
Have you used logic modeling in your research? It would 
not be surprising if many biologists would answer no to 
this hypothetical question. And it would not be true. In 
high school biology we already became familiar with 
cartoon diagrams that illustrate basic mechanisms of the 
molecular machinery operating inside cells. These are 
nothing else but simple logic models. If receptor and 
ligand are present, then receptor-ligand complexes form; 
if a receptor-ligand complex exists, then an enzyme gets 
activated; if the enzyme is active, then a second messen-
ger is being produced; and so on. Such chains of causality 
are the essence of logic models (Figure  1a). Arbitrary 
events and mechanisms are abstracted; relationships are 
simplified and usually involve just two possible conditions 
and three possible consequences. The presence or absence 
of one or more molecule, activity, or function, [some 
icons in the cartoon] will determine whether another one 
of them will be produced (created, up-regulated, stimu-
lated) [a ‘positive’ link] or destroyed (degraded, down-
regulated, inhibited) [a ‘negative’ link], or be unaffected 
[there is no link]. The icons and links often do not follow 
a standardized format, but when we look at such a 
cartoon diagram, we believe that we ‘understand’ how the 

system works. Because our brain is easily able to process 
these relationships, these diagrams allow us to answer 
two fundamental types of questions related to the system: 
why (are certain things happening)? What if (we make 
some changes)?

Untangling the ridiculome
But how about looking at a similar diagram that contains 
thousands of components, interconnected near and far? 
We may be able to infer the properties of certain sub-
systems, but we would not intuitively be able to predict 
overall behavior; to understand it as a whole. This is 
exactly what led to the development of formal logic-
based modeling applications in biology. Even somebody 
with little mathematics training can recognize that the 
causal relationships represented in Figure  1a could be 
encoded by the states of the individual components (the 
system variables) described in their simplest form as 
absent (logical value FALSE, or 0) or present (logical 
value TRUE, or 1), and connected by the logical operators 
AND, OR, and NOT. Formally, this representation is 
called a Boolean network, and is typically represented as 
a graph (Figure 1b). Changes in the variable values can be 
computed by trivial Boolean algebra, and for small 
systems they are typically presented as ‘truth tables’, 
which show relationships between selected inputs and 
outputs (Figure 1c). This is a mathematical formalism that 
also happens to be the foundation upon which the entire 
digital world has been built, ever since Claude Shannon 
showed more than half a century ago how to use simple 
analog switches to perform binary compu ta tions. A 
human may feel helpless when facing a huge reaction 
network, but a computer can simulate the corres ponding 
Boolean network in a fraction of a second; the state of the 
network under varying conditions and subject to arbitrary 
perturbations can be predicted and analyzed almost 
effortlessly. The algorithms and software implementations 
for this were perfected decades ago, and are routinely used 
by engineers to correctly simulate the behavior of circuits 
with enormous numbers of components.

Logic models offer a conceptually simple representation 
of biology that is easy to simulate. They are naturally 
suited to exploring large-scale biological networks where 
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causality links are being hypothesized, or sought: genome, 
transcriptome, proteome, metabolome, inter actome, 
micro biome  - the list goes on. We are witnessing an 
unprecedented increase in the amount and quality of 
data available for describing and modeling biology at the 
cellular level. Graphical representation of these data as a 
network of (putative) relationships with nodes and edges 
(Figure 1d), in its many variants, is now so common that 
it can be considered iconic [1]. As the -ome names imply, 
we expect such data to be complete collections of 
components and/or properties. The problem is that they 
are neither complete nor correct. It has been argued that 
they often do not help understanding, and have occasion-
ally been called the ‘ridiculome’. While this is obviously 
tongue-in-cheek, it does reflect some real limitations. But 
if logic models are so easy to compute, can’t they be used 

to test, correct, and refine large-scale models based on 
the existing complement of available -omics data? 
Actually they are, successfully so: they are the bread and 
butter of network inference, which aims to reverse-
engineer the relationships between intracellular compo-
nents responsible for regulating cellular function. In most 
cases we still do not know many of the interactions 
between various gene products, signaling molecules, 
meta bolites, and so on, and how they lead to a particular 
cellular phenotype. Phenotypes characterized by high-
throughput experimental measurements of state para-
meters (protein or mRNA expression levels, enzymatic 
activities, metabolite levels, and so on) can then be used 
to ‘train’ logic models that eventually will infer the 
putative network responsible for the observed behavior 
[2] (thus the ‘network inference’ designation).

