
sensors

Article

Blockchain-Enabled Asynchronous Federated Learning in
Edge Computing

Yinghui Liu 1,† , Youyang Qu 2,† , Chenhao Xu 2 , Zhicheng Hao 3,* and Bruce Gu 4

����������
�������

Citation: Liu, Y.; Qu, Y.; Xu, C.; Hao,

Z.; Gu, B. Blockchain-Enabled

Asynchronous Federated Learning in

Edge Computing. Sensors 2021, 21,

3335. https://doi.org/10.3390/

s21103335

Academic Editor: Juan M. Corchado

Received: 12 March 2021

Accepted: 4 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Technology, Deakin University, Burwood, VIC 3125, Australia; liuyingh@deakin.edu.au
2 Deakin Blockchain Innovation Lab, School of Information Technology, Deakin University,

Burwood, VIC 3125, Australia; y.qu@deakin.edu.au (Y.Q.); xueri@deakin.edu.au (C.X.)
3 State Key Laboratory of Smart Tourism, Beijing Union University, Beijing 100101, China
4 College of Engineering and Science, Victoria University, Footscray, VIC 3011, Australia; bruce.gu@vu.edu.au
* Correspondence: haozhicheng@buu.edu.cn
† These authors contributed equally to this work.

Abstract: The fast proliferation of edge computing devices brings an increasing growth of data, which
directly promotes machine learning (ML) technology development. However, privacy issues during
data collection for ML tasks raise extensive concerns. To solve this issue, synchronous federated
learning (FL) is proposed, which enables the central servers and end devices to maintain the same
ML models by only exchanging model parameters. However, the diversity of computing power and
data sizes leads to a significant difference in local training data consumption, and thereby causes the
inefficiency of FL. Besides, the centralized processing of FL is vulnerable to single-point failure and
poisoning attacks. Motivated by this, we propose an innovative method, federated learning with
asynchronous convergence (FedAC) considering a staleness coefficient, while using a blockchain
network instead of the classic central server to aggregate the global model. It avoids real-world issues
such as interruption by abnormal local device training failure, dedicated attacks, etc. By comparing
with the baseline models, we implement the proposed method on a real-world dataset, MNIST, and
achieve accuracy rates of 98.96% and 95.84% in both horizontal and vertical FL modes, respectively.
Extensive evaluation results show that FedAC outperforms most existing models.

Keywords: federated learning; blockchain; edge computing; asynchronous convergence

1. Introduction

The fundamental technology of artificial intelligence (AI), machine learning (ML), has
been the core drive force for the 4th industrial revolution [1]. An increasing number of data-
driven application have been developed in many areas, e.g., the facial recognition model
trained by convolutional neural network (CNN) has been widely applied for smartphone
authentication [2], hospital utilizes regression model based on historical medical records
to predict patient condition [3], and forthcoming autonomous vehicles. At the same time,
the Internet of things (IoT) industry is also growing explosively. According to Lueth [4],
by the end of 2020, there will be 21.7 billion active devices connected to networks all over
the world, in which nearly 54% (11.7 billion) are IoT devices. By 2025, the number of IoT
devices may raise to 30 billion. Consequently, these ubiquitous IoT devices generate a great
amount of data day by day. With these growing trends, there will be an increasing number
of applications driven by the generated data.

In the meantime, speedy growth of data science not only provides a great convenience
to everyday life, it also brings corresponding issues and challenges, like the privacy leakage
risk and data islands [5,6]. The largest data leakage scandal that happened in recent years
is the Facebook–Cambridge Analytica data event, in which the UK consulting company,
Cambridge Analytica, used millions of Facebook users’ data without user consent for
political advertising purposes [7]. Subsequently, almost all fields of information technology

Sensors 2021, 21, 3335. https://doi.org/10.3390/s21103335 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9803-9776
https://orcid.org/0000-0002-2944-4647
https://orcid.org/0000-0003-0819-7269
https://orcid.org/0000-0002-3008-6285
https://www.mdpi.com/article/10.3390/s21103335?type=check_update&version=1
https://doi.org/10.3390/s21103335
https://doi.org/10.3390/s21103335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103335
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3335 2 of 16

highly related to data have received widespread attention, including data-driven machine
learning technologies [8]. Thus, worldwide governments issued laws and regulations
to protect individual privacy, i.e., the General Data Protection Regulation released by
the EU and Cyber Security Law published by China [9]. As a result, personal data is
protected effectively, while both the scale and difficulty of ML implementation with the
conventional method are extremely restricted, because it is nearly an impossible mission to
gain permission from millions of users. Moreover, individuals naturally expect that ML can
train models securely, especially against specifically designed attacking techniques, such as
inference attacks and poisoning attacks. Under this situation, in 2017, a privacy-preserving
ML framework named federated learning (FL) was proposed by Google [10].

Classic FL is designed to work in a stable environment, such as a data center, in which
network has high input-/output-speed and low latency [11,12]. Therefore, the convergence
mechanism in classic FL is adopted in asynchronousmode [13]. The weakness is in each
iteration, global model aggregation will be executed when it receives all local model
updates, and once any worker somehow trains unsuccessfully, the training task may fail to
converge [14]. Moreover, a central server in charge of global model convergence will be a
potential risk node because of single-point failure [15], which means once this device has
any problems, no other device can take over the duty of the center server by aggregating the
global model [16]. Motivated by this, we propose an asynchronous FL convergence (FedAC)
with staleness coefficient. In FedAC, the system will achieve local training and global
convergence totally asynchronously, and errors that occur on any worker will not intermit
the model training task. To further improve, we design a decentralized FL (FedBlock),
in which the blockchain network is responsible to global model aggregation instead of a
center server. It can enhance system robustness to avoid single-point failure and attacks
aimed at the central node by adversaries. Through massive simulated experiments, the
accuracy rate of prediction using the MNIST dataset are 97.45% in horizontal FL and 95.84%
in vertical FL mode. The evaluation results show the superiority of the proposed model.

