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Abstract
Background: Although K14E6 transgenic mice develop spontaneous tumors of the skin epithelium, no
spontaneous reproductive tract malignancies arise, unless the transgenic mice were treated chronically
with 17β-estradiol. These findings suggest that E6 performs critical functions in normal adult cervix and
skin, highlighting the need to define E6-controlled transcriptional programs in these tissues.

Methods: We evaluated the expression profile of 14,000 genes in skin or cervix from young K14E6
transgenic mice compared with nontransgenic. To identify differentially expressed genes a linear model
was implemented using R and the LIMMA package. Two criteria were used to select the set of relevant
genes. First a set of genes with a Log-odds ≥ 3 were selected. Then, a hierarchical search of genes was
based on Log Fold Changes.

Results: Microarray analysis identified a total of 676 and 1154 genes that were significantly up and down-
regulated, respectively, in skin from K14E6 transgenic mice. On the other hand, in the cervix from K14E6
transgenic mice we found that only 97 and 252 genes were significantly up and down-regulated,
respectively. One of the most affected processes in the skin from K14E6 transgenic mice was the cell cycle.
We also found that skin from transgenic mice showed down-regulation of pro-apoptotic genes and genes
related to the immune response. In the cervix of K14E6 transgenic mice, we could not find affected any
gene related to the cell cycle and apoptosis pathways but did observe alterations in the expression of
immune response genes. Pathways such as angiogenesis, cell junction and epidermis development, also
were altered in their gene expression profiles in both tissues.

Conclusion: Expression of the HPV16 E6 oncoprotein in our model alters expression of genes that fell
into several functional groups providing insights into pathways by which E6 deregulate cell cycle
progression, apoptosis, the host resistance to infection and immune function, providing new opportunities
for early diagnostic markers and therapeutic drug targets.
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Background
Cancer development usually takes several decades to arise,
and follows a progressive histopathological pattern that
involves acquisition of multiple genetic changes to the
cancer cell. Human papillomaviruses (HPVs) are small
DNA tumor viruses that cause benign tumors in human
skin. A subset of anogenital HPVs, the high-risk HPVs
(HR-HPVs), is associated with human malignant tumors,
including the majority of cervical cancers [1]. HPV-associ-
ated cervical carcinogenesis is a multistep process, in
which infected cells develop into cervical intraepithelial
neoplasia (CIN) and then into malignant cancer [2]. Two
genes of HR-HPVs, E6 and E7, are expressed in the cells
derived from HPV-associated cancers [3,4]. Viral oncopro-
teins are multifunctional proteins that cooperate with
each other [5,6] and with other oncogenes [7-10] in the
immortalization or transformation of cells. The trans-
forming activities of E6 and E7 correlate, at least in part,
with the inactivation of two cellular tumor suppressor
gene products, p53 and pRb, which regulate the processes
of cell division, differentiation, and/or death [11-14].

The in vivo properties of HR-HPV E6 and E7 oncoproteins
have been evaluated through the generation and charac-
terization of HPV transgenic mouse strains [15-17]. In the
context of the K14E6 and K14E7 transgenic mice, expres-
sion of the E6 and E7 genes of the HR-HPV type 16
(HPV16), respectively, has been directed to the basal layer
of the stratified epithelium, including the cervical epithe-
lium [15,16]. Although K14E6 and K14E7 mice develop
spontaneous tumors of the skin epithelium, no spontane-
ous reproductive tract malignancies arise [15,16], unless
the transgenic mice were treated chronically with 17β-
estradiol [18-21]. Interestingly, skin tumors derived from
E6 were mostly malignant, as opposed to the tumors from
E7 mice which were usually benign [15], suggesting that
E6 contributes differently than E7 to HPV-associated car-
cinogenesis. When treated with exogenous estrogen for 6
months, 100% of E7 transgenic mice developed cancer
throughout the reproductive tract, but E6 transgenic mice
did not. E6 oncogene synergizes with estrogen to induce
cervical cancer in only 41% of K14 E6 mice after 9
months, indicating that E6 has a weaker but detectable
oncogenic potential in the cervix compared with the E7
oncogene [22]. It is known that E6's inactivation of p53
contributes to mouse cervix transformation [22,23], but
the ability of E6 to promote cell proliferation in K14E6
mice seemed to be p53 independent, as the epidermis
from p53-knockout mice did not display an increase in
the BrdU labeling index in skin [15], as compared with
that of nontransgenic mice. In contrast, the epidermis
from K14E6/p53-null mice display epithelial hyperplasia,
suprabasal DNA synthesis or cell differentiation inhibi-
tion [15]. These indicate that in K14E6 mice, E6 activities
other than its inactivation of p53 contribute to its induc-