Figure 1. Model representations. (a) Typical cartoon diagrams and schematic interactions (adapted from [28]). Shapes, styles and colors are 
arbitrary. (b) The zoomed-in part of the cartoon diagram in (a) translated into a logic model. Shapes and arrow styles are represented in Systems 
Biology Graphical Notation (SBGN) standard (Entity Relationship (ER) format) that provide a defined one-to-one correspondence with a logic 
formalism. Arrows correspond to activation reactions. (c) A truth table corresponding to the logic model in (b) that shows how presence (1) 
or absence (0) of molecules of the input nodes leads to presence or absence of activity in the selected molecules of interest (output nodes). 
(d) Dynamic representation of the same model in SBGN standard (Process Diagram (PD) format). It can be considered either as a logic model or as a 
reaction diagram for a kinetic time-course simulation, where every node represents concentration of a chemical species.
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Peeking under the rug
The fact that logic models are easy to compute makes 
them useful for random searches and screening (for 
example, analyzing perturbations at multiple elements of 
the network), and for processing large amounts of 
individualized data (for example, comparing proteomics 
data from tumor cells or mutants with data from their 
normal counterpart). They therefore generated a lot of 
excitement because they appear very attractive for fields 
such as drug discovery [3]. But how accurate and useful 
are they? Some may argue that the practical results have 
been somewhat disappointing, but we believe this is 
mostly a misperception created by too high expectations, 
too early. A major problem is that the simple causal links 
that are being depicted hide an underlying complexity 
that is often essential to explain real world functionality: 
so much is swept under the rug. Of course, systems 
modelers are well aware of that, and cell biology has 
forced them to go well beyond simple Boolean logic. As a 
result, several more complicated logic-derived modeling 
approaches have been developed [4] (Figure  2). Models 
can be refined by replacing the simple on/off logic with 
probabilistic functions, such as in Bayesian networks. 
These can account for more graded responses, and for 
the stochastic effects of noise and of small numbers of 
molecules, as well as better represent uncertainty in the 
model. Even more fine-grained relationships can be 
encoded by using continuous transfer functions (such as 
linear, polynomial, or Hill-type functions)  - so-called 
fuzzy logic. Arguably, any level of detail could be 
achieved by simply increasing the number of elementary 
links in a network and adjusting the mathematical 
functional form assigned to them.

Logic-derived models differ not only in the level of 
fine-graining of the functional relationships, but also in 
their ability to handle time - the dynamics of the systems. 
Boolean networks were originally designed to provide 
simple input-output relationships - that is, the steady-
state achieved under varying conditions. This is appro-
priate, for example, for analyzing traditional transcrip-
tomics or proteomics experiments. Whether we measure 
expression levels before or after some external pertur-
bation (for example, applying a stimulus or drug), or 
compare different cell populations, it is still just a collec-
tion of different steady-states. True time-course data 
were typically limited to small scale experiments, but are 
now becoming available also in high-throughput techno-
logies. Algorithms to allow logic-derived models to 
simulate dynamic systems aim to retain the simplicity of 
Boolean networks but with a fine-grained representation 
of time (Figure 2). Time discretization with synchronous 
updating is the simplest approach, where we can think of 
the system simply stepping through time from steady-
state to steady-state. At the other end of the spectrum is 

continuous time representation: algorithms were recently 
developed to infer logic-based differential equations [5], 
and then simulations become similar to those of 
traditional kinetic models.

More detail comes with the burden of increasing 
computational complexity and the risk of over-parameter-
izing: the extensions to logic models described above 
require both choosing a functional form and inclusion of 
additional parameters such as coefficients and thresholds, 
all of which are often arbitrary or at best phenomeno-
logical. Von Neumann once famously quipped that ‘With 
four parameters I can fit an elephant, and with five I can 
make him wiggle his trunk’ (in fact, this was recently 
rigorously proven to be true [6]). High throughput 
experi ments nowadays generate large amounts of data at 
such a rapid pace that we have trouble making sense of it 
all, but modelers complain that they still lack the data 
required to build sensible large-scale quantitative models. 
Having enough data to constrain the model is critical to 
avoid simulating phantoms.