The main contributions of this work are summarized as follows.

• Decentralized federated learning: blockchain-enabled FL provides a decentralized
global model convergence environment, in which all model updates will be verified
by the blockchain consensus algorithm and stored on public ledgers in a decentral-
ized way.

• Efficient asynchronous convergence: FedAC enables asynchronous local model train-
ing, updating, and global model aggregation. It can improve efficiency by avoiding
the standby time of high-performance local devices.

• Robust system: By avoiding Single-Point Failures, model training process cannot be
interrupted or suspended. Besides, blockchain provides extra secure protection for
cyberattacks such as poisoning attacks.

The remainder of this paper is organized as follows. In Section 2, we first review
existing research regrading FL optimization in recent years. In Section 3, we present the
modeling and algorithm explanation of the proposed model.In Section 4, we continue to
discuss experiment preliminaries, including setup of the physical environment, model
parameters, and the blockchain. Besides, we state experiment results and a discussion.
Finally, we conclude this paper in Section 5.

2. Related Works

In this section, we present relevant research on synchronous and asynchronous FL,
edge FL, decentralized FL (including blockchain-enabled FL), heterogeneity, and communi-
cation Cost.

2.1. Synchronous and Asynchronous FL

In most ML fields, both synchronous and asynchronous were a core topic in terms of
the learning process. For baseline FL, owing to Google scholars’ emphasis to cope with
Non-IID and unbalance scenarios, in the original FL framework, they used FedAvg for

Sensors 2021, 21, 3335 3 of 16

convergence of model, which is a synchronous method [10]. However, in a real imple-
mentation environment, edge devices are not working in the data center, where massive
unreliable factors may result in training faults, i.e., limited network bandwidth, power
restriction. Moreover, the expectation of all edge devices successfully training in each
round is impossible. Therefore, the asynchronous mechanism is usually considered to cope
with parallel issues.

There are advantages and disadvantages in both algorithms. Synchronous aggregation
is easy for deployment, and the global model converged from the edge local model is a
serial-equivalent computation [17]. However, in synchronous mode, it is hard to deal with
some harsh conditions. In comparison, it may be hard to deal with model aggregation
using the asynchronous method if each edge node learning status is not synchronous [18].

Regarding asynchronous aggregation, several existing researches have been con-
ducted. In [18], the authors proposed an asynchronous training method with dual-weights
correction, the study status is a diverse situation in edge nodes. Another research [19]
focused on vertical FL, and devised an algorithm to allow edge devices to execute the
stochastic gradient method without communication with other devices. In [20], Mhaisen
et al. proposed a semiasynchronous FL model that hierarchically trains a FL task in two
phases including user-to-edge and edge-to-cloud. An adaptive FL model is proposed
in [21], which considers the optimal trade-off between local training and global parameter
aggregation in an asynchronous way to minimize the loss function under specific resource
constraints.

2.2. Edge FL

There are some studies focused on federated edge computing. In [22], the authors
proposed EdgeFed to apply local model updating to the edge server, which decreases
computation cost and communication expense in the center data node. In [23], the au-
thors designed a privacy-aware service placement (PSP) scheme in an edge-cloud system,
which efficiently addressed individual privacy issues and provided better QoS to users.
Additionally, approaches to improve edge FL can be achieved from clients side. In [24],
the researchers proposed a novel framework, namely, FedCS, which deals with clients
selection problems, resulting in a system aggregated with several more local updates and
accelerating model performance advances. In [25], the authors apply local Differentially
Private into clients, playing the role of protecting local privacy. For further improvement,
the authors also proposed a randomly distributed update scheme to decrease security
threats aimed at the center convergence node. Moreover, in [26], the authors implemented
edge FL on vehicular edge network scenario and gained excellent performance. In [27], by
deploying multiple deep reinforcement learning (DRL) agents, the authors optimized com-
munication cost between IoT devices and edge devices. However, these aforementioned
edge FL studies still adopt synchronous convergence strategy while the center server node
plays the irreplaceable role of global model aggregation.

2.3. Decentralized FL

To address current issues of traditional FL, such as single-point failure, lack of incentive
mechanism, and data falsification, blockchain-enabled federated learning [14,15,28–31]
has been proposed and attracted massive attention from both academia and industry.
In [15], the authors discussed the privacy issues of Blockchain-Enabled FL; further, a
game-based model using the Markov decision process for industrial 4.0 was proposed
in [28]. In [29], the authors devised a novel consensus algorithm specially designed for
Blockchain-Enabled FL to improve the performances. Some researchers also discussed
the application of Blockchain-Enabled FL into vehicular networks [30,31]. More and more
relevant researches are emerging in various scenarios.

