
after taurine consumption for 12 weeks. Taurine is proposed to 
exert these effects by elevating IGF-1 levels and promoting the 
phosphorylation of Janus kinase 2-signal transducer and activa-
tor of transcription 5, as these markers are enhanced in the se-
rum, liver, and tibia-growth plate [66]. Consistent with this 
study, male rats fed a diet containing 2% taurine for 6 weeks 
had significantly higher femur bone mineral content (BMC)/
weight than control rats, suggesting that taurine may have a 
beneficial effect on bone even though the markers, alkaline 
phosphatase (ALP) and osteocalcin were not affected [67]. The 
third study involved the effect of taurine supplementation in the 
diet of broiler birds, which, after 42 days, presented notably 
higher levels of serum ALP and bone-specific ALP than control 
birds. In an analysis of BMC, birds fed a taurine-supplemented 
diet had the highest percentage of phosphorous, calcium, and 
phosphate composition, indicating that taurine supplementation 
boosted the bone mineral composition of meat-type poultry 
birds [68]. 

In contrast to previous studies, the oral administration of tau-
rine to mice for 8 weeks decreased cortical and trabecular bone 
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thickness and reduced the density of secondary osteons [69]. 
Although this previous study suggests the negative effect of 
prolonged taurine exposure on the bone tissue microstructure, 
the lack of sufficient studies prevents the drawing of conclu-
sions. Undoubtedly, the effect of taurine on the typical bone 
structure must be studied thoroughly, as most analyses have fo-
cused on its positive effect on damage caused by osteoporosis; 
such studies are described in the next section.

Taurine and osteoblasts
Osteoblasts are bone-building cells that synthesize collagen ma-
trix and mineralize bone. The mesenchymal progenitors of os-
teoblasts are activated by specific transcription factors that oper-
ate at a distinct time point during differentiation, defining vari-
ous stages of the osteoblast lineage. The two master transcrip-
tion regulators in osteoblast differentiation are SOX9 and 

RUNX2, the first of which mediates the differentiation of mes-
enchymal stem cells into chondrogenic progenitors but is not 
expressed in mature osteoblasts. In contrast, RUNX2 is neces-
sary to differentiate osteoblasts from precursors [70]. The regu-
lation of RUNX2 involves several pathways, such as Hedgehog, 
Notch, Wnt, bone morphogenetic protein (BMP), and fibroblast 
growth factor (FGF) signaling [71]. Besides SOX9 and 
RUNX2, other transcription factors, such as osterix, play essen-
tial roles in osteoblastic differentiation. 

The relationship between taurine and osteoblasts is being elu-
cidated. To date, two studies have shown that taurine stimulates 
osteogenesis. In MG-63 human osteoblast-like cells, taurine 
was recently shown to increase the expression levels of RUNX2 
and intermediates of the BMP pathway, such as SMAD-1,5,8. 
These effects enhance the activity of ALP, which is a marker of 
osteogenic differentiation (Fig. 4) [72]. In mesenchymal stem 

Fig. 4. Potential actions of taurine in bone and cartilage. Taurine promotes osteogenesis by upregulating Runt-related transcription factor 2 
(RUNX2), as well as increasing alkaline phosphatase (ALP) activity and calcium deposition by osteoblasts; it also plays an antioxidant role 
in osteoblasts and osteocytes. In osteoclastogenesis, taurine exerts an inhibitory function. In chondrogenic differentiation, taurine promotes 
the synthesis of extracellular matrix components such as glycosaminoglycans and collagen, in addition to increasing the expression of SRY-
box transcription factor 9 (SOX9). In bone and cartilage health, taurine promotes the formation of bone calluses in the consolidation process 
and promotes osseointegration. In pathological conditions such as osteoporosis, taurine supplementation increases bone mass, while in os-
teoarthritis, rheumatoid arthritis, and some bone tumors there are alterations in the metabolism of taurine (created with BioRender.com). 
TauT, taurine transporter.
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cells, taurine promotes osteoblastogenesis, increasing ALP ac-
tivity and calcium deposition owing to the upregulation of os-
teopontin, RUNX2, and osterix mRNA [73]. Taurine also exert-
ed cytoprotective effects on osteoblasts under stress, as demon-
strated in osteoblast-like UMR-106 cells. Pre-treatment with 
taurine can evade apoptosis induced by H2O2, an effect attribut-
ed to the overexpression of Nrf2 and β-catenin, which reduce 
oxidative damage [74]. In contrast, taurine was found to reduce 
apoptosis in MC3T3-E1 cells (osteoblast precursor cells) by in-
hibiting cytochrome C release and caspase-3 and caspase-9 acti-
vation [75]. 