Is modeling software only for the initiated?
The right choice of mathematical formalism thus depends 
on both the purpose of the model and the type, quantity, 
and quality of data at hand - and for systems of any 
complexity will most likely be a combination of multiple 
methods. This was (perhaps painfully) reinforced recently 
by the report by Karr et al. [7] of the first arguably 
successful comprehensive model of one of the simplest 
existing prokaryote species. This required a huge effort of 
software assembly, using many different modeling 
approaches and countless hours of manual data mining. 
The overall model is described in a 100+ page supple-
ment, has thousands of parameters, and was imple-
mented by using custom code development as well as 20 
third-party software tools. It certainly looks daunting to 
reproduce and expand upon this work. If we look more 
closely, though, we will find that in addition to the superb 
publication materials, there is extensive information on 
several project-related websites, ranging from interactive 
browsing of the assembled knowledgebase for the model, 
to fully packaged downloadable code that is ‘ready to run’ 
(that is, if you have access to compute clusters, Matlab, 
and more, and the expertise to configure it all). Given 
adequate computer resources, re-enacting the published 
simulations may not take more than a stubborn graduate 
student’s few sleepless nights. But to be able to build 
something similar in the context of your own data from 
other cell types, that is a different story altogether.

The gaps and uncertainties in the knowledge of 
networks are still prevalent in most cases, but custom 
-omics data are now much easier to obtain. So perhaps 
advances in logic-based modeling could help. A recent 
paper in BMC Systems Biology [8] presents an integrated 
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platform for logic-derived modeling (CellNOptR) that 
enables users to navigate seamlessly between many of the 
different formalisms discussed above, allowing for 
different levels of detail in both time and state, and also 
providing the ability to combine network inference 
(prediction of the network topology from experimental 
data) with existing curated pathway information. This 
work could also appear intimidating for the non-expert. 
CellNOptR stands for Cellular Network Optimizer R, 
and is implemented as a Bioconductor [9] package. One 
might ask whether we need to be familiar with R (a 
statistical programming language) and/or Bioconductor 
(a public collection of software tools that use R, focused 
mostly on manipulation and analysis of genomic-related 
data) in order to use CellNOptR. Maybe, maybe not. But 
you do not need to be a programmer to use highly sophis-
ticated computer software, just like you do not need to be 
an optical engineer to use a highly sophisticated confocal 
microscope. Bioinformatics-savvy users may prefer to 
invoke CellNOptR from their own R scripts, but those 
unfamiliar with such programming can simply stay with-
in the cosy confines of Cytoscape [10] (a graph/network 
visualization software that is very popular among biolo-
gists) where they can install a simple plugin (CytoCopteR, 
distributed with the CellNOptR package) that provides 
all functionality in a user-friendly graphical interface 

form. Of course, we would expect a learning curve for 
new users. Microscope or software, one needs to learn 
how to use it, and, perhaps more importantly, to learn 
what one can expect to accomplish by using it in terms of 
both capabilities and limitations.

A collection of logic-derived model simulators imple-
menting several algorithms in a single free open-source 
package would normally be regarded as an incremental 
advance. But here the whole is much larger than the sum 
of its parts. As mentioned before, the ease of simulating 
logical models makes them adept for the difficult task of 
reverse engineering. Indeed, CellNOptR was designed 
primarily to be used as a network inference tool, but 
using a novel approach (Figure 3), that goes beyond the 
usual attempt to reconstruct causal links from a 
particular experimental dataset with little or no prior 
knowledge of the system. In other words, traditional 
inference methods create a purely data-derived network 
and do not take advantage of existing knowledge about 
molecular interactions from different sources. Nowadays, 
however, such prior knowledge is often abundant. Public 
pathway databases store information about an enormous 
number of entities usable for modeling, and about the 
interactions among them. To wit, Pathway Commons 
[11], an aggregator of biological databases, currently 
stores more than 442,000 interactions among more than 

Figure 2. Logic models. Models can be encoded using simple Boolean logic (nodes may accept only true or false value), Bayesian probability 
(node values represent likelihood of events), or fuzzy logic (nodes have ‘variable degrees of truth’). Depending on the availability of time-resolved 
data, these can be simulated to describe the system at steady state (one or a few selected time points), or dynamically (time course as a discrete 
sequence or as a continuous function). Solid red lines show methods implemented by the CellNOptR toolkit. ODE, ordinary differential equation.
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86,000 physical entities involved in 1,668 pathways across 
414 organisms; the BioCyc collection of pathway/genome 
databases [12] describes the genome and metabolic 
pathways of 1,962 distinct organisms; and there are other 

such collections. CellNOptR makes use of such infor-
mation, and has been named a network optimizer for a 
reason. It takes two required inputs: first, components/
interactions from a ‘known’ biological network containing 