Despite a remarkable characteristic of FL being decentralized training, there is still
a demand on a trusted third party for the role of coordination, which could be a single
failure node in the network. Therefore, for the purpose of improving FL system robustness,

Sensors 2021, 21, 3335 4 of 16

a strategy integrating blockchain technology is proposed, which achieved decentralization
completely [32]. By adopting the nature of blockchain, a consensus mechanism, [33]
accomplished global model convergence without center server. The weakness is that this
end-to-end switch mechanism may lead to extra communication cost in the network. The
search [33] contributed by reducing samples on edge device to accelerate training locally.
Future studies should focus on coping with latency and communication load reduction in
blockchain-based FL.

2.4. Heterogeneity and Communication Cost

The heterogeneity related to Non-IID data, unbalanced data, various hardware per-
formance of devices, edge devices operation system, wireless network environment, etc.,
are challenging FL evolution. Some related works coped with these issues by fair resource
allocation, convergence updating, fault tolerance, and personalization of the edge device
training mode. The study [34] designed an incentive algorithm leading to high-quality
data holders that are more willing to participate in model training, accordingly, to promote
model accuracy. The research [35] stated a novel method working on Non-IID data, which,
through computing the aggregation bound, decreased loss function under restricted re-
source. Bonawitz [36] coped with training issues of abnormal suspends via discarding a
network-disconnected mobile device, caused by a poor wireless network or power con-
straints. The study [37] clarified a novel algorithm, federated augmentation (FAug), via
augmenting missing data in each device to transform Non-IID data into IID data, resulting
in improving model accuracy by 95–98%.

Communication Cost is the major factor that may influence the model performance,
in other words, it could be the bottleneck [36]. Even if the traffic in network was only
gradient updates rather than the entire model, consideration of the network scale may
involve millions of edge devices. Limited bandwidth in the mobile network and slower
communication speed may also fall below expectations. Two technology points can be
considered for dampening network pressures: (1) decreasing gradient updates size, i.e., us-
ing a more efficient compression algorithm; (2) optimizing correspondence rounds to an
appropriate value. Currently, there are couples of researches contributing to communi-
cation optimization. Caldas [38] introduced a lossy algorithm for model transmitting,
which drops network loads originated from the server 14 times and communication cost
from clients 28 times. The research [10], through increasing batch size, avoided frequent
communication rounds and achieved a great result.

From the above literature analysis, it can be concluded that FL has been and is still
experiencing a fast boom and improvement in various aspects. However, a decentralized and
asynchronous FL that is efficient and robust with high accuracy has barely been discussed.

3. System Modeling

In this section, we demonstrate the formulation of federated learning asynchronous
convergence (FedAC) considering the staleness coefficient and Blockchain-Enabled feder-
ated learning (FedBlock).

3.1. FedAC with Staleness Coefficient

In this context, the linear regression task to be solved by edge devices is shown as
Equation (1).

min
ω

f (ω) =
K

∑
i=1

R

∑
j=1

ζ
j
i f (ω j

i), (1)

where K denote total numbers of edge devices: K := {1, . . . , k ∈ K} with |K|= k. A dataset
of D samples, where D = ∪K

i=1di, is maintained by K edge devices. R is defined as the
total number of training iteration rounds, R := {1, 2, . . . , r ∈ R} with |R|= r. The i-th
miner mi associated device ki, instead of a fixed center server, is selected randomly from
a series of miners M := {1, . . . , m ∈ M} with |M|= m. Moving on, to solve the training

Sensors 2021, 21, 3335 5 of 16

and update delay caused by asynchronous training, we define the staleness coefficient ζ to
decrease latency device contribution in a global model. In a new iteration r, as the delayed
device ki has gained the up-to-date global model from its associated miner mi, value ζr

i
will be computed automatically by comparing the updated version from the global model.
Therefore, for the iteration r, ζr is defined as Equation (2).

ζr =
K

∑
i=1

ζr
i = 1 (0 < ζr

i ≤ 1). (2)

Moving on, The i-th edge device’s local function fi is parameterized by λ(ω; xi, yi),
where λ is the predefined loss function operated with data point {xi, yi}. In the data point,
xi belongs to a d-dimensional column vector with xi ∈ Rd, while yi is respected to be
a scalar value, where yi ∈ R. In this paper, we use LogSoftmax and NLLLoss as loss
functions to cope with the multiclassification task. ∇ fi(ω

t
i) means the gradient of ki device

in r-th training round and δ is the learning rate. The device ki locally trains the model using
local data sample di, adopting the stochastic variance reduced gradient (SVRG) method.
The model parameters are computed as Equation (3).

ωr+1
i = ωr

i + δ∇ f (ωr
i). (3)

Furthermore, edge device ki uploads the trained local model to the miner mi, who
aggregates the global model with r-th round staleness coefficient ζr

i , updated local weight
ωr

i , and global model weight ωglobal newly updated by device k(i−1). The formulation is
shown as Equation (4).

ωr
global = (1− ζr

i)ωglobal + ζr
i ωr

i . (4)

After that, the up-to-date aggregated global model will be downloaded by all associ-
ated edge devices for training of the next iteration. Unlike conventional FL, for FedAC, a
center server that is responsible for aggregating the global model is replaced by the miner
randomly selected by the consensus process of blockchain. However, all local training
and global aggregation tasks will be executed repeatedly until the global model satisfies
predefined constraints as

|ωr
global −ωr−1

global |≤ τ, (5)

where τ > 0 is a small positive constant. Additionally, the tasks will be forced to quit if all
training iterations are completed. The FL procedure is shown in Algorithm 1.