The consumption of taurine by preosteoblasts or osteoblasts 
must play an important role in the differentiation or protective 
effect; thus, the transport of taurine has attracted attention. In 
2006, TAUT mRNA and protein expression was detected in a 
murine osteoblast cell line (MC3T3-E1) and primary human os-
teoblasts [76]. Two years later, taurine uptake via TauT was 
found to be dependent on the presence of extracellular calcium, 
which was decreased by L-type calcium channel blockers and 
oxidative agents, such as H2O2, in MC3T3-E1 cells [77]. Al-
though the participation of taurine in osteoblast differentiation 
and maintenance is evident, more studies are necessary to un-
derstand the detailed mechanism by which these events occur.

Taurine and osteoclasts
As cells complementary to osteoblasts, osteoclasts are multinu-
clear giant cells that can degrade bone by secreting H+, Cl−, ca-
thepsin K, and matrix metalloproteinases (MMPs). Osteoclasts 
are derived from myeloid lineage cells, mainly in response to 
receptor activator of NF-κB ligand (RANKL) and macrophage 
colony-stimulating factor [78]. RANKL is expressed by osteo-
blasts and osteocytes and regulates osteoclast differentiation, 
bone resorption, and osteoprotegerin (OPG), which is also se-
creted by osteoblasts. OPG is a negative regulator of osteoclas-
togenesis by binding with RANKL and impeding receptor inter-
action, ultimately playing a vital role in bone homeostasis (Fig. 
4) [79]. RANKL-RANK generates a downstream signaling cas-
cade of adaptors/kinases, activating transcription factors that in-
duce the expression of osteoclastogenic markers, such as tar-
trate-resistant acid phosphatase (TRAP) and cathepsin K [78].

Like osteoblasts, the effect of taurine on osteoclasts has not 
been explored in detail, and the most remarkable effect is its in-
hibition of osteoclastogenesis. Several studies in the first decade 
of the millennium supported this notion; however, crucial de-
tails were not obtained until 2010. Taurine was found to inhibit 
osteoclastogenesis of bone marrow cells co-cultured with osteo-

blasts without the influence of OPG and RANKL, whereas 
TAUT small interfering RNA reversed this effect. This finding 
indicates that the inhibition of osteoclastogenesis by taurine is 
dependent on its transporter [76]. Similarly, as ROS are crucial 
in osteoclast differentiation [80], taurine inhibits LPS-induced 
osteoclastogenesis in RAW264.7 cells, preventing ROS genera-
tion by inhibiting COX-2 expression and JNK phosphorylation 
[81]. A recent study reported evidence supporting the inhibition 
of osteoclastogenesis by taurine, indicating that TauCl also im-
peded RANKL-induced osteoclastic differentiation of RAW 
264.7, modifying the mRNA of markers, such as TRAP, cathep-
sin K, and calcitonin receptor [82,83].

Taurine and osteocytes
Osteocytes are the most abundant cells in the bone and are em-
bedded in a lacuna-canalicular network inside the mineralized 
matrix, which can sense mechanical forces and induce signals 
to osteoblasts and osteoclasts to initiate remodeling [84]. As 
mechanosensitive cells, osteocytes are equipped with integrin 
complexes, such as β1 integrin, and ion channels, such as tran-
sient receptor potential vanilloid-type 4 (Trpv4), which serve as 
their main mechanosensory system for physical stimuli. In addi-
tion to assisting with the mechanical adaptation of the bone, os-
teocytes are a significant source of RANKL, controlling osteo-
clast differentiation in a positive direction and decreasing the 
expression level of OPG, or vice versa. Stimulatory factors from 
osteocytes, such as lipids (PGE2), growth factors (e.g., IGF-1), 
glycoproteins (e.g., Wnt), free radicals (e.g., NO), and nucleo-
tides (e.g., ATP), have substantial effects on osteoblastogenesis 
and matrix formation [85]. 