tion of epithelial hyperplasia. Additionally, some mutant
E6 proteins that are unable to inactivate p53 retain the
ability to transform cells [24-26] or induce several pheno-
types in vivo [27]. Conversely, other mutant E6 proteins
that retain the ability to target p53 for degradation are
unable to induce transformation [25-28]. These observa-
tions suggest that other E6-interacting proteins might con-
tribute to important phenotypes induced by E6. A
particularly intriguing group of proteins is the PDZ
domain proteins. High-risk but not low-risk HPV E6 pro-
teins associate and destabilize PDZ domain proteins [29].
In the context of mice, the ability of E6 to bind PDZ pro-
teins correlates with its ability to induce cancers both in
the context of the skin [30] and the cervix [22]. Taken
together, these findings suggest that E6 performs critical
functions in normal cervix or skin and highlight the need
to define E6-controlled transcriptional programs in these
tissues.

In the present study, we evaluated the expression profile
of 14,000 genes in K14E6 skin or cervix compared with
corresponding tissues from nontransgenic mice (FVB
mice). Overall, 676 genes were up-regulated and 1154
genes were down-regulated in the skin, while 97 genes
were up-regulated and 252 genes were down-regulated in
the cervix. Differences in gene expression patterns
between FVB and K14E6 transgenic mice indicated a role
for E6 in keratinocyte proliferation, cell adhesion, motil-
ity, apoptosis and differentiation, which might represent
early steps in E6 induced carcinogenesis. This investiga-
tion is the first to attempt a comprehensive description of
pathways altered by HPV16 E6 alone in transgenic mice.

Methods
Mice and RNA isolation
K14E6 transgenic mice have been described previously
[15]. For each microarray analysis three FVB and three
K14E6 transgenic 6-week-old virgin female mice were
employed. All mice were sacrificed and shaved with razor.
Mice were housed and treated according to the American
Association of Laboratory Animal Care (AALAC) regula-
tions. All mouse procedures were performed according to
a protocol approved by the Research Unit for Laboratory
Animal Care Committee (UPEAL-CINVESTAV-IPN, Mex-
ico; NOM-062-ZOO-1999). After sacrifice dorsal skin
(approx. 1 cm2) and lower reproductive tract (cervix and
vagina) were removed and immediately frozen in liquid
nitrogen for later RNA isolation. Collected tissues were
homogenized by mortar in liquid nitrogen, total RNA was
extracted using TRIZOL reagent (InVitrogen) and purified
using RNeasy Mini Kit (Qiagen) according to the manu-
facturer's instructions.
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Complementary RNA (cRNA) labeling and hybridization 
for microarray
The quality and size distribution of the RNA were assessed
with the RNA Nano Lab on a Chip kit (Agilent Technolo-
gies), which yielded RNA integrity numbers (RIN) from
6.5 to 9.2 with a median of 7.9. Total RNA collected from
skin or cervical tissue from three female mice of each con-
dition were pooled. Briefly, 3 μg of the total pooled RNA
was converted to first-strand cDNA using Superscript II
reverse transcriptase primed by a poly(T) oligomer. Sec-
ond strand cDNA synthesis was followed by an in vitro
transcription reaction in which biotinylated CTP and UTP
were incorporated to the generated transcripts. The cRNA
products were fragmented to 200 nucleotides or less, then,
15 μg of the fragmentation product were used to prepare
300 μl hybridization cocktail (100 mM MES, 1 M NaCl,
20 mM EDTA, 0.01% Tween-20, 0.1 mg ml-1 of HS DNA,
and 0.5 mg ml-1 acetylated bovine serum albumine). The
cocktails were heated to 95°C and hybridized in the
Mouse Genome 430A 2.0 Array (Affymetrix Inc.) for 16
hours at 45°C. After hybridization, arrays were washed at
low (6 × SSPE) and high (100 mM MES, 0.1 M NaCl)
stringency and stained with streptavidin-phycoerythrin.
Fluorescence was amplified by adding biotinylated anti-
streptavidin and an additional aliquot of streptavidin-
phycoerythrin stain. The GeneChip Scanner 3000 7G
(Affymetrix, Santa Clara CA) was used to collect fluores-
cence signal of 11 um feature size resolution after excita-
tion at 570 nm. GCOS software (Affymetrix, Santa Clara
CA) was used to obtain intensity signal and quality data
of the scanned arrays.