Algorithm 1 FedAC
Input: Edge device ki, miner mi
Output: A optimized global model
Data: A sample di on device ki

1 initialization;
2 associated miner mi is selected;
3 while ωr −ωr−1 > τ or R− r > 0 do
4 download global model from miner mi;
5 training local model using data di;
6 if locally training completed then
7 send local model to miner mi;
8 end
9 if miner mi received local model then

10 aggregating global model using local model and staleness coefficient ζr
i

11 end
12 end
13 Output an optimized global model.

Sensors 2021, 21, 3335 6 of 16

3.2. Decentralized Federated Learning using Blockchain (FedBlock)

In order to exchange model parameters truthfully, FedBlock generates blocks and
conducts cross-verification on model parameters while saving them on a distributed
ledger. Each block in the public ledger includes both a header and a body sector. For
conventional blockchain, the body normally stores a specific number of transactions verified
by miners, while in FedBlock, it contains the updated model parameters from device ki,
i.e., {ωr

i ,∇ f (ωr
i)} for device k in round r, and also the computation time Tr

i of device ki. The
header part is designed to include the information of a pointer to the previous block, block
generation rate β, and the output value (nonce in this context) of the consensus method
(Proof-of-Work (PoW)). For the purpose of storing all local updated model parameters, the
formulation of block size is designed as Equation (6), where S is defined as block size, h as
the header size, and αm as the updated local model size.

S← h + αmK. (6)

The miner mi is designed to produce a candidate block, which involves updated local
model information from associated edge devices or other miners. The stored procedure
will run persistently until the block size is fully occupied or the waiting time Twait expires.
In order to ensure each block is written with the local updated model, Twait must be
sufficiently long.

For the consensus process, the miner mi will continue to generate a random hash
value until it becomes smaller than a target value (nonce). Once mi works out the nonce
value, the candidate block in mi is regarded to be a new block. Similarly, the block
generation rate β can be controlled carefully by changing the difficulty coefficient of the
PoW consensus algorithm.

The up-to-date-released block is sent to all miners in a broadcast manner for the
synchronization of all distributed ledgers. For this aim, all miners receiving the up-to-date
block will be enforced to exit the consensus computing session and append the block to
corresponding local ledgers. Nonetheless, a situation may occur where another miner
mi+1 also generates a candidate block within a negligible time slot, but other miners
deny to append that block due to receive delay. In FedBlock, forking may result in edge
devices receiving a set of false global model parameters for the next training iteration, and
subsequently generate incorrect local model updates in the following rounds.

The blockchain generation rate β and the block linking delay will be associated with
forking frequency positively. We discuss the time consumption regarding the mitigation of
forking in the following parts.

In addition to the previously discussed actions to update local trained models, Fed-
Block offers both data rewards to edge devices and mining rewards to global aggregation
as well as producing the candidate block. The edge device ki receives data rewards from
its associated miner mi, and the amount of the rewards is set to be proportional to the size
of data sample di. The miner mi will also gain the mining rewards from FedBlock, such as
data rewards; mining rewards are also linearly proportional to the convergence size of data
samples associated with edge devices, that is, ∑km

i=1, where km means all associated edge
devices with miner mi. However, FedBlock is able to offer an incentive to miners since
miners can operate as many local training models as possible and offset the cost on data
rewards at the same time.

The Figure 1 illustrates the structure of both FedAc and FedBlock. To better clarify, we
use Algorithm 2, which consists of eight processes, to explain the workflow of FedBlock.

In the initialization stage, when the aforementioned miner selection process is com-
pleted, the blockchain network will generate a global model, which uses a range of weight
values that satisfy Equation (7). Then, device ki bonded to the miner mi downloads the
initial global model f (ω0

global) for local training.

ω0
global ∈ (0, ωmax) and ∇ f (ω0

global) ∈ (0, 1]. (7)

Sensors 2021, 21, 3335 7 of 16

In the local training stage, all edge devices K will update their local models, adopted
in Equation (3), using the global model downloaded from the blockchain network and the
locally-held data sample.

Figure 1. Workflow of FedAC and FedBlock.

Algorithm 2 FedBlock
Input: Edge device ki, miner mi
Output: A optimized global model
Data: A sample di on device ki

1 initialization;
2 Generated candidate block by mi;
3 Cross-verification by M;
4 Generated block by selected miner mi;
5 while ωr −ωr−1 > τ or R− r > 0 do
6 Training model locally by ki;
7 Upload local model to the blockchain network;
8 if mi found the nonce of the new block bi then
9 Add bi into the blockchain;

10 Delete other related blocks bi
11 end
12 Block propagation;
13 Global model update by blockchain network;
14 Download global model by ki
15 end
16 Output an optimized global model.

In the model upload stage, once an edge device ki finishes its training locally, it
uploads both the local model parameters {ωr

i ,∇ f (ωt
i)} and local computation time tr

i to its
associated miner mi.

In the cross-verification stage, each miner mi will share the uploaded local model via
the blockchain network. Meanwhile, miners will verify the received local model updates
or the other miners in order of arrival. If the local computation time tr

i is proportional to a

Sensors 2021, 21, 3335 8 of 16

device’s training data sample di, the truthfulness of local model updates can be validated.
Then, the verified local model updates will be recorded in the candidate block of miner mi
until the size limit S = hαmK is reached or waiting time Twait expires.

In the block generation stage, all miners will work with a consensus algorithm to find
the nonce value or receive a candidate block from another miner.

