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Acute lymphoblastic leukemia is the most common malignancy in childhood. Successful

treatment requires initial high-intensity chemotherapy, followed by low-intensity oral

maintenance therapy with oral 6-mercaptopurine (6MP) and methotrexate (MTX)

until 2–3 years after disease onset. However, intra- and inter-individual variability in

the pharmacokinetics (PK) and pharmacodynamics (PD) of 6MP and MTX make

it challenging to balance the desired antileukemic effects with undesired excessive

myelosuppression during maintenance therapy. A model to simulate the dynamics of

different cell types, especially neutrophils, would be a valuable contribution to improving

treatment protocols (6MP and MTX dosing regimens) and a further step to understanding

the heterogeneity in treatment efficacy and toxicity. We applied and modified a recently

developed semi-mechanistic PK/PD model to neutrophils and analyzed their behavior

using a non-linear mixed-effects modeling approach and clinical data obtained from

116 patients. The PK model of 6MP influenced the accuracy of absolute neutrophil

count (ANC) predictions, whereas the PD effect of MTX did not. Predictions based

on ANC were more accurate than those based on white blood cell counts. Using the

new cross-validated mathematical model, simulations of different treatment protocols

showed a linear dose-effect relationship and reduced ANC variability for constant

dosages. Advanced modeling allows the identification of optimized control criteria and

the weighting of specific influencing factors for protocol design and individually adapted

therapy to exploit the optimal effect of maintenance therapy on survival.

Keywords: childhood acute lymphoblastic leukemia, maintenance therapy, 6-mercaptopurine, methotrexate,

neutropenia, non-linear mixed-effects modeling, population pharmacokinetics/pharmacodynamics

1. INTRODUCTION

Acute lymphoblastic leukemia (ALL), characterized by malignant white blood cells (WBCs) and
displacement of normal hematopoiesis, is the most common childhood malignancy (Hoffbrand
et al., 2016). The treatment of childhood ALL is based on combination chemotherapy and begins
with intensive, high-dose treatment for approximately 6 months (the so-called induction and
consolidation therapy) followed by less-intensive, low-dose treatment [so-called maintenance
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therapy (MT)] that lasts for 2–3 years after disease onset. The goal
of induction and consolidation therapy is to achieve remission
via lymphoblast elimination below the limit of detection, and the
high intensity of these therapy elements limits further therapy
intensification using conventional chemotherapy. Subsequent
MT is essential to prevent disease relapse, and aims to
maintain prolonged antileukemic activity against residual
lymphoblasts, with minimal adverse events. MT includes daily
oral 6-mercaptopurine (6MP) and weekly oral methotrexate
(MTX). Both drugs cause myelosuppression through their
metabolized active forms (Schmiegelow et al., 2014). Blood count
tests are performed regularly to ensure adequate WBC and
absolute neutrophil count (ANC) suppression as a surrogate
marker for antileukemic activity, without unintended excessive
myelotoxicity. However, there exists no international consensus
for MT dosing strategies and target levels for WBC and
ANC suppression (i.e., what dose to start with, and when
and how to increase or decrease chemotherapy). Empirical
evaluation of different MT strategies using randomized clinical
trials would be extremely challenging, due to the probably
moderate effect size, the length of MT, the latency of clinically
relevant endpoints, and the risk of compromising the current
overall favorable outcome of childhood ALL. However, certain
levels of WBC and ANC are established factors for survival,
relapse or death, and other adverse events (e.g., infection),
respectively. Therefore, a simulation model of childhood ALL
MT could support the development of future MT strategies
by identifying those strategies that achieve established survival
factors best while avoiding established risk factors. Mathematical
models describing the pharmacokinetics (PK) of 6MP and
MTX and their pharmacodynamic (PD) effects on neutrophils
may help clarify the drug-exposure relationship, predict the
ANC dynamics, adapt subsequent dosing amounts, and stratify
patients into groups with different drug responses. Several PK
models for 6MP (Hawwa et al., 2008; Jayachandran et al., 2014,
2015) and MTX (Godfrey et al., 1998; Panetta et al., 2002, 2010;
Nagulu et al., 2010; Rühs et al., 2012; Korell et al., 2013; Hui et al.,
2019) have been published, but not all have been developed with
low-dosage treatments and validated in the pediatric population.
To the best of our knowledge, there are only three publications
(Jayachandran et al., 2014; Le et al., 2018; Karppinen et al., 2019)
in which some of the PK models or their simplifications were
linked to transient PD compartment models (Upton and Mould,
2014). The models were individually fitted to WBC counts and
different prediction and optimization studies were conducted.

Here, we developed a population PK/PD model for
maintenance treatment of ALL in children based on the
approach used by Le et al. (2018) with a modified underlying
PK model. As ANCs are the best established risk and survival
factors, we adapted the model to predict ANCs instead of WBCs.
The model was fitted to and validated on a dataset consisting of
weekly ANC measurements obtained from 116 patients treated
with daily oral 6MP and weekly oral MTX over an average
of 459 (range, 200–581) days. We started our investigations
with a PK/PD model considering 6MP and MTX but the
constant administration ratio hampered the identification of
separate PD effects. Further, the PK of MTX had no significant

impact on the improvement of the model fitting, similar to
the mathematical approach in Karppinen et al. (2019) and the
clinical findings of NUDT15 genetics conferring 6MP but no
MTX sensitivities (Tsujimoto et al., 2018). Thus, the final model
only contains the PK of 6MP. We come back to this issue in
the discussion. Then, for each patient, we simulated different
therapy protocols (6MP dosing regimens), and compared the
resulting predictions.