Figure 3. Data to model pipeline. The data world (public and private pathway databases/interactomes and –omics data sets supplementing 
existing models and kinetics data) is used to inform the model building process via several processes: building of a prior knowledge network, of a 
data-derived (inferred) network, and their refinement and training to data (color coding and terminology are described in [8]). Red ovals represent 
components of the CellNOptR toolkit and orange ovals represent other representative computational tools outside the logic model formalism. 
Simulation of models generated from existing data sets can be performed via different methods, not limited to ordinary differential equation 
or logic models. Data not used initially (such as spatial features, information about molecular domains, or wider parameter range), and the new 
simulation results can be used iteratively to refine model building process. Potential connections between different modeling and simulation 
approaches (currently only possible via ad-hoc implementations) are shown as dashed lines.
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the molecules/complexes of interest (the prior knowledge 
network - a.k.a. PKN), and second, an actual (usually 
experi mental) dataset; the PKN will then be adjusted 
such that a simulated logic-derived model will best match 
the data at hand. A lot of information has been already 
assembled and curated into what we call canonical prior 
knowledge (well characterized fully referenced data 
stored in electronic exchange formats such as BioPAX 
[13]), which can be used as a starting point for models. 
The sheer scope of such information makes the use of it 
in its entirety as a PKN very difficult. Serious pre-
processing by specialized tools (such as the BiNoM [14] 
or CytoCopteR plugins for Cytoscape) is needed, and 
ideally these have to be integrated with both databases 
and modeling tools.

The holy grail of cellular models
Why is this a powerful approach? Because it can greatly 
help to understand the system being modeled. We do not 
wish to engage here in discussing the meaning of 
‘understanding’ and of the usefulness of models; these 
have been frequent topics in biological discourse in 
recent years. We will rather illustrate by a hypothetical 
example, in very broad and practical terms (the interested 
reader is referred to [8] and references 11, 14, 19, 35, 40, 
44 cited therein for detailed descriptions of real world 
examples and algorithm testing/validation). Suppose we 
want to investigate how signaling and gene regulation via 
the epidermal growth factor and tumor necrosis factor-α 
receptors may be altered in human hepatocarcinoma 
cells. We would select information available in pathway 
databases and a relevant transcriptomics and/or proteo-
mics experimental dataset (typically readouts after various 
perturbations), and then put CellNOptR to work. Some 
likely results of this exercise in logic modeling could be 
the predictions that, in contrast to other cells, in these 
cancer cells the tumor necrosis factor-α receptor does 
not activate phosphoinositide 3-kinase, both Map3K1 
and Map3K7 are required to activate MKK4, an inhibi-
tory link from ERK to SOS-1 may be present, and so on. 
This context-specific model refinement provides concrete 
hypotheses: maybe a putative interaction shown in a 
yeast two-hybrid experiment does not occur in vivo, or 
maybe the transformed cell line phenotype is simply 
different from the canonical pathway. The latter may 
prove to be critical information for identifying the 
mecha nisms that cause the hepatocarcinoma cells to 
respond to stimuli differently than their normal liver cell 
counterparts. If the experimental data have detailed 
time-course readouts, the differences obtained when 
fitting via the different algorithms could lead to additional 
conclusions, such as the Ras activation of Map3K1 
exhibits hypersensitivity, whereas the branch linking 
Map3K7 to NFκB inhibition is linear and robust to 

perturbations - perhaps critical information for identify-
ing potential drug targets. The mechanistic insights and 
predictive power are much higher than what can be 
obtained from purely data-driven models or simulating 
purely pathway-derived models.