In the block propagation stage, the miner who is first to find the nonce is denoted as
mφ ∈ M. This miner will generate a candidate block as a new block that will be shared
with other miners. In FedBlock, the acknowledgment (ACK) mechanism is applied for
avoiding forking events. All miners will wait to receive an ACK signal from other miners;
otherwise, the process loops back to stage 2.

In the global model update stage, the edge device ki will execute global model aggre-
gation as Equation (4) using the local model updates stored in the generated block.

In the global model download stage, the edge device ki will download the candidate
block with global model parameters from the blockchain network.

The total processes will work repeatedly until the global model satisfies |ωr
global −

ωr−1
global | ≤ τ or r > R.

The complete notation description refers to Table 1.

Table 1. List of Notations.

Notation Description Notation Description

K Total number of edge devices λ Federated learning loss function
ki The i-th edge device ζ Staleness coefficient
M Total number of miners δ Federated learning learning rate
mi A miner associated with edge device ki x d-dimensional column vector
D Sample space y A scalar value
di A subset of the sample space on edge device ki {xi, yi} x and y on edge device ki
R Total number of training rounds τ A small positive constant
r The r-th round T Time

f (ω) Final global model Twait Waiting time
f (ωr

i) Local model on edge device ki in round r β Block generation rate
∇ f (ω) Gradient S Block size

ω Model weights h Head size in block
ωi Edge device local model weights α Updated local model size in block

4. Evaluation and Experimental Preliminaries

In this section, we first simulate an edge computing environment, including physical
devices, real-world datasets, and FL model configuration. Then, based on this environment,
we implement experiments to show the performances of the proposed model. We provide
experimental results derived from various configurations, including different numbers of
edge devices, data distribution, learning rate, and discuss accuracy, convergence, and time
consumption, respectively.

4.1. Physical Environment Deployment

There are several capable single-board computers that can be selected currently,
i.e., Raspberry Pi (4b), Nvidia’s Jetson Nano Developer Kit, Banana Pi M3, or NanoPi
NEO3. For a machine learning task, Nvidia’s Jetson Nano Developer Kit might be the best
one in the above choices because it is naturally designed for edge computing. However,
with considerations of performance, extensions, cost, and availability of affluent develop-
ment references, we selected the Raspberry Pi (4b), which is shown in Figure 2. For the
simulation of edge devices and miners, Raspberry Pi (4b) is a tiny single-board computer
in a credit card size but has powerful computation ability and a diverse range of extension
ports with abundant input and output options, e.g., Wi-Fi, LAN, Bluetooth, USB, Audio,
Video, and HDMI. Especially, it provides general-purpose input–output (GPIO) connectors

Sensors 2021, 21, 3335 9 of 16

that can expand extra sensors for more input- and output-demands. In order to reflect
the diversity of edge devices, we selected 3 kinds of memory sizes: 2 GB, 4 GB, and 8 GB,
respectively. Specifications of the Raspberry Pi (4b) are shown in Table 2.

Figure 2. Raspberry Pi (4b) diagram.

Furthermore, with consideration of avoiding network connectivity issues resulting
in the failure of experiments, we assume the network environment is stable. Thus, we
use a network switcher with Gigabit Ethernet and the port type is 1000BASE-T, which
follows the standard of IEEE 802.3ab (twisted-pair cabling i.e., Cat-5, Cat-5e, Cat-6, Cat-7,
supporting up to 100 m).

Table 2. Specifications of Raspberry Pi (4b).

Items Description

CPU Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz
Memory 2 GB, 4 GB or 8 GB LPDDR4-3200 SDRAM (depending on model)

Wireless LAN 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
LAN Gigabit Ethernet
USB 2 USB 3.0 ports; 2 USB 2.0 ports.

GPIO Standard 40 pin GPIO header
HDMI 2 × micro-HDMI ports (up to 4kp60 supported)

Display 2-lane MIPI DSI display port
Camera 2-lane MIPI CSI camera port
Audio 4-pole stereo audio and composite video port
Video H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

Graphics API OpenGL ES 3.0 graphics
External Storage Micro-SD card slot for loading operating system and data storage

USB-C Power 5V DC via USB-C connector (minimum 3A)
GPIO Power 5V DC via GPIO header (minimum 3A)

Power over Ethernet (PoE) enabled (requires separate PoE HAT)
Working Temperature Operating temperature: 0–50 degrees C ambient

4.2. Federated Learning

To test and verify the performance of the model in real-world scenarios, in this context,
we apply the classic dataset MNIST for all tasks, and dataset CIFAR-10 for 6 edge clients.
MNIST is a subset of NIST, which is the dataset of handwriting images for the purpose
of image recognition machine learning training, including 60,000 28×28 pixels examples
for training and 10,000 28×28 pixels examples for testing. The CIFAR-10 dataset consists
of 60,000 32×32 color images in 10 classes, with 6000 images per class. There are 50,000
training images and 10,000 test images.

Sensors 2021, 21, 3335 10 of 16

To best simulate a wide range of application scenarios, we considered several federated
learning features as follows.

• Non-IID: The data held by some particular devices have specific features that do not
exist on the majority of devices.

• In order to protect user privacy, federated learning is adopted as the distributed
computation framework for federating data holders. This may lead to a larger number
of participants than classic machine learning.

• Data size imbalance: Due to the heterogeneity of training devices and differences
of working environment, some devices may possess more examples, while others
hold less.

• Limited resources and poor network quality: The first constraint is also due to the
heterogeneity of devices. Besides, in real edge environment, edge devices may work
in unstable and unreliable networks, i.e., mobile phones may go offline frequently
due to a variety of reasons.