2. PATIENTS AND METHODS

2.1. Data
The data used in this study were obtained retrospectively from
116 children who were diagnosed with de novo ALL at university
hospitals in Erlangen and Dresden and treated according to the
AIEOP-BFM 2000 and 2009 protocols. A subset of this data
set (WBC counts from nine patients) was used and described
similarly in a previous study (Le et al., 2018). Patients were
eligible if they were diagnosed with precursor B-cell or T-cell
ALL, negative for the BCR-ABL- and MLL-AF4 translocations,
and started MT (i.e., did not experience relapse before the
end of consolidation therapy and did not undergo stem cell
transplantation). During MT administered according to the
AIEOP-BFM 2000 and 2009 protocols, patients received oral
chemotherapy with daily 6MP and once-weekly MTX until
2 years after ALL diagnosis. During MT, chemotherapy was
applied to achieve antileukemic activity against lymphoblasts
below the limit of detection. As a surrogate for antileukemic
activity, WBC and ANC were measured regularly, with ANC
<2 G/L, being correlated to a significantly better relapse-free
survival (Schmiegelow et al., 2014), and ANC <0.5 G/L being
an indicator of excessive myelosuppression. The target range
for the WBC count was 1.5–3 G/L. The chemotherapeutic
dose was reduced when cell counts fell below the lower limits
(WBC count <1.5 G/L, ANC <0.5 G/L, lymphocyte count
<0.3 G/L, and platelet count <0.05 G/L) or liver toxicity
was suspected. For each patient included in the analysis,
data regarding the following variables were recorded: gender,
age, weight, height, body surface area (BSA), prescribed 6MP
and MTX dosages (absolute and per BSA), WBC count,
platelet count, lymphocyte and neutrophil counts, and therapy
interruptions. In this study, we focused on 5897 ANCs and
6640 WBC counts, disregarding measurements of other cell
types. We used both WBC counts and ANC separately and
compared the accuracy of the resulting mathematical models.
In all, 1150 ANC and 1289 WBC count measurements were
excluded due to concurrent high C-reactive protein (CRP)
levels indicating periods in which patients probably suffered
from an infection. More precisely, we excluded measurements
in the interval from 2 weeks before until 2 weeks after CRP
levels of >5 mg/L were recorded. Among the remaining 4747
ANC measurements 56% were below the ANC threshold of
2 G/L, only 2% were below 0.5 G/L, and 54% were in the
ANC target range 0.5–2 G/L. The demographic and clinical
characteristics of the pediatric ALL population are shown
in Table 1.
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TABLE 1 | Characteristics (median and range) of the pediatric ALL population

consisting of 116 (64 male and 52 female) patients.

Characteristic Unit Median Range

Age Year 4.75 1.1–17.1

Weight kg 22 10–90

Height cm 112.45 80–182.7

Body surface area m2 0.82 0.47–1.98

6MP daily dose mg 40 5–150

MTX weekly dose mg 15 1.25–60

ANC G/L 1.8 0.0–19.9

The body surface area was calculated using the Mosteller formula.

2.2. Non-linear Mixed-Effects Modeling
and Parameter Estimation
The non-linear mixed-effects (NLME) modeling (Bonate and
Steimer, 2011) was based on the PK/PD model of Le et al.
(2018). It describes the absorption of both drugs, 6MP and
MTX, through the gastrointestinal (GI) tract into the plasma
after oral administration and their metabolization to their active
forms. The MTX metabolites MTXPG2 to MTXGP7 inhibit
several enzymes responsible for DNA synthesis (Panetta et al.,
2002). The active form of 6MP, 6-thioguanine nucleotides (6-
TGNs), is incorporated into the DNA (Hawwa et al., 2008). Thus,
both drugs negatively affect the hematopoiesis of neutrophils.
During the model development, we replaced the 6MP PK model
of Jayachandran et al. (2014) with the PK model described
by Hawwa et al. (2008) to obtain a better response to 6MP
dosage. The PKmodel of Jayachandran et al. (2014) was validated
on concentration data of eight patients (adults) from Hindorf
et al. (2006). However, the simulated 6-TGN concentrations
coincided with data from pediatric patients reported by Hawwa
et al. (2008); hence, it was a priori unclear which would give
better results. Both compartment models have a comparable
representation of the absorption and metabolic pathway of
6MP but the model of Hawwa et al. (2008) describes the
metabolic transformations by first order kinetics instead of
Michaelis–Menten kinetics. Further, the clearance is described by
a BSA-dependent term, thus providing individualized PK profiles
through patient characteristics. We also tested the influence of
weekly MTX administration by either ignoring or considering
the administrations and their resulting concentrations through
the MTX PK model with a second PD parameter during model
fitting. Additionally, we tested the myelosuppression model from
Jayachandran et al. (2014), which contained a different feedback
term for ANC recovery, but the accuracy decreased and this line
of research was not further investigated.