In contrast to osteoblasts and osteoclasts, the relationship be-
tween taurine and osteocytes had not been described until 2 
years ago [34], and more findings are yet to be obtained. Inter-
estingly, primary osteocytes and IDGSW3 cells can synthesize 
taurine as a self-protective mechanism, encoding enzymes that 
convert cysteine into cysteine sulfinate and hypotaurine [34]. In 
that study, the researchers also found that taurine supplementa-
tion protected IDG-SW3 and MLO-Y4 cells from death trig-
gered by H2O2 treatment (Fig. 4). Additionally, the gene of the 
taurine uptake transporter, SLC6A6, was highly expressed in 
IDG-SW3 cells under exogenous taurine supplementation, and 
sclerostin, a well-known negative regulator of the Wnt signaling 
pathway, was inhibited by taurine.

Taurine and bone healing 
Bone healing is the process of tissue reconstitution in the pres-
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ence of fractures or bone defects. The major metabolic phases 
of fracture healing include inflammation, endochondral ossifi-
cation, and coupled remodeling [86]. The role of taurine and its 
derivatives in bone healing has been highlighted. The effects of 
oral administration of taurine on rabbits with osteotomy in the 
early stages of bone healing included the formation of a callus 
rich in osseous components compared with that of control rats, 
which produced a callus rich in fibrous components [87]. In an-
other model of glucocorticoid-induced rabbit osteonecrosis, 
taurine administration normalized the expression of mitochon-
drial transcription factor A and the complex responsible for the 
synthesis of ATP; thus, mitochondrial function prevented the 
development of osteonecrosis [88]. Additionally, tauroursode-
oxycholic acid, a common bile acid, induces new blood vessel 
formation and enhances bone formation after implantation, as 
revealed by a three-dimensional micro-computed tomographic 
analysis of rabbit calvarial defects [89]. 

Finally, taurine incorporation into biomaterials to improve the 
osseointegration of bioactive scaffolds for bone defect regenera-
tion has been explored. The three-dimensional combination of 
polylactic acid, polycaprolactone, gelatin nanofibers, and tau-
rine was found to be suitable for cell growth and proliferation. 
Furthermore, bone defects treated with this scaffold resulted in 
higher new bone formation than that observed in the control 
group, illustrating the potential use of taurine in biomaterials 
[90]. 

TAURINE AND BONE DISORDERS 

Taurine and osteoporosis
Osteoporosis is a chronic condition in which bone mass de-
clines. According to the World Health Organization, adults 
whose bone mineral density (BMD) or BMC values are at least 
2.5 standard deviations less than the mean BMD for normal 
adults have osteoporosis [91]. Clinically, osteoporosis is charac-
terized by back pain caused by vertebral deterioration, fractures, 
and weight loss. Osteoporosis-related fractures in the USA are 
associated with an estimated direct cost of $17 billion per year, 
with an expected increase to $25.3 billion by 2025 [92]. 

The relationship between taurine and osteoporosis has been 
studied using different approaches; most notably, metabolomic 
studies have shown low taurine levels in the blood of patients 
with osteoporosis. Previous studies have shown that postmeno-
pausal Brazilian women with osteopenia or osteoporosis had re-
duced taurine levels in plasma compared to healthy volunteers 
[93]. The same results were obtained for Caucasian pre-meno-

pausal women in the USA [94], Japanese women with low es-
tradiol and BMD levels [95] and older Chinese adults with low 
BMD and fracture [96]. In addition to its serum level, taurine 
levels in urine are lower in menopausal women than in normal 
women [97]; thus, low taurine levels in the serum and urine 
highlight the potential of this amino acid as a biomarker of os-
teoporosis and bone loss. This result may be related to the high 
plasma homocysteine (Hcy) levels measured in patients with 
osteoporosis and low BMD, as recently highlighted elsewhere 
[98]. Increased Hcy levels result in the dysregulation of the 
transsulfuration pathway, as L-cysteine is synthesized from Hcy 
and taurine is synthesized from L-cysteine. In osteoporosis, a 
decrease in taurine synthesis causes the dysregulation of calci-
um and vitamin D, which are essential elements for bone growth 
and resorption [99]. 

The advantage of restoring plasma taurine levels in osteopo-
rosis models has been analyzed; various treatments, including 
the administration of bone collagen peptides from Bos grunni-
ens [98] alendronate sodium [99] and natural extracts [100], in-
crease the concentrations of serum taurine and normalizes bone 
turnover markers and biomechanical parameters. Taurine supple-
mentation alleviates osteoporosis by increasing 1,25(OH)2D3, 
IGF-1, transforming growth factor (TGF)-β, BMC, and BMD 
levels in ovariectomized rats [101]. It also increases bone mass 
and improves resistance to force by promoting, serum osteocal-
cin, and ALP activity in postmenopausal rats [102].