In a real-world environment, edge devices include massive smart embedded devices
(e.g., smartphones, cameras, sensors, or even autonomous vehicles). The data generated
by edge devices are usually Non-Independent and -Identically Distributed (Non-IID) and
distributed in an unbalanced manner on each data holder. That means the data processed
by each edge device has unique features. This is also considered and named as vertical
FL. Therefore, we adopt two kinds of data distribution in experiments. The first one is we
assume that training conditions are ideal, i.e., the devices working in edge environments are
simple, the types of devices are similar, and data distribution is also homogeneous, which
means most devices possess data with similar features. For this scenario, all participating
devices hold similar numbers of examples and almost all features. This can be considered
as horizontal federated learning. The second one is that the devices are working for diverse
aims in edge environments, which will lead to unbalanced distribution of features on each
device. The most extreme situation is that each device possesses unique features that cannot
be found in other devices. In this context, the distribution of data is designed so that each
participant just holds unique features. This is also known as vertical federated learning.

The model we implemented in the experiments is the classic CNN. With consid-
eration of edge devices’ computation ability and characteristics of the datasets, we use
a typical CNN configuration, which contains two convolution layers, including 20×5
and 50×5 channels. Data outputted from each convolution layer will be activated by
the ReLU function, then pooled by the Max_Pool function. In addition, the channels are
connected by two fully-connected layers, including 800 and 500 units. Between both fully-
connected layers, data is activated again by ReLU. Finally, 10 units are outputted by the
Log_So f tmax function.

To mitigate the complexity of global convergence in asynchronous situations, we use
the single epoch model instead of multiple epochs. For the training round, the minibatch
was 32, whereas 128 was set up for testing. The learning rate has two options, which are
fixed mode and decay mode. In fixed mode, the default value is 0.1. We may fine-tune the
learning rate for model optimization. For decay mode, the learning rate is decreased by 2%
in each new round of iteration.

However, for the reason that the procedures of training, updating, and aggregation on
each device are totally asynchronous, we employ a method to test the model periodically,
while time consumption will be computed until the last device finishes its task.

4.3. Accuracy Evaluation

To start with, we set the training batch as 32; training round as 200; and learning
rate as 0.1, 0.05, and 0.01, where the learning rate will decay 2% in each new training
iteration. We implement experiments on vertical and horizontal FL models, respectively.
As shown in Figure 3, when the learning rate equals 0.1, all tests (2, 3, 4, 5, 6 devices)
achieve accuracy rates of over 90% in both vertical and horizontal FL modes. For vertical
FL, the highest value, 95.25%, is obtained when the settings are 2 edge devices and lr = 0.1.

Sensors 2021, 21, 3335 11 of 16

Regarding horizontal FL, the highest accuracy rate is 98.68% when there are 6 workers and
lr = 0.1. On the other hand, for MNIST dataset, the appropriate learning rate is 0.01. By
comparison, when the learning rate is set as 0.01, both vertical and horizontal FL never
reach an accuracy rate of 90%. Moreover, because each worker possesses unique features
that are not held by other devices, in vertical FL, more edge devices participating will result
in lower accuracy. Up to a 55% decrease of accuracy is verified in highly skewed Non-IID
data distribution [39]. By contrast, in horizontal FL, an increasing number of workers
participating in local training will help gain a better global model. However, the situation
that each participating worker just holds unique features is an extreme case. In real-world
scenarios, the most common scenario is that each kind of featured data is maintained by
multiple devices.

Figure 3. Accuracy vs. number of Edge devices.

As shown in Figure 4, for the MNIST dataset, both asynchronous and synchronous
modes reach near 98% accuracy in horizontal FL while asynchronous mode achieves 89.94%
and synchronous mode gains 97.86% in vertical FL. For dataset CIFAR-10, synchronous
mode gets a little bit higher accuracy than asynchronous mode, which are 85.92%, 81.37%
in horizontal FL and 83.83%, 73.12% in vertical FL, respectively.

(a) MNIST (b) CIFAR-10

Figure 4. Asynchronous vs. Synchronous.

Sensors 2021, 21, 3335 12 of 16

4.4. Convergence Evaluation

As shown in Figure 5, in given training rounds, all tasks achieve a convergence, and
even performance on each scenario is diverse. In the following part, we will discuss these
cases in detail.

Figure 5. Convergence on Horizontal and Vertical FL in MNIST.

Firstly, when the learning rates are 0.1 and 0.05, the convergence is rapidly reached
at an accuracy of more than 90% in nearly 10 min when 2 devices are involved. The most
significant difference is in horizontal FL, where the curve of aggregation is smooth, whereas
it fluctuates in vertical FL because discrete feature distribution leads to a deviation in global
model weight. This situation is even significant on asynchronous modes. For example, in
the case when learning rate is 0.01 and device number is 4, the curve moves like a wave
and keeps climbing up.

Furthermore, a unique feature exists in vertical FL mode; that is, nearly all curves
having a distinct improvement near the training finish stage. The most obvious one is
when the device number is 5 and the learning rate equals 0.01. Due to the heterogeneity
of each edge device, local training time may significantly vary. For synchronous mode,
in each round of global model aggregation, the miner waits for the last worker’s training
updates before aggregation, so the delay among each device is not obvious.