As a result, we identified one PK/PD model which described
the clinical data best. This model was formulated as a system of
ordinary differential equations (ODEs):

ẋ
gut
6mp(t) = −ka x

gut
6mp(t)+ F u(t),

ẋ6mp(t) = ka x
gut
6mp(t)− k20 x6mp(t),

ẋ6tgn(t) = FM3 kme x6mp(t)− CL6tgn(BSA) x6tgn(t)

ẋpr(t) = ktr xpr(t) (1− Edrug)

(

Base

xma(t)

)γ

− ktr xpr(t),

ẋtr1(t) = ktr (xpr(t)− xtr1(t)),

ẋtr2(t) = ktr (xtr1(t)− xtr2(t)),

ẋtr3(t) = ktr (xtr2(t)− xtr3(t)),

ẋma(t) = ktr xtr3(t)− kma xma(t) (1)

with the BSA-dependent clearance

CL6tgn(BSA) = 0.00914 (BSA)1.16, (2)

the linear pharmacodynamic effect

Edrug = slope x6tgn, (3)

and the patient-specific bioavailable 6MP amount F u(t) of 6MP
(implemented as point administration in NONMEM). The PK
of 6MP is described by a three compartment model altered from
Hawwa et al. (2008). A fraction of the orally administered 6MP
dosage enters the GI tract where bioavailable 6MP is absorbed to
the central compartment with the first order rate ka. In the central
compartment, 6MP is eliminated by k20. The elimination also
comprises metabolization of 6MP with the rate kme out of which
a fraction FM3 is metabolized to the active form 6-TGN. 6-TGN
is then cleared by the BSA-dependent clearance term CL6tgn.
The hematopoiesis of neutrophils is described via a chain of five
compartments with equivalent transition rates ktr representing
the mean maturation time of the neutrophils (De Souza et al.,
2018). The proliferation rate of hematopoietic stem cells kprol
is equivalent to the transition rate ktr guaranteeing homeostasis
(De Souza et al., 2018). Deviations from the neutrophil baseline
Base are compensated by the feedback regulation (Base/xma)

γ

reflecting the granulocyte colony-stimulating factor (GCSF)
controlled proliferation of neutrophils (Friberg et al., 2002;
Quartino et al., 2012; Henrich et al., 2017; Jost et al., 2019). As
the active forms of both drugs affect the proliferation process,
the PD effect is modeled via a linear term with one joint
parameter slope multiplied to the feedback-regulated first order
proliferation rate constant. Other modeling approaches for the
incorporation of the PD effect previously showed worst results
in model fitting such that we focused on the described term
which is additionally more plausible regarding the PD effect,
i.g. an impaired proliferation through the incorporation of the
metabolized drug into the DNA (Jost et al., 2019). Matured
neutrophils die by the process of apoptosis with the rate kma.
A schematic representation of the model is shown in Figure 1

and model constants are listed in Table 2. As no PK biomarkers
were measured in the examined dataset, we relied on published
PK models and individualized the PD models with respect to
individual sets of PD parameters.

In the following, we describe the NLME parameter estimation
approach. Therefore, we summarize model (1) for patient i as

ẋi(t) = f (xi(t), θi, ui(t))

with ui(t) the individual treatment schedule and θi =

(Basei, ktr,i, γi, slopei)
T the patient specific parameter values of
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FIGURE 1 | Visualization of the final compartment model used for the population PK/PD analysis. The underlying mathematical models for the PK of 6MP and the

myelosuppression were published by Hawwa et al. (2008), respectively (Le et al., 2018). The PK of orally administered 6MP is described as a three compartment

model. A fraction of the 6MP dosage (6MP dose multiplied with the bioavailability factor F) enters the gastrointestinal (GI) tract where bioavailable 6MP is absorbed into

the central compartment by the rate ka. In the central compartment, 6MP is eliminated with the first order kinetics k20. The elimination rate also comprises

metabolization of 6MP to its active form 6-thioguanine nucleotide (6-TGN) with the rate FM3 km. The hematopoiesis of neutrophils is described by a chain of five

compartments. The first compartment represents the hematopoietic stem cells proliferating with the rate kprol . The maturation process with equivalent transition rates

ktr is represented by three intermediate compartments after which matured cells enter the circulating blood (last compartment). Matured cells die by the process of

apoptosis with the rate kma. The neutrophil baseline Base is maintained by the feedback term (B/xma)
γ . As 6-TGN is incorporated into the DNA leading to cell

apoptosis, the proliferation process is negatively affected by a linear PD function E.

the steady state of neutrophils Base, the transition rate ktr , the
feedback term γ , and the PD effect slope. The vector θi contains
the fixed effect parameters Base, ktr , γ and slope for all patients
and the individual realizations ηi ∈ R

4, i = 1, . . . , 116 of the
random variable

η = (ηBase, ηktr , ηγ , ηslope)
T ∼ N (0,�) (4)

with themean 0∈ R
4 and the diagonal variancematrix� ∈ R

4×4

with the diagonal vector ω2 = (ω2
1 ,ω

2
2 ,ω

2
3 ,ω

2
4)

T . Interindividual
variability (IIV) was assumed as log-normally distributed for all
four parameters resulting in the following relation between fixed
and random effects:

Basei = Base exp(ηi,Base) (5)

ktr,i = ktr exp(ηi,ktr ) (6)

γi = γ exp(ηi,γ ) (7)

slopei = slope exp(ηi,slope) (8)

summarized as θi = g(θ , ηi) and for the description of the
residual variability a proportional error model was used

yij = xma(tij)+ xma(tij) ε i = 1, . . . , 116, j = 1, . . . , ni (9)

with a normally distributed measurement error ε ∼ N (0, σ 2)
and ANC count measurements yij.