Statistical analysis
Each microarray experiment was repeated as technical rep-
licates for statistical robustness. Data preprocessing
included two normalization processes: quantile normali-
zation [31] was applied to technical replicates and then
Loess normalization applied to all microarrays to stand-
ardize the dynamic range of expression levels. To identify
differentially expressed genes a linear model was imple-
mented using R and the LIMMA package [32]. The micro-
array data were deposited MIAME compliant to NCBI
GEO database [GEO: GSE10702]. Two criteria were used
to select the set of relevant genes. First a set of genes with
a Log-odds ≥ 3 were selected. Then, a hierarchical search
of genes was based on Log Fold Changes.

Analysis of array data
To identify those biological processes that show differen-
tially expressed genes, we used the MAPPFinder analysis
[33] on this dataset, using a cutoff ≥ 1.7 in gene expression
for both tested tissues (see Additional file 1). For further
biological meaning of changes in gene expression, genes
examined were submitted to the visualization tool Gen-
eMAPP (see Additional file 2). This bioinformatic tool is

employed for visualizing expression data in the context of
KEGG biological pathways.

Real-time RT-PCR
Isolated RNA was controlled for quality by 2% agarose gel
separation and ethidium bromide staining. RNA was
quantified by spectrophotometry. Complementary DNA
(cDNA) was synthesized using 2 μg of total RNA. The 20
μl reverse transcription reaction consisted of 2 μl 10× RT
buffer, 0.5 mM each dNTP, 1 μM Oligo-dT primers, and 4
U Omniscript reverse transcriptase (QIAGEN, USA). The
reverse transcription reaction was incubated for 1 h at
37°C and then at 93°C for 15 min. A no-template control
was performed for each experiment, establishing the
absence of genomic contamination in the samples. For
the quantitative SYBR Green real-time PCR, 1 μl of each
RT product was used per reaction and SYBR Green reac-
tion was conducted using a QuantiTect™ SYBR Green PCR
Reagents kit (QIAGEN, USA) and the protocol provided
by the manufacturer. Optimization was performed for
each gene-specific pair of primers prior to the experiment
to confirm that 50 nM primer concentrations did not pro-
duce nonspecific primer-dimmer amplification signal in
no-template control tube. Changes in fluorescence were
recorded as the temperature was increased from 65°C to
95°C at a rate of 0.2°C/s to obtain a DNA melting curve.
The characteristic peak at the melting temperature of the
target product distinguishes it from amplification artefacts
that melt at lower temperatures in broader peaks. The
primer sequences, that were designed using Primer
Express Software, confirmed specificity of the PCR (Table
1). Each sample was tested in triplicate with quantitative
PCR and, for standardization of gene expression levels,
mRNA ratios relative to the house-keeping gene GAPDH
were calculated. We evaluated mRNA expression in a total
of 3 mice from each group.

Data analysis using 2-ΔΔCT method
Real-time PCR was performed on the corresponding
cDNA synthesized from each sample. The data were ana-
lyzed using the equation described by Livak ()[34] as fol-
lows: Amount of target = 2-ΔΔCT. We used the average Δ T
from Cervix FVB as calibrator for each gene tested. Valida-
tion of the method was performed as previously reported
[35]. Data are presented as mean ± standard deviation
(S.D.). Statistical evaluation of significant differences was
performed using the Student's t-test. Differences of P <
0.05 were considered statistically significant.