Sensors 2021, 21, 3335 13 of 16

However, for asynchronous mode, this delay will increasingly accumulate, so weights
in the global model will be more and more deviated to devices with high performances.
When the task reaches the final stage, the global model will be balanced by converging
lagging local model update gradients. By contrast, in the horizontal FL model, the curve is
much smoother when the task is nearly completed.

Despite that FedAC is not designed to cope with Non-IID issues specifically, it can
work with both FL modes and have greater outputs regarding convergence.

4.5. Time Consumption Evaluation

In a training round, the time cost Ttotal includes local training time Tlocal , global
convergence time Tglobal , and time cost of blockchain Tblockchain. Therefore, in this project,
overall task time consumption is a unit time cost multiple of the training rounds. The
formulation can be indicated as Equation (8).

Ttotal ← rTlocal + rTglobal + rTblockchain. (8)

As shown in Figure 6, wherever in vertical and horizontal FL, to give a constant train-
ing round, the time cost increases with the increasing number of edge devices participating.
Indeed, in asynchronous mode, global model convergence does not concern single device
performance, but for Non-IID data, less updating means that the global model may include
fewer weights working on this device-held feature data. Thus, in this experiment, we set
up testing wait for all workers’ tasks done. That is why total time costs are similar for
both vertical and horizontal FL. As Figures 5 and 6 illustrate, total time cost in the scenario
with 6 devices is nearly 2 times the scenario with 2 workers. This is a significant point
varied with conventional machine learning, in which a growing trend of participants may
accelerate model training. However, communication cost is a major bottleneck for future FL
development. An idea in terms of reducing time consumption is to reduce communication
rounds, i.e., increasing batch size for a training iteration or set a converging global model
after multilocal training instead of every round aggregation.

Figure 6. Time Consumption.

Sensors 2021, 21, 3335 14 of 16

4.6. Consensus of Blockchain Evaluation

In this subsection, we show how blockchain generation rate β influences the conver-
gence latency of the proposed model in Figure 7. We can observe that the convergence
latency of the proposed model is shown as a convex curve over the blockchain generation
rate β. From the second figure, it can be observed that the convergence latency decreases
with the increase in the signal-to-noise ratio (SNR). If we define β∗ as the optimal gener-
ation rate, the minimum convergence latency can be obtained based on it. Although the
latency value of the simulated results is 1.8% higher than the results derived from theory,
the performance is still comparable and testifies to the feasibility of the proposed model.

(a) Blockchain Generation Rate (b) Theoretical and Simulation Results

Figure 7. Blockchain evaluation regarding blockchain generation rate.

5. Summary and Future Work

In this paper, we propose advanced FedBlock and FedAC models for a decentralized
and asynchronous federated learning framework. FedBlock enables decentralized FL
built upon blockchain while FedAC allows the FL to conduct global aggregation in an
asynchronous manner considering a staleness coefficient. The proposed framework is
robust to various security threats such as poisoning attacks and single-point failures while
being efficient due to the asynchronous aggregation. The simulation results show that the
performance of the proposed framework is comparable to existing synchronous FL while
having an optimal block generation rate of the blockchain consensus process.

For future works, we will focus on larger distributed devices scenarios. More edge
devices participating means more undiscovered factors, which may influence the training
process and model accuracy. In addition, the topic of Non-IID optimization is also a large
challenge due to the fact that data distribution in the real-world is heterogeneous and
unbalanced. Furthermore, privacy issues of blockchain-enabled federated learning will be
addressed using differential privacy or other advanced techniques.

Author Contributions: Methodology, Y.L., Y.Q. and Z.H.; software, C.X.; validation, Y.L. and Y.Q.;
investigation, B.G.; resources, C.X. and B.G.; data curation, C.X. and Z.H.; writing—original draft
preparation, Y.L.; writing—review and editing, Y.Q.; visualization, Y.L.; supervision, Y.Q.; project
administration, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: The paper is partially funded by Big Data Foundation Theory for Smart City under Grant
No. ZB10202001, Shanxi Province Science Foundation for Youths under Grant No. 201901D211306,
and the Shanxi International Cooperation Project under Grant No. 201803D421-039.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2021, 21, 3335 15 of 16

Data Availability Statement: Two public datasets are used in this paper, which are MNIST (http:
//yann.lecun.com/exdb/mnist/, accessed on 20 February 2021) and Cifar-10 (https://www.cs.
toronto.edu/~kriz/cifar.html, accessed on 20 February 2021).

Acknowledgments: We sincerely thank you Lei Cui and Yufeng Xing for contributing their time and
efforts to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.
2. Balaban, S. Deep learning and face recognition: The state of the art. In Biometric and Surveillance Technology for Human and Activity

Identification XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volumr 9457, p. 94570B.
3. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated

electronic health records. Int. J. Med. Inform. 2018, 112, 59–67.
4. Lueth, K.L. State of the IoT 2020. Available online: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-

surpassing-non-iot-for-the-first-time/ (accessed on 20 February 2021).
5. Qu, Y.; Yu, S.; Zhou, W.; Peng, S.; Wang, G.; Xiao, K. Privacy of things: Emerging challenges and opportunities in wireless internet

of things. IEEE Wirel. Commun. 2018, 25, 91–97.
6. Abdellatif, A.A.; Al-Marridi, A.Z.; Mohamed, A.; Erbad, A.; Chiasserini, C.F.; Refaey, A. ssHealth: Toward secure, blockchain-

enabled healthcare systems. IEEE Netw. 2020, 34, 312–319.
7. Isaac, M.; Frenkel, S. Facebook Security Breach Exposes Accounts of 50 Million Users. Available online: https://www.nytimes.

com/2018/09/28/technology/facebook-hack-data-breach.html (accessed on 20 February 2021).
8. Gu, B.S.; Gao, L.; Wang, X.; Qu, Y.; Jin, J.; Yu, S. Privacy on the edge: Customizable privacy-preserving context sharing in

hierarchical edge computing. IEEE Trans. Netw. Sci. Eng. 2019, 7, 2298–2309.
9. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.