The parameters were estimated using the first order
conditional estimation (FOCE) method with η-ε interaction.
This approximation method results in the parameter
estimation method

min
xi(t),θ ,ω2 ,σ 2 ,ηi

116
∑

i=1

L
FOCEi
i,outer (xi(t), ui(t), θ ,ω

2, σ 2, η∗1 , . . . , η
∗
N)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

s.t. η∗i = argminηi
= L

FOCEi
MAP (xi(t), ui(t), θ ,ω

2, σ 2, ηi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

s.t. ẋi(t) = f (t, xi(t), ui(t), θi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

xi(t0,i; θi) = x0,i(θi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

θi = g(θ , ηi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116 (10)

consisting of two nested optimization problems and tf
i being

the time point of patient i’s last ANC measurement. The two
parameter estimation problems (estimating θ ,ω2, σ 2 with fixed
ηi and vice versa) are iteratively solved until a convergence
criterion is fulfilled (Bae and Yim, 2016). For the detailed
derivation of the FOCE method with η-ε interaction and the
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TABLE 2 | Model constants of the pharmacokinetic model of 6MP and its

metabolite 6-TGN from Hawwa et al. (2008), death rate constant of matured

neutrophils, and initial conditions of the model (1).

Constant Value Unit Description/comment

F 0.22 Bioavailability factor

ka 31.2 1/day Absorption rate constant of 6MP

k20 12.72 1/day Elimination rate constant of 6MP

FM3 0.019 Fractional metabolic

transformation into 6TGN

kme 9.9216 1/day Metabolic transformation rate

constant of 6MP

into either 6TGN or 6MPN

CL6tgn(BSA) 0.219 (BSA)1.16 L/day Body surface area (BSA)

dependent clearance of

metabolite 6-TGN

kma 2.3765 1/day Death rate of matured

neutrophils/leukocytes

u(ti ) mg 6MP amount at time point ti

x
gut
6mp(0) 0 mg Same initial value for x6mp(0)

x6tgn(0) 0 mg/L

xpr (0) (Base kma)/ktr G/L Same initial value for

xtr1(0) = xtr2(0) = xtr3(0)

xma Base G/L

formulation of the resulting objective functions LFOCEi
i,outer and

LFOCEi
MAP we refer the interested reader to Wang (2007) and

Demidenko (2013) as we confine our analysis on the application
of the parameter estimation method.

2.3. Out-of-Sample Validation
The reliability of the final population PK/PD model was tested
via out-of-sample cross-validation. For each patient, the first 70%
of ANC measurements were used for parameter estimation and
the final 30% were used to evaluate the model predictions. Model
accuracy and predictability were evaluated using the root mean
squared error (RMSE) and the mean absolute error (MAE).

2.4. Simulation Study
We compared individual simulated minimal, median, and
maximal ANCs resulting from the application of different dosing
regimens (MT dosage over time). The choice of the different
doses described in Table 3was based on ALL treatment protocols
(AIEOP-BFM 2009 with EudraCT number 2007-004270-43,
NOPHO-ALL 2008-003235-20, andUKALL 2010-020924-22). In
particular, we sought to investigate the relationship between an
increased total amount of chemotherapy (higher dosage) and
plausibly reduced ANC in the in silico simulations. Throughout,
we used the fitted models (estimated model parameters) from
section 2.2 and only varied the chemotherapy dosage. The
simulated ANC values were obtained from the individual actual
measurement time points.

2.5. Software
The population PK/PD analysis was performed with the NLME
modeling program NONMEM 7.4 (ICON Plc., Dublin, Irland)
(Beal et al., 2009). There exist several other software packages

TABLE 3 | Different dosing protocols for our in silico simulation study.

Nr Description Short

1 Collected clinical data (ClinicalData)

2 Fitted model based on patient’s actual dosing (FittedModels)

3 Daily 6MP administration of 25 mg/m2

(50% of AIEOP dosis)

(25 mg/m2 )

4 Daily 6MP administration of 50 mg/m2

(AIEOP dosis)

(50 mg/m2 )

5 Daily 6MP administration of 75 mg/m2

(NOPHO/UK dosis)

(75 mg/m2 )

6 Daily 6MP administration of 100 mg/m2

(200% of AIEOP dosis)

(100 mg/m2 )

Identical protocols for the administration of 6MP for ClinicalData and FittedModels with a

median of the patient-individual average daily dosages of 43.15 ± 10.5 mg/m2 (minimum

15.8 mg/m2, maximum 72.9 mg/m2).

for parameter estimation of NLME models providing the same
or similar algorithms. A variety of algorithms are provided in R
Core Team (2019, version 3.6.1). The software Monolix (version
2019R1. Antony, France: Lixoft SAS, 2019) and Diffmem
(see https://bitbucket.org/tomhaber/diffmem/src/master/,
Melicher et al., 2017) are based on the stochastic approximation
expectation maximization algorithm and the recently published
package Pumas (based on Julia, see https://pumas.ai/) contains
several deterministic and stochastic algorithms. Standard errors
were computed with the $COVARIANCE step in NONMEM.
Pirana (Certara, Princeton, USA) was used for the generation of
the visual predictive check with auto_bin option. The simulations
in section out-of-sample validation and simulation study were
performed with the ODE integrator CVodes (Sundials, Lawrence
Livermore National Laboratory, Livermore) (Hindmarsh et al.,
2005) interfaced to CasADi (Optimization in Engineering Center
[OPTEC], K.U. Leuven) (Andersson et al., 2019).