Taurine and bone tumors
Bone tumors are rare neoplasms that encompass a broad group 
of benign and malignant entities that affect the bone, cartilage, 
and connective tissues [103]. Sarcomas of bone present an an-
nual incidence of 0.2% in adults and account for 5% of child-
hood malignancies; as they are benign tumors, they are asymp-
tomatic and are only detected as incidental findings. The three 
most frequent bone malignancies are osteosarcoma and Ewing’s 
sarcoma in adolescents, and chondrosarcoma in adults. Al-
though standard treatment includes surgery, chemotherapy, and 
radiation, surgical resection does not ensure complete removal 
of the tumor, and recurrence and metastasis can result in a high 
mortality rate. Therefore, a better understanding of the biology 
of bone sarcomas is necessary to improve their outcomes, iden-
tify and exploit unique characteristics, and propose new treat-
ment targets. Many metabolomic studies have been conducted 
to search for metabolic biomarkers associated with tumor pre-
diction and diagnosis; however, there are limited data to provide 
a comprehensive metabolic picture of bone tumors. Nonethe-
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less, taurine has appeared in some of these studies as a possible 
metabolic marker of bone sarcomas. For example, a serum un-
targeted metabolomics analysis of 65 patients diagnosed with 
osteosarcoma revealed higher levels of ascorbic acid, niacina-
mide, and taurine than in healthy controls [104]. A similar study 
revealed differences in the synthesis and degradation of ketone 
bodies and taurine metabolism compared to normal serum 
[105]. Furthermore, the response of osteosarcoma cells to some 
treatments highlights taurine as a participant, with the intracel-
lular metabolic profile of MG-63 human OS cells induced by 
the chemotherapy agent cisplatin and decreased taurine levels, 
which reflect the activation of defense mechanisms against oxi-
dative stress [106]. Similarly, treatment of Saos-2 osteosarcoma 
cells with nanographene oxide sheets reduced the levels of sev-
eral amino acids, such as taurine, which is also related to oxida-
tive stress.

Finally, the action of taurine or its derivatives is important in 
bone tumor treatment. For example, taurolidine is cytotoxic to 
osteosarcoma cells and supports the effect of doxorubicin and 
carboplatin [107]. In addition, taurine chloramine exerts cyto-
toxic effects against osteosarcoma cell lines (HOS, SAOS-2, 
and MG-63) by inducing the loss of mitochondrial membrane 
potential, activating the intrinsic mitochondrial apoptosis path-
way [108].

TAURINE AND CARTILAGE

The cartilage is a flexible connective tissue in the skeletal sys-
tem, which maintains fluid joint motion by coating the surfaces 
between the bones. Cartilage is a semi-rigid, avascular, and an-
eural tissue, composed of chondrocytes embedded in an extra-
cellular matrix of collagen fibers, proteoglycans, and other non-
collagenous proteins. The proliferation and differentiation of 
marrow-derived mesenchymal stem cells into chondrocytes—
also known as chondrogenesis—are complex processes that in-
volve positive regulators, such as FGF, TGF-β/BMP, Wnt/B-
catenin, Hedgehog, Notch, and vascular endothelial growth fac-
tor pathways. Furthermore, pro-chondrogenic transcription fac-
tors, such as SOX9, RUNX, and trico-rhino phalangeal syn-
drome type 1 (Trps1), also control chondrogenesis [109].

Taurine and chondrocytes
Taurine participates not only in the maintenance of the bone, but 
also in cartilage maintenance, and could effectively promote 
chondrogenic differentiation of human umbilical cord-derived 
mesenchymal stem cells, enhancing the synthesis of glycosami-

noglycans and upregulating the expression of collagen II, ag-
grecan, and SOX9 chondrocyte mRNA [110]. Similar results 
were found for human articular chondrocytes treated with tau-
rine, such as the promotion of proliferation, maintenance of the 
phenotype-enhanced accumulation of glycosaminoglycans and 
collagens, and increased expression level of SOX9 (Fig. 4) 
[111]. Similarly, osteoblasts express the TAUT for its uptake 
under certain conditions; chondrocytes also express this carrier, 
which is upregulated in hypertonic conditions to protect the cell 
in hyperosmolarity environments [112].