Determination of E6 isoforms
E6 RNA structures were determined by primer extension
of the RNAs followed by amplification of the cDNA prod-
ucts by PCR. The forward primer for full-length E6 was 5'-
ATG TTT CAG GAC CCA CAG GA-3', for E6* was 5'-TAC
TGC GAC GTG GAC GTG AGG TGT ATT AAC-3', and for
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Table 1: Primer sequences for quantitative RT-PCR

Gene Title Forward primer 5'-3' Reverse primer 5'-3

TNF receptor superfamily member (Fas) TTGGAAAATCAACCCCAGACA TGGCAGGCTCTCTCCTCTCTT
Baculoviral IAP repeat-containing 5 (Birc5) TCCACTGCCCTACCGAGAAC TGCTCCTCTATCGGGTTGTCA
Caspase 8 (Casp8) GGCAGGCTTCGAGCAACA CGTAGCCATTCCCAGCAGAA
Cyclin E2 (Ccne2) GCTGCCGCCTTATGTCATTT AAGGCACCATCCAGTCTACACA
Cyclin-dependent kinase 4 (Cdk4) TTTCTAAGCGGCCTGGATTTT CCAGCTTGACGGTCCCATTA
Claudin 4 (Cldn4) TCATCGGCAGCAACATCGT TCGTACATCTTGCACTGCATCTG
Gap junction membrane channel protein beta 6 (Gjb6) GCTTCATTTCGAGGCCAACT AGGTAACACAACTCGGCCACAT
Matrix metallopeptidase 11 (Mmp11) TGGAACTCAGGCCAAAAGGT GGGCAAGGCTGTGAGGTATG
Tight junction protein 2 (Tjp2) ATTCTCAAGATCAACGGCACTGT TCAACACCACAAGCTGCAGTT

Volcano Plot for skin and cervix data setFigure 1
Volcano Plot for skin and cervix data set. Volcano plot for the 14000 genes from the GeneChip Mouse Genome data. 
The x-axis is the Log2 Fold-Change value and the y-axis is Log Odds value. In each graph, every point represents an individual 
transcript. A) Volcano Plot for skin data set. The vertical lines represent 2 fold changes, both up-regulated (right side) and 
down-regulated (left side) and the horizontal lines represent a Log Odds ≥ 3. B) Volcano Plot for cervix data set. The vertical 
lines represent 2 fold changes, both up- and down-regulated and the horizontal lines represent a Log Odds ≥ 3 as the threshold 
cutoff.

A B
SkinE6 vs SkinFvB CervixE6 vs CervixFvB
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E6** was 5'-TAC TGC GAC GTG AGA TCA TCA-3'. All of
them used the same reverse primer 5'-CAG TTG TCT CTG
GTT GCA AAT C-3' and the annealing was at 59°C.

Results
In this study our major aim was to identify the gene
expression profile in skin or in cervix from K14E6 trans-
genic compared with corresponding tissues from FVB
mice. It has been shown that these tissues have different
behavior in presence of the E6 oncoprotein [21]. In order
to identify genes involved in the observed differential
phenotypes in these tissues, we performed a comprehen-
sive analysis of genome-wide expression with microar-
rays. We noticed that the number of genes differentially
expressed in both tissues was significantly different, as
shown in Figure 1. The genes on the upper left or upper
right corners of the volcano plot represent large statisti-
cally significant changes with large fold changes (Figure
1). To identify genes with statistically significant changes
we selected those genes with a Log Odds ≥ 3 and a fold
change ≥ 1.7 and ≤ -1.7 as the threshold cutoff. It was
found that a total of 1830 genes were differentially
expressed in skin from K14E6. Out those, 676 were up-
regulated and 1154 down-regulated genes. In contrast,
only 349 genes showed differential expression in cervix
from K14E6 transgenic mice, 97 up-regulated and 252

down-regulated. Showing a 5-fold difference (Figure 2).
One explanation for the different gene expression in skin
compared with cervix from K14E6 transgenic mice could
be difference in expression of the full-length E6 or E6*
and E6** isoforms in those tissues. To determine trans-
gene mRNA expression, we performed semi-quantitative
RT-PCR using PCR primers amplifying full-length E6, E6*
and E6** isoforms [36]. We did not find any significant
change in expression of these isoforms between tissues
(Data not shown). A prior study documented that similar
levels of full length E6 protein expression are expressed in
the lower female reproductive tract and the skin of K14E6
mice as is found in human cervical cancer cell lines [22].