3. RESULTS

3.1. Mathematical Model
Table 4 shows RMSEs, MAEs, and final objective function values
for four different parameter estimations. Here, we compared
the usage of different PK/PD models and parameter estimations
based on either WBC counts or ANCs. First, the explicit
consideration ofMTXwithin the PK/PDmodel of Le et al. (2018)
only had a minimal/non-significant effect on the model accuracy,
so we fixed it to the ratio 2.5:1 between 6MP and MTX and
neglected the PK of MTX in the following. Second, our results
showed that the use of the PK model of Hawwa et al. (2008)
increased the sensitivity of the PD effect and the model accuracy
compared to the 6MP PK model of Jayachandran et al. (2014).
Third, ANC measurements resulted in higher accuracy than did
WBC measurements.

3.2. Parameter Estimation
Figure 2 shows the comparisons of observed clinical and
simulated ANCs derived from the final PK/PD model (1)
after parameter estimation for three exemplary chosen patients
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TABLE 4 | Results of parameter estimations for different models.

Model 1 Model 2 Model 3 Model 3

Data ANC ANC ANC WBC

PK 6MP Jayachandra Jayachandra Hawwa Hawwa

PK MTX Panetta – – –

MAE 1.068 (1.65) 1.045 (1.92) 0.9571 (4.31) 1.315 (2.92)

RMSE 1.033 (0.492) 1.022 (0.539) 0.9783 (0.678) 1.147 (0.579)

FinalOBJ 7003 7094 6550 9746∗

Shown are model characteristics [data based on absolute neutrophil count (ANC) or

white blood cell (WBC) count and PK models for 6MP and MTX], median and standard

deviation in parentheses of individual root mean squared errors (RMSE), mean absolute

errors (MAE), and final objective function values (FinalOBJ). Medians and final objective

function values are rounded off to four and the standard deviations in parentheses to

three significant figures. *Objective value is not comparable to first three values due to

different dataset.

presented in rows 1,3 and 5. For each patient, the individual
6-mercaptopurine (6MP [mg]) dosing protocol is presented
in rows 2, 4 and 6, indicating dose changes for efficacy
adjustments. The model simulations represented the clinical
ANCs quite well in the average and captured trends toward
larger or smaller ANC values. However, they did not oscillate
as strongly as the measured values. Persistent oscillations of
neutrophils often occur in chemotherapy-treated hematopoietic
diseases inducing cyclic myelosuppression (see Knauer et al.,
2019 and references therein). Several othter reasons were
responsible for the observed ANC oscillations such as aberrant
hematopoiesis, chemotherapeutic dose adaptations, infections or
measurement errors. This exemplary behavior was representative
of the entire data set of 116 patients. The visual predictive
check plot in Figure 3 shows the good agreement of model
response and measurements for the median (solid line) and

FIGURE 2 | Comparisons of observed (black) and individually simulated (blue) absolute neutrophil counts (ANCs) [G/L] for three exemplary chosen patients presented

in rows 1,3 and 5. Simulations of the ANCs (xma) were performed with the newly proposed mathematical model (1) after nonlinear mixed-effects parameter estimation.

Based on a visual assessment, the model captures the trends of the chemotherapy induced myelosuppression (compared with the indicators in Table 4). For each

patient, the individual 6-mercaptopurine (6MP [mg]) dosing protocol is presented in rows 2, 4 and 6, indicating dose changes for efficacy adjustments. The daily oral

6MP administration, ranging from 10 to 60 mg for the three patients, are presented as filled areas and corresponds to the control function u(t) in model (1).
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FIGURE 3 | Visual predictive check (VPC), derived by 1,000 simulations with the final parameter estimates from the first column of Table 5, for circulating ANCs (G/L)

vs. time (days). Black dots are the measured ANCs. Black and blue lines show the median and 2.5th and 97.5th percentiles of measurements and model predictions,

respectively. The shaded areas represent the 95% confidence intervals around the 2.5, 50, and 97.5th percentiles of the model predictions. Two ANC outliers (19.9

and 17.8) at time points 285.42 and 340.42 days are not shown.

97.5th percentile (dashed line) with a slight underprediction
of the model for low ANC values. The 95% confidence
interval of the model simulation median was very thin,
indicative of high prediction accuracy. The fixed effect estimate
for the ANC steady state was slightly higher than the
target range limit of 2 G/L. The estimated transition rate
of 0.148 resulted in a mean maturation time (MMT =

ntr/ktr) of 487 h (20.3 days) (De Souza et al., 2018). The
interindividual variability and residual error were within
reasonable ranges.