(TIST) 2019, 10, 1–19.
10. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

11. Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A joint learning and communications framework for federated learning
over wireless networks. IEEE Trans. Wirel. Commun. 2020, 20, 269–283.

12. Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated learning for wireless communications: Motivation, opportunities, and challenges.
IEEE Commun. Mag. 2020, 58, 46–51.

13. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local model poisoning attacks to Byzantine-robust federated learning. In Proceedings of the
29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 1605–1622.

14. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.
15. Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized privacy using blockchain-enabled federated learning

in fog computing. IEEE Internet Things J. 2020, 7, 5171–5183.
16. Cui, L.; Su, X.; Ming, Z.; Chen, Z.; Yang, S.; Zhou, Y.; Xiao, W. CREAT: Blockchain-assisted Compression Algorithm of Federated

Learning for Content Caching in Edge Computing. IEEE Internet Things J. 2020, doi:10.1109/JIOT.2020.3014370.
17. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.

Mag. 2020, 37, 50–60.
18. Lu, X.; Liao, Y.; Lio, P.; Hui, P. Privacy-preserving asynchronous federated learning mechanism for edge network computing.

IEEE Access 2020, 8, 48970–48981.
19. Chen, T.; Jin, X.; Sun, Y.; Yin, W. Vafl: a method of vertical asynchronous federated learning. arXiv 2020, arXiv:2007.06081.
20. Mhaisen, N.; Awad, A.; Mohamed, A.; Erbad, A.; Guizani, M. Optimal User-Edge Assignment in Hierarchical Feder-

ated Learning based on Statistical Properties and Network Topology Constraints. IEEE Trans. Netw. Sci. Eng. 2021,
doi:10.1109/TNSE.2021.3053588.

21. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained
edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221.

22. Ye, Y.; Li, S.; Liu, F.; Tang, Y.; Hu, W. Edgefed: optimized federated learning based on edge computing. IEEE Access 2020,
8, 209191–209198.

23. Qian, Y.; Hu, L.; Chen, J.; Guan, X.; Hassan, M.M.; Alelaiwi, A. Privacy-aware service placement for mobile edge computing via
federated learning. Inf. Sci. 2019, 505, 562–570.

24. Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In Proceedings of
the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.

25. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Differentially private asynchronous federated learning for mobile edge
computing in urban informatics. IEEE Trans. Ind. Inform. 2019, 16, 2134–2143.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

Sensors 2021, 21, 3335 16 of 16

26. Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated learning in vehicular edge computing: A selective model aggregation approach. IEEE
Access 2020, 8, 23920–23935.

27. Ren, J.; Wang, H.; Hou, T.; Zheng, S.; Tang, C. Federated learning-based computation offloading optimization in edge computing-
supported internet of things. IEEE Access 2019, 7, 69194–69201.

28. Qu, Y.; Pokhrel, S.R.; Garg, S.; Gao, L.; Xiang, Y. A blockchained federated learning framework for cognitive computing in
industry 4.0 networks. IEEE Trans. Ind. Inform. 2020, doi:10.1109/TII.2020.3007817.

29. Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A blockchain-based decentralized federated learning framework with
committee consensus. IEEE Netw. 2020, doi:10.1109/MNET.011.2000263.

30. Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future
Gener. Comput. Syst. 2021, 117, 328–337.

31. Pokhrel, S.R.; Choi, J. Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Trans.
Commun. 2020, 68, 4734–4746.

32. Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854.
33. Kim, Y.J.; Hong, C.S. Blockchain-based node-aware dynamic weighting methods for improving federated learning performance.

In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan,
18–20 September 2019; pp. 1–4.

34. Kang, J.; Xiong, Z.; Niyato, D.; Yu, H.; Liang, Y.C.; Kim, D.I. Incentive design for efficient federated learning in mobile networks:
A contract theory approach. In Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS),
Singapore, 28–30 August 2019; pp. 1–5.

35. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning. IEEE Netw. 2019, 33, 156–165.

36. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.;
McMahan, H.B.; et al. Towards federated learning at scale: System design. arXiv 2019, arXiv:1902.01046.

37. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-iid private data. arXiv 2018, arXiv:1811.11479.

38. Caldas, S.; Konečny, J.; McMahan, H.B.; Talwalkar, A. Expanding the reach of federated learning by reducing client resource
requirements. arXiv 2018, arXiv:1812.07210.

39. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.

	Introduction
	Related Works
	Synchronous and Asynchronous FL
	Edge FL
	Decentralized FL
	Heterogeneity and Communication Cost

	System Modeling
	FedAC with Staleness Coefficient
	Decentralized Federated Learning using Blockchain (FedBlock)

	Evaluation and Experimental Preliminaries
	Physical Environment Deployment
	Federated Learning
	Accuracy Evaluation
	Convergence Evaluation
	Time Consumption Evaluation
	Consensus of Blockchain Evaluation

	Summary and Future Work
	References