Using significantly up and down-regulated genes, MAPP-
Finder identified the GO categories altered and we show a
representative number of these processes (Figure 3). In
addition, MAPPFinder showed that roughly 94% of genes
showing altered expression were annotated in GO. Then
genes examined were submitted to GeneMAPP in an
attempt to identify significantly dysregulated pathways
(see Additional file 2). This confirmed that genes involved
in several metabolic pathways were altered in both tissues.

One of the most affected processes in skin from K14E6
transgenic mice was the cell cycle, which shows overex-

Gene expression profile in skin and cervix from K14E6 transgenic miceFigure 2
Gene expression profile in skin and cervix from K14E6 transgenic mice. Overall, 676 genes were up-regulated, 1154 
genes were down-regulated in skin, and 97 genes were up-regulated, 252 genes were down-regulated in cervix; with a Log 
Odds ≥ 3 and a fold change ≥ 1.7.
Page 5 of 14
(page number not for citation purposes)



BMC Cancer 2008, 8:347 http://www.biomedcentral.com/1471-2407/8/347

Page 6 of 14
(page number not for citation purposes)

Gene Ontology-based biological process pathways altered in Skin and Cervix from K14E6 transgenic miceFigure 3
Gene Ontology-based biological process pathways altered in Skin and Cervix from K14E6 transgenic mice. To 
know biological process pathways involved, we imported a list of significant up and down-regulated genes for each tissue to 
MAPPFinder. This figure is meant to provide an overall view on transcript changes. A) GO biological processes ranked by z 
score. A z score near zero indicates that the number of genes meeting the criterion approximates the expected number, 
extreme scores suggest GO terms with the greatest confidence that the correlation between the expression changes of the 
genes in this grouping are not occurring by chance alone. B) GO biological processes ranked by number of genes affected. 
Note that because genes may appear multiple times within these hierarchies, the number of genes provided in this figure is rel-
ative to a certain biological process, not absolute.
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pression of genes that induced cellular proliferation like
cyclins A2, E, D2, B1, B2 and Cdk4 (Figure 4). The mini-
chromosome maintenance family (MCM) related to initi-
ation and elongation of replication forks were also up-
regulated (Figure 4). On the other hand, cervix from trans-
genic mice did not show a significant change in the
expression of these genes (Figure 4). Expression of Ccne2
(cyclin E) and Cdk4 genes was validated by real time RT-
PCR and the results agree with those of microarrays (Fig-
ure 5).

It is well known that high risk HPV16 E6 oncoprotein
inhibits apoptosis [37], thus we checked if there were
alterations in the apoptosis pathway in the tissues from
K14E6 mice. We found that skin from K14E6 mice
showed down-regulation in the expression of pro-apop-
totic genes, particularly in those related to the extrinsic
apoptotic pathway like Caspase 8 and Fas (Figure 6). We
also observed the increased expression of anti-apoptotic
genes like Birc5 (Survivin) and Hells (Figure 6). We vali-

dated that the expression of Caspase 8, Fas and Birc5
genes was altered by real time RT-PCR (Figure 5). In cervix
from transgenic mice, we could not find any gene related
to the apoptosis pathway altered in its expression.

Another pathway that was severely affected in skin of
K14E6 transgenic mice was the immune response, show-
ing down-regulation of interferon related genes like
Ifi203, Ifi202a, Irf1, and Ifit2 (Figure 7). Similar effects
were observed with the 2'-5' oligoA synthetase family
(Oas), which mediates RNA decay as part of the innate
antiviral immunity pathway, and the major histocompat-
ibility 2 complex (Figure 7). Interestingly, we also
observed alterations in immune response genes expres-
sion in cervix from K14E6 transgenic mice (Figure 8).

Additional pathways were analyzed like angiogenesis, cell
junction, cytoskeleton, keratinocyte differentiation and
epidermis development, all of which showed differential
gene expression in skin and to a lesser degree the cervix of

KEGG-Cellular Pathways integrating our expression data of cell cycle in skin and cervix from K14E6 transgenic miceFigure 4
KEGG-Cellular Pathways integrating our expression data of cell cycle in skin and cervix from K14E6 transgenic 
mice. For skin, up-regulated genes are showed in red and down-regulated genes in green. The only gene differentially 
expressed in cervix from K14E6 mice is shown by a blue arrow, cadherin 1 (Cdh1), which was down-regulated. The numbers 
represents the fold change of the gene.
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K14E6 transgenic mice compared to that of nontransgenic
mice (see Additional file 2).