The goodness-of-fit plot in Supplemental Data shows the
results of out-of-sample cross-validation. It reflected reasonable
model accuracy for fitted (blue) and predicted (red) ANC
measurements with spreading around the line of identity because
the model was not able (and not intended) to hit the lower
and upper peaks of the measurements. The values of estimated
model parameters both for the in-sample and out-of-sample
calculations are shown in Table 5. The parameter values for slope
and Base were reduced and the value of γ was slightly increased
for the estimates based on 70% of the ANC. The interindividual
variability (IIV) for the slope was significantly larger whereas
the IIV of ktr was smaller. To evaluate the model accuracy, we
calculated the median and standard deviation of the individual
MAEs and RMSEs, showing the expected decrease in accuracy
for out-of-sample predictions.

3.3. Simulation
Figure 4 shows boxplot results for an in silico simulation
study based on the 6 different treatment protocols (including
the real clinical data) from Table 3. We want to stress three
main observations.

First, a comparison of the first two entries of the three boxplots
confirmed an already known result. The personalized models
could reproduce the clinical ANC data on average quite well, with
the exception of extreme values quantitatively confirming the
observation made in Figure 2. Given the similarity of simulated
and observed median values, we continued with an objective
comparison only of the simulated results (protocols 2–6).

Second, a comparison of the protocols 3–6 (25, 50, 75, and
100 mg/m2 BSA 6MP) showed a significant and linear dosage-
effect relationship with respect to the total amount of 6MP
administered, which is, of course, proportional to the daily
dose. All (minimal, median and maximal) ANC values decreased
linearly, when daily dosing was increased linearly.

Third, a comparison of protocol 2 (the simulation of the
real treatment) and protocols 3 and 4 (which gave lower and
upper bounds on the total amount of administered 6MP in
protocol 2, respectively) showed that the median ANC value
of protocol 2 was indeed bounded by the two other values,
however, for significantly lower minimal and higher maximal
ANC values. Figure 5 shows an exemplary comparison of
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TABLE 5 | Results of parameter estimations of the final model using all (in-sample)

or 70% (out-of-sample) of the ANC values.

Data In-sample Out-of-sample

Fixed effect parameters

Base 2.34 (1) 2.06 (0.1)

ktr 0.148 (0.4) 0.146 (0.2)

slope 0.242 (0.2) 0.103 (0.2)

γ 0.769 (0.1) 0.866 (0.2)

Interindividual variability as coefficients of variation

Base 23.1 (20) 27.5 (10)

ktr 16.5 (30) 7.19 (3)

slope 44.9 (5) 67.8 (1)

γ 10.7 (0.5) 16.5 (0.4)

Proportional additive error 0.226 (2) 0.226 (FIXED)

Parameter estimation errors

Mean absolute error 0.957 (4) 1.47 (500)

Root mean squared error 0.978 (0.7) 1.21 (7)

Shown are parameter estimates of fixed effects, interindividual variability as coefficient

of variation, proportional additive error as variance, and median errors of the parameter

estimations rounded off to three significant figures. For the mean absolute and root mean

squared errors all ANC measurements are used. Relative standard errors are shown in

parentheses rounded off to one significant figure.

protocols 2–6 for one patient, highlighting lower peak values
and smaller drug-induced steady state values when the dosing
is linearly increased from 25 mg/m2 to 100 mg/m2. The actual
dosage administered to the patient (blue) ranged between the
25 mg/m2 and 50 mg/m2 protocols and resulted in similar ANC
dynamics. At approximately day 240, the actual dosing was
stopped for a short period, inducing stronger ANC oscillations
in the subsequent treatment period and revealing a significant
impact of the dosing regimen on the ANCs. This observation is
even stronger regarding the proliferating cells as well as cells in
the first transit compartment. Similar plots for all 116 patients
are provided in the Supplemental Data.

4. DISCUSSION

4.1. Mathematical Model
We developed and fitted a population PK/PD model to assess
the ANC dynamics during 6MP/MTX treatment, get a better
understanding of dose adjustments, and identify solutions
to the challenges that arise throughout MT. During the
model development process we also fitted the model to WBC
measurements. The resulting MAEs and RMSEs were worse
compared to the values resulting from ANC measurements.
This is probably due to the fact that WBCs comprise different
cell lineages, with additional physiological effects that are not
accounted for in the mathematical model. In future studies, the
current model might be extended to further cell lineages. The
models brought forth by Quartino et al. (2012) and Fornari et al.

(2019)might serve as a basis and drive themodeling process from
a semi-mechanistic approach toward a more mechanistic one.

In addition to using a population estimation approach and
applying it to ANC instead of WBC, two modifications brought
forth by Le et al. (2018) were shown to yield better results. First,
the 6MP PK model of Jayachandran et al. (2014) was replaced
by that of Hawwa et al. (2008). The first order kinetics in the
PK model of Hawwa et al. (2008) compared to the Michaelis–
Menten terms in the PK model of Jayachandran et al. (2014)
resulted in more significant concentration changes with altered
drug amounts consequently in amore sensitive PD effect. Second,
the MTX PK model was completely omitted as the constant
ratio of administered 6MP and MTX prevents a differentiation
of separate PD effects. Further studies with measurements of
drug concentrations, metabolites and clinical effects as cell counts
would push forward the development of a mathematical model
additionally including the PK of MTX to provide two distinct
PD effects and to account for varying ratios of 6MP to MTX.
For the currently available data, our new model, which indirectly
agglomerates the effects of 6MP and MTX, appears to be a good
choice (compare for Table 4).