Taurine and osteoarthritis
Cartilage problems include tears and injuries caused by sports 
accidents, genetic factors, and various types of arthritis. Within 
the last group, osteoarthritis (OA) is the most common form, 
defined as a degenerative cartilage disorder that affects diarthro-
dial joints. The estimated prevalence of OA is 303.1 69 million 
worldwide among adults aged ≥65 years, representing the pri-
mary cause of disability in the elderly population [113]. 

Metabolism is considerably altered in OA. Normal chondro-
cytes utilize glucose via glycolysis, and oxidative phosphoryla-
tion maintains mitochondrial function under optimal conditions. 
Normal energy homeostasis is mainly supported by the AMP 
activated protein kinase–NAD dependent protein deacetylase 
sirtuin 1– peroxisome proliferator activated receptor γ co‑acti-
vator 1α (AMPK–SIRT1–PGC1α) pathway; however, chondro-
cytes in OA switch from oxidative phosphorylation to glycoly-
sis, impairing mitochondrial metabolism and accumulating 
ROS, thereby inhibiting AMPK signaling [114]. Furthermore, 
accumulating evidence shows that other metabolic pathways, 
such as taurine metabolism, are deregulated in addition to gly-
colysis. Particularly, metabolomic analysis revealed that in se-
rum samples of OA patients, taurine is significantly lower than 
that in healthy controls, with a sensitivity and specificity ≥80% 
[115]; the same tendency was observed in the subchondral bone 
[116] and synovial fluid [117]. Overall, both studies suggested 
that taurine is relevant to sclerosis. Complementarily, targeted 
metabolomics also revealed higher levels of taurine, such as 
phenylalanine and proline, in osteophyte cartilage samples than 
in control samples, which were related to collagen dissolution 
or the destruction of boundary layers involved in osteophyte 
formation [118]. 

In addition to taurine’s participation as a crucial element in 
OA, various studies have highlighted its beneficial effects as a 
possible treatment. For example, daily taurine intake induces 
high SOD activity in the blood of patients with knee OA [119], 
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whereas taurine tail vein injection relieved OA symptoms in a 
rat surgery model in a dose- and time-dependent manner, allevi-
ating allodynia and knee swelling inhibition. A histopathologi-
cal analysis revealed the suppression of matrix loss and cartilage 
degeneration and the downregulation of matrix metalloprotein-
ase-3 (MMP-3) and CCAAT-enhancer-binding protein homolo-
gous protein (CHOP) expression [120]. Finally, in vitro studies 
have revealed that taurine exerted an antioxidant effect by alle-
viating H2O2-induced endoplasmic reticulum stress and subse-
quently inhibiting patient-derived chondrocyte apoptosis in dif-
ferent grades of OA [121].

Taurine and rheumatoid arthritis
Besides OA, rheumatoid arthritis (RA), another common chron-
ic joint disorder, is an autoimmune inflammatory condition that 
involves degradation of the extracellular matrix of cartilage. 
The global estimated prevalence of RA is 0.46% [122]. Al-
though there is no cure for RA, early treatment and supportive 
treatments can reduce the risk of joint damage and offer better 
living conditions. In the search for new treatments, several stud-
ies have evaluated natural products or existing drugs, and me-
tabolomic approaches have analyzed their effectiveness. Among 
these, taurine has been identified as a biomarker with the poten-
tial to monitor the efficacy of pharmacotherapy. Chinese medi-
cine formulas can regulate taurine and hypotaurine metabolism 
in the urine samples of the RA rat model [123-125]. Further-
more, the serum metabolic profiles of patients diagnosed with 
RA showed alterations in taurine levels in response to rituximab 
[126] and methotrexate treatment [127].

The use of taurine as a therapeutic candidate in RA has been 
suggested because of its antioxidant and anti-inflammatory 
properties; this subject was reviewed in detail recently using an-
imal and in vitro research [128]. In brief, these studies suggest 
the benefits of taurine and its derivatives in managing RA in hu-
mans. Fig. 4 summarizes the potential roles of taurine in bone 
and cartilage under normal and pathological conditions.

CONCLUSION

Overall, the present data indicate that taurine plays an important 
role in bone development and function. We emphasized the 
ability of taurine to control osteoblastogenesis, osteoclastogene-
sis, and maintenance of chondrocyte phenotype. Indeed, taurine 
is emerging as a key player in bone disorders and a promising 
therapeutic approach for diseases such as osteoporosis and OA. 
However, more research and clinical studies are needed to elu-

cidate the details of the taurine-bone relationship and the thera-
peutic efficacy of taurine.
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