Discussion
It was previously found that expression of HPV16 E6
increased cell proliferation and induced epidermal hyper-
plasia in K14E6 transgenic mice. Spontaneous skin
tumors developed in adult K14E6 mice with an incidence
of about 7% at 1 year of age [15]. These tumors were
mostly malignant, indicating that E6 alone not only is suf-
ficient to induce benign tumors but may contribute to the
development of malignancy in animals [15]. However,
expression of E6 oncoprotein induced only low-grade cer-
vical dysplasia without additional neoplastic progression
after 6-months of treatment with 17β-estradiol, in con-
trast to E7, which induced cervical cancer [21]. Only upon
extended treatment with estrogen for nine months did
K14E6 mice develop cervical cancers [22]. Due to the dif-
ferent properties of the K14E6 transgenic mice in different
tissues, we evaluated the expression profile in both the
skin and cervix of these mice compared to that of the cor-
responding tissues from FVB mice.

It is important to notice that we used young mice without
apparent lesions, so our results may reflect only the early
or direct effects of E6 on gene expression profiles in skin
or cervix. We believe that initial steps in carcinogenesis
might be crucial in cancer development. Due to the high

number of pathways affected by E6 expression, particu-
larly in skin (see Additional file 1), it is difficult to discuss
each in detail, but it is worthwhile to point out several
interesting observations that our results have provided.

Cyclins are a family of proteins that control the cell cycle
by associating with cyclin-dependent kinases (cdks). Cyc-
lin B1 appears at S phase, peaks in expression at G2/M,
and it is rapidly degraded at the end of mitosis by ubiqui-
tination and targeting to the proteasome [38]. Studies in
different human tumors and cell lines including breast,
lung, colorectal, lymphoma, leukemia, and melanoma
have detected increased levels of cyclin B1 at both protein
and mRNA [39]. In agreement with these observations, a
high differential expression of cyclin B1 was consistently
found in skin from K14E6 as compared to nontrangenic
mice, but we did not see significant modulation of cyclin
B1 or other components of the cell cycle control in cervix
from K14E6 mice. The abnormally increased cyclin B1
level previously found in human tumors has been shown
to correlate with either mutation or deletion of p53 func-
tion [40]. Thus, it is likely that the inactivation of p53
function by HPV16 E6 oncoprotein might be responsible
for cyclin B1 overexpression in skin. We also observed up-
regulation in E2F-responsive genes belonging to the MCM
family, involved in DNA replication [41], and in cyclin E,
involved in the G1-S transition [42]. Both of these genes
were found to be induced by E6 at the protein level by

Real-time RT-PCRFigure 5
Real-time RT-PCR. Validation of selected genes differentially expressed from Skin and Cervix of K14E6 transgenic mice 
(purple and red bars respectively) and nontransgenic mice (blue and white bars respectively). The results of one experiment 
are shown and are representative of two separate studies with similar results.
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immunohistochemical staining in the same mouse model
[22]. In that study MCM7 and cyclin E proteins were
found to be elevated in the epithelium lining the K14E6
mouse cervix and vagina. Forkhead box (FOX) proteins
constitute an extensive family of transcription factors,
which share homology in the winged helix DNA binding
domain [43]. Elevated FOXM1 levels have been found in
numerous human tumors [44-46], suggesting that
FOXM1 is required for cellular proliferation in human
cancer cells. In our analysis, the FOXM1 gene was found
up-regulated in skin from K14E6 as compared to non-
transgenic mice, but we did not find significant modula-
tion of Forkhead box family in cervix from K14E6 mice.
Because FOXM1 overexpression in human keratinocytes
has been suggested to contribute to cell transformation
leading to the development of basal cell cancer [47], it
seems likely that FOXM1 overexpression may contribute
to HPV-induced keratinocyte transformation and the
development of skin cancer.