4.2. Model Parameter Estimates
Looking at the resulting model parameter estimates listed in
Table 5, the question arises as to how these values relate to known
biological properties of hematopoiesis andmyelosuppression and
to other values from the literature. The estimated ANC steady
state value Base was below the normal ANC range for children,
but still higher than the desired ANC range of 0.5–2 G/L.
Without treatment, the model-based ANCs would increase to
normal patient-specific steady states. Thus, low ANC values were
induced via MT or some of the aforementioned external events.

The estimated fixed-effects parameter value of the transition
rate ktr = 0.148 was comparable with the published mean value
(k̄tr = 0.1431) obtained from eight pediatric ALL patients from
Riley Hospital for Children in Indianapolis (Jayachandran et al.,
2014). For better interpretability, the transition rate parameter
ktr can be transformed to the MMT (ntr/ktr) of the neutrophils.
The estimated MMT in our study, as well as the MMT from
Jayachandran et al., are extremely high and do not coincide with
biological findings of 3.9 days obtained by Hearn et al. (1998).
This mismatch is a large disadvantage of the model as it fails to
comply with biological properties, leading to falsely characterized
physiological mechanisms and thus reduced model reliability.
Jayachandran et al. did not discuss this issue, but a similar
observation was made by Craig et al. (2016) who determined an
estimated proliferation time of 26 days (Craig et al., 2016). In
their work, the authors further presented model modifications
to obtain a more realistic maturation time of 3.9 days. For this
value we performed two parameter estimations with either Base
as a parameter or fixed to 5 resulting in promising dynamics but
worse RMSEs andMAEs. In future studies, the falsely determined
MMT and possible model limitations for continuous low-dose
treatments should be further investigated.

The feedback parameter (γ ) is significantly higher compared
with published values (Friberg et al., 2002), indicating a stronger
feedback mechanism during the daily chemotherapy over a long
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FIGURE 4 | Boxplots of minimal, median, and maximal (from left to right) individual ANCs for all 116 patients. Shown are values for the 6 different protocols from

Table 3, observed for the first column and simulated for protocols 2–6. The target range (0.5–2.0 G/L) of the NOPHO/UK treatment protocol is shown as the gray

background. Horizontal lines within the boxes are the medians, the upper and lower box limits are the first and third quartiles of the data, respectively. The whiskers

indicate an even larger confidence region of these quartiles plus/minus 1.5-times the interquartile range. Beyond the whiskers, data are considered as outliers and are

plotted as individual points. For the columns representing 25 mg/m2 to 100 mg/m2, the total amount of 6MP administered is increasing. The median average

individual daily doses actually administered for protocols 1 and 2 were 43.15± 10.5 mg/m2.

period. This is the first time estimated slope values of the linear
PD function from the PK model of Hawwa et al. (2008) are
presented; thus there are no available comparisons.

4.3. Simulation Results
The newly developed mathematical model enables us to perform
a virtual comparison of different treatment protocols. The
boxplots in Figure 4 show several interesting results.

First, the median and standard deviation of actual ANC
measurements were very accurately matched by the simulation
using the estimated parameters (compare the first two entries
in the middle boxplot of Figure 4). Concerning the patientwise
observed and simulated minimal and maximal ANC values, the
model demonstrates a corresponding weakened chemotherapy-
induced myelosuppression, respectively overproduction of

ANCs compared to the high measured variability. This
variability is biologically and clinically very plausible due
to the aforementioned external events and uncertainties,
although periods of severe infections were already excluded.
The reproducibility of the median and avoidance of over-fitting
of the extreme values are in our opinion good properties of a
mathematical model. Given this good correspondence between
cross-validated data and simulations, we felt encouraged to
compare simulations of different treatment protocols as specified
in Table 3. Note, however, that generalizations of mathematical
models personalized for data from one protocol to another have
to be considered with extreme care (compare the discussion for
acute myeloid leukemia models by Jost et al., 2019). Further,
we want to highlight that the current model is not intended to
describe the ANC extrema such that the results of the simulation
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FIGURE 5 | (a) Simulated absolute neutrophil count (ANC) dynamics [equal to xma in Equation (1)], (b) concentration of the active form 6-TGN [equal to x6tgn in

Equation (1)], (c) 6MP dosing amount [control function u(t) in Equation (1)], (d) dynamics of proliferating cells [equal to xpr in Equation (1)] and (e) cells of the first

transition compartment [equal to xtr1 in Equation (1)] for 5 different protocols from Table 3 and an exemplary patient. Colors of the trajectories are identical to those

used in Figure 4. The linear increase in dosing from 25 to 100 mg/m2 forces the neutrophils (ANC) to lower peak values and a smaller drug-induced steady state

value at the end of treatment. The actual dosage administered to the patient (blue) ranged between the 25 mg/m2 and 50 mg/m2 protocols and resulted in similar

ANC dynamics. At approximately day 240, the actual dosing was stopped for a short period, inducing stronger ANC oscillations in the subsequent treatment period.

This observation is even stronger regarding the proliferating cells as well as cells in the first transit compartment. Interestingly, these oscillations also continued for

some time after the end of treatment. Due to the long simulation horizon, the 6-TGN dynamics are squeezed such that the concentrations between two

administrations are not visible.
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study have to be treated with caution. The results shall serve
as a preliminary assessment of the dose-effect relationship
which has to be confirmed in future studies. The relationship
might be stronger compared to the current model predictions
and demonstrated by the clinical data in Figure 5. The impact
of model variations on the outcome of simulation studies
is usually significant. We tested the value of fixing the ktr
parameter to represent a biologically plausible MMT of 3.9 days.
This decreased the model accuracy (which is why the results
are not included here), but still led qualitatively to the same
subsequent effects.

Second, an approximately linear decrease in minimal, median
and maximal values could be observed as the dosage increased
linearly from 25 to 100 mg/m2 with a slightly reduced decrease
of the maximal ANC values. Again, this linear dose-effect
relationship seems biologically plausible. For most of the
simulations such as those shown in Figure 5, the maximal
ANC value decreased. However, for other simulations (see
Supplementary Material) stronger myelosuppression led to
identical maximal ANC values. This effect is due to a feedback
mechanism that may lead to increased proliferation for reduced
ANC which leads to larger ANC values after some delay.

Third, a tendency for higher oscillations for treatments with
pauses and changes in dosage was seen in a comparison of
the simulated actual treatment protocol 2 and the constant
administrations of protocols 3 and 4, which used lower/higher
total amounts of 6MP. Again, an example of this can be seen in
Figure 5. We believe that in the future adapted dosing schedules
might take advantage of the chemotherapy-induced oscillations
for an optimized dosing regimen. In the consolidation therapy
of acute myeloid leukemia it was shown in silico that the timing
of the treatment start can have a beneficial influence on the
reduction of myelosuppression (Jost et al., 2019). However, high
dose chemotherapy administered every 3 to 4 weeks provokes
stronger periodic oscillations compared to the daily oral dosing
which makes it more challenging to identify and capture the
oscillations. For high dosage, previously a multi-compartment
hematopoietic model was analayzed regarding Hopf bifurcation
and an explicit analytical expression for the bifurcation point was
provided depending on model parameters (Knauer et al., 2019).
Oscillations of various blood cell populations have been observed
in clinical data and partly investigated for different hematological
disorders (Haurie et al., 1998; Colijn et al., 2006). The exact
mechanisms and interaction between (1) stem cell cycling, (2)
hematological disorder, and (3) drug exposure are still not fully
understood. In our case, for all 116 patients in silico simulations
showed that the oscillations were damped (in 84 cases into a
steady state) once the chemotherapy was stopped, albeit with
long time ranges of up to one year (see Supplemental Data

for examples). Therefore, we assume that the oscillations in
the ANCs observed in our simulations could be attributed
to the influence of chemotherapy on the nonlinear dynamics
of hematopoiesis. The connection between model-intrinsic and
chemotherapy-induced oscillations should be assessed in detail
in future studies. A stability analysis (Edelstein-Keshet, 2005)
of the steady state could be performed (e.g., similar to Stiehl,
2014; Tetschke et al., 2018) to assess the theoretical properties

of the model and relate them to the physiological behavior
of neutrophils.

5. CONCLUSION

Wepresented a novel NLMEmodel describingmyelosuppression
for ALL MT among children who received 6MP and MTX and
was cross-validated on a data set of 4747 ANC measurements
obtained from 116 patients. A comparison with alternative
modeling approaches and using WBC counts instead of ANCs
showed the benefit of this model. We could show a linear dose-
effect relationship superimposed with fluctuations of varying
magnitude. Mathematical simulations and more mechanistic
modeling approaches will allow to improve the understanding
of intrinsic and extrinsic influence factors on the aberrant
hematopoiesis and chemotherapy-induced myelosuppression of
pediatric ALL patients. Therefore, the monitoring of individual
PK profiles and a subsequent analysis of the PK/PD relationship
are mandatory next steps for a better dose-effect correlation.

In the future, based on the conduction of further PK and
PD experiments driving the development of more advanced
mathematical models together with the individual determination
of response-related genotyping (Tsujimoto et al., 2018), MT
protocols might be developed in silico, leading to individualized
treatment protocols with better clinical outcomes.
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Simulations of protocols 2–6 for all 116 patients, similar to
Figure 5 (see Supplemental Data 1).

Simulations of protocols 2 for all 116 patients to analyze the
steady state behavior (see Supplemental Data 2).

The individual parameter estimates of the final PK/PD model
are recorded in the file finalParameterEstimates191221.csv.

The individual 6-mercaptopurine (6MP) treatment schedules,
the observed and calculated absolute neutrophil counts (ANCs)
and the patient’s weight, height and body surface area are
recorded in the file NONMEMresultsALL191221.csv. The dataset
contains the columns ID, TIME, DV, CMT, AMT, MDV,
EVID, IPRED, WEIGHT, HEIGHT and BSA. ID serves as an
identifier for the appropriate patient. TIME [day] either specifies

the measurement times of ANCs or the time of oral 6MP
administrations. DV [G/L] is the dependent variable, in our case
the individual ANC measurements. The column CMT specifies
the compartment in which a dosing or observation event occurs.
AMT [mg] defines the amount of oral 6MP administration. The
column MDV allows the user to inform NONMEM whether
or not the value in the DV field is missing, but in our case
the datasets do not contain missing measurements. The column
EVID explicitly declares to NONMEM the type of the current
record. EVID=0 defines the record as an observation event and
EVID=1 defines the record as a dose event. The column IPRED
contains the calculated ANCs derived by the PK/PD model after
parameter estimation.
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