Topoisomerase II (TOP2A) is a nuclear enzyme that mod-
ulates DNA topology during several metabolic processes

and is required for the segregation of daughter chromo-
somes at the end of replication [48]. In our study, TOP2A
gene was found differentially expressed in skin from
K14E6 as compared to nontrangenic mice. We did not
observe significant modulation of TOP2A gene expression
in cervix from K14E6 mice. In a previous work it has been
shown by microarray analysis in primary HPV16 and
HPV18-infected cervical cancers and normal cervical epi-
thelium similar results for genes related to cell cycle con-
trol [49]. Interestingly, in another study even the authors
found that HPV-positive head and neck cancers (HNCs)
and cervical cancers differed in their patterns of gene
expression, these tumors shared many changes compared
with HPV-negative HNCs, particularly in cell cycle-related
genes. For example, HPV-positive cancers, compared to
HPV-negative, upregulated a much larger set of cell cycle-
specific genes such cyclin E2 (G1 associated), cyclin B1
(G2 associated) and multiple MCMs [50]. An important
finding of our study is that the same group of cell cycle-
related genes are upregulated by E6 from HPV16 which
indicate that our results are consistent with data obtained
from human tissues.

KEGG-Cellular Pathways integrating our expression data of apoptosis in skin and cervix from K14E6 transgenic miceFigure 6
KEGG-Cellular Pathways integrating our expression data of apoptosis in skin and cervix from K14E6 trans-
genic mice. For skin, up-regulated genes are showed in red and down-regulated genes in green. In cervix from K14E6 trans-
genic mice no effect was observed in this pathway. The numbers represents the fold change of the gene.

Casp8

Casp9

Casp10

Birc4
Birc5Bid3

Apaf-1

DiabloCycs
Cyct

Bid

Brip3l

FasPrf1

Gzmb

Cflar

Ripk1
Fadd
Tradd

Tnfrsf1b

Cradd

Tnfrsf1
Bak1

Bad

Bcl2l2
Bcl2l1
Bcl2

Fas Ligand

Mcl1

Bax

Tnfrsf1bTnfrsf10b

Tnfrsf21

Map2k4

Map3k1

Traf1

Traf2

Traf3

Birc3

Birc2

Tnfrsf25

Tnfrsf1a

Tradd

Chuk
Ikbkb
Ikbkg

Ripk1

Nfkbib
Nfkbib

Nfkbia
Nfkb1

Rela

Nfkbib

Nfkbie

Nfkbia

Mapk10

HellsNfkb1

Rela

Tnfrsf10 Tnf

Lta

Mdm2

Trp53

Cdkn2a

Cdkn2a

Jun Cfla

Bbc3
Pmaip1

Bok

Dtfb

Casp11

Casp11

Casp1

Casp6

Casp3

Casp7

Casp2

Igf1r

Pik3r1

Akt1

Bad

Trp63
Trp73

Irf1
Irf2
Irf3

Irf4
Irf5
Irf6

Irf7

p53 Related

Prf1
Page 9 of 14
(page number not for citation purposes)



BMC Cancer 2008, 8:347 http://www.biomedcentral.com/1471-2407/8/347
Attenuated or diminished apoptosis due to inhibition of
Caspases has been implicated as an important mechanism
for the onset of tumorigenesis in several cancer types
[51,52]. Our results showed that expression of Caspase 8
is lower in skin from K14E6 as compared to FVB mice. We
also found down-regulation of Fas, suggesting an altera-
tion in the extrinsic apoptotic pathway. These results are
congruent with the differential apoptosis previously
observed by other researchers in cervical tumors [53] and
cell lines [54,55]. Therefore, alteration or defects in the
expression of Caspases and Fas might be a hallmark of
skin carcinoma, as it has been observed in several tumor
types [51].

In addition, this analysis identified genes that have been
associated with the regulation of the immune system. For
example, the IFN receptor subunit 2 (IFNAR2), that stim-
ulates transducers and activators of transcription (JAK/
Stat) signaling [56], and Stat-1, a primary regulator of the
interferon-responsive pathway, were found down-regu-
lated in skin from K14E6 transgenic mice. The IFN-α-JAK/
Stat signaling pathway is critical for host defense against
viral infection by stimulating transcription of antiviral,

antiproliferative, and antitumor genes, suggesting that
down-regulation of IFNAR2 and Stat-1 in skin from
K14E6 transgenic mice might be critical for immune eva-
sion and therefore for cancer development. It has been
reported that E6 from HPV16 binds to interferon regula-
tory factor-3 interfering with its activity [57], that could
explain why we observed down-regulation of many Inter-
feron-inducible genes such as myxovirus (influenza virus)
resistance 1 (Mx1), Oas2 and Stat-1. These results agree
with another study which used microarray analysis to
examine the effect of HPV31 genome on the transcription
of cellular genes. They found that an important set of
interferon-responsive genes were downregulated by
HPV31 [58], suggesting that different HR-HPV types share
the mechanism to evade the immune response. Addition-
ally, in cell lines evaluated by microarray analysis it was
shown that E6 or E7 from HPV16 can downregulate genes
involved in the immune response [59].

On the other hand, it has been demonstrated by others
that HPV16 E6 inhibits serum and calcium-induced dif-
ferentiation of human keratinocytes [60]. Our results
identify several of the genes that may be involved in this

KEGG-Cellular Diagrams integrating our expression data of immune response in skin from K14E6 transgenic miceFigure 7
KEGG-Cellular Diagrams integrating our expression data of immune response in skin from K14E6 transgenic 
mice. Up-regulated genes are showed in red and down-regulated genes in green. The numbers represents the fold change of 
the gene.
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process (see Additional file 2). A previous study using
microarrays showed evidence that E6 and E7 may affect
differentiation through downmodulating the transform-
ing growth factor-β (TGF-β) pathway [61]. Interestingly,
we also observed downregulation of TGF-β 2 and TGF-β
RII mRNA expression in K14E6 transgenic mice. Another
group has also shown by microarray analysis that genes
involved in keratinocyte differentiation like Small pro-
line-rich proteins family and cytokeratins can be down-
regulated by E6 oncoprotein [62]. We observed that some
of these proteins were downregulated in cervix and for
unknown reasons upregulated in skin from K14E6 mice,
perhaps related to tissue microenvironment. Neverthe-
less, both studies indicate that HPV16 modulates expres-
sion of differentiation-associated genes. In addition, it has
been observed in HPV16 E6 transfected human colon ade-
nocarcinoma cells and human lung adenocarcinoma cells
different genomic and proteomic expression patterns
[63], in agreement with our results in cervix versus skin
from K14E6 mice.

In summary, we identified important genes that are
altered at the transcriptional level by E6 in our model, in
particular the uncoupling of cell cycle regulation (cdc2,

cyclin B, cdk2 and cyclin E), down-regulation of pro-
apoptotic genes (Fas) and up-regulation of anti-apoptotic
genes (Birc5). In addition, we also observed down-regula-
tion of genes involved in the innate antiviral response
such as IFNAR2, Stat-1 and numerous interferon-stimu-
lated genes (Ifi203, Ifi202a, Irf1, Ifit2, Mx1 and OAS). All
these changes indicate that E6 could contribute to initia-
tion of carcinogenesis through over-expression of cell pro-
liferation genes and down-regulation of immune
response genes, in agreement with the results obtained in
a microarray analysis of cervical low grade lesions which
are characterized by a pro-proliferative/immunosuppres-
sive gene expression signature [64]. However, E6 is not
enough for cancer development and additional factors are
necessary in tumor progression such as estrogens, diet and
carcinogens [17,21,65,66].

We also observed differentially expressed genes from
other pathways like angiogenesis, cell junction, cytoskele-
ton, keratinocyte differentiation and epidermis develop-
ment, when skin or cervix from K14E6 transgenic mice
were compared with nontransgenic mice; however, we did
not discuss these genes in detail in this study. Further
investigation may be necessary in skin and cervix from

KEGG-Cellular Diagrams integrating our expression data of immune response in cervix from K14E6 transgenic miceFigure 8
KEGG-Cellular Diagrams integrating our expression data of immune response in cervix from K14E6 trans-
genic mice. Up-regulated genes are showed in red and down-regulated genes in green. The numbers represents the fold 
change of the gene.
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transgenic mice to understand the mechanisms by which
E6 affects these pathways.

The results reported here represent the first comprehen-
sive microarray analysis to assess the consequences of
HPV16 E6 oncoprotein alone in the normal tissue envi-
ronment from K14E6 transgenic mice.

Conclusion
Expression of the HPV16 E6 oncoprotein in our model
alters expression of genes that fell into several functional
groups providing insights into pathways by which E6
deregulate cell cycle progression, apoptosis, the host
resistance to infection and immune function, providing
new opportunities for early diagnostic markers and thera-
peutic drug targets.
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