How does this relate to large multi-scale models? 
Covert and colleagues [7] were able to develop a whole-
cell model of the bacterium Mycoplasma genitalium that 
accounts for all molecular components and their inter-
actions, from electrolytes and metabolites to proteins 
and ribosome assemblies. This highly complex model was 
constructed by coordinating sub-models for each of 28 
classes of cellular processes, a majority of which were 
mathematically represented by logic-derived models of 
some sort (see chapter  3 of supplement  S1 in [7] for 
details). The software and methods developed by Saez-
Rodrigues and colleagues [8] make a strong statement 
about the power of sophisticated logic-derived models 
for systems such as mammalian cells, where large parts of 
the molecular networks are not well understood, in-
complete and with unknown parameters. But the bottom 
panel in Figure 2 of [8] provides for both a reality-check 
of current capabilities and a hint of things to come. 
Certain behaviors of the studied system (for example, the 
NFκB oscillations) can be captured only by using the 
logic-derived differential equations (a method that is 
considerably more computationally expensive, and which 
involves many additional arbitrary parameters). This may 
come as no surprise. Practitioners of detailed, quanti-
tative, validated models have preached for a long time the 
importance of non-linear dynamics of intracellular 
molecular interactions, especially in signaling networks, 
but often also in metabolic or gene regulatory networks 
(in fact, these classifications of networks are increasingly 
blurred nowadays). Detailed studies have shown that 
parts of these networks can act as modules with distinct 
dynamical features (threshold, hysteresis, oscillatory 
instability, switch-like instability, and so on) [15]. Such 
emergent properties may be due not only to network 
topology, but to the detailed kinetic rate laws and quanti-
tative parameters. To complicate matters further, 
impedance effects sometimes change individual module 
behavior when multiple modules are connected to each 
other.

In fact, much more is swept under the rug than we have 
alluded to so far. Even the simple cartoon diagram shown 
in Figure 1a embodies more information than the simple 
causal links captured by the logic models shown in 
Figure  1b. Multiple phosphosites can create a combina-
torial complexity of regulatory actions, and difficulties in 
mapping functional states to measured observable 
quantities. Compartments, scaffolds, and diffusion create 
spatial inhomogeneities and microdomains, which have 
critical functionality in many eukaryotic cells (often also 
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in prokaryotes) [16]. And to top it all off, there has been 
increasing evidence that parts of the cellular machinery 
employ fleeting, non-stoichiometric, pleiomorphic assem-
blies of molecules to carry out vital processes [17]. Many 
novel methods and algorithms have been developed in 
recent years by the ‘bottom-up’ modelers and experi-
mentalists to tackle these problems: rule-based [18] and 
network-free models [19], spatially resolved models with 
continuous representations (partial differential equations-
based) [20] or with discrete representations (particle-
based stochastics) [21], as well as refinement of methods 
long used in mathematical biology, such as agent-based 
simulation methods and constraint-based models. New 
theoretical methods and software applications continu-
ously appear in different areas related to modeling, 
ranging from network-based approaches for predicting 
missing pathway interactions [22] to multi-level rule-
based modeling [23].

Does this detract from our praise of the advances in 
logic-derived models discussed above? No. To the 
contrary, this is why we are really excited. Let us return to 
those logic-derived ordinary differential equations (ODEs 
and how they (can) relate to the other side of the field. Of 
course, they are phenomenological constructs of what-
ever arbitrary mathematical form is being provided (in 
this case Hill-type equations, which can capture a variety 
of common non-linear relationships with only two para-
meters). But such mathematical approximations are 
sometimes the starting point for discovering the under-
lying mechanism. In what is arguably one of the most 
influential modeling works related to biology, almost 
exactly 100 years ago Leonor Michaelis and Maud Menten 
used a phenomenological equation to fit the experimental 
measurements of the initial velocity of the invertase-
catalyzed reaction (at time zero, when no product has 
formed yet, the reaction can be simplified and modeled 
as being irreversible). Based on that approximation, they 
posited that the enzyme activity could be explained by 
mass-action kinetics involving an intermediary reaction 
complex - the fundamental mechanism of enzymatic 
catalysis that was confirmed three decades later [24]. The 
fact that explaining certain qualitative characteristics 
requires the ODE-based formalism is the perfect starting 
point for directing new detailed investigations of 
potential mechanistic hypotheses.

Moreover, if we can modify a logic-derived model and 
end up with a differential equations-based model, why 
not jump over the fence and use what is available in the 
world of kinetic models? For starters, much more 
powerful optimization algorithms and tools have been 
developed in that domain [25]. Taking advantage of these 
would be trivial if models could be exported into a 
community standard format such as Systems Biology 
Markup Language (SBML) [26]. And if support for this 

exchange format were implemented in reverse, too, one 
could import pre-existing detailed kinetic models into 
software that deals with logic formalism as just another 
form of prior knowledge for those interactions where 
such information already exists (for reference, as of this 
writing, the Biomodels database makes available 154,456 
kinetic relationships between 133,559 molecular species 
in the curated branch).

It sounds trite to say that we need to use multiple 
approaches and tools in order to build truly complete and 
accurate cellular models. We are getting closer not only 
to integrating multiple logic-based formalisms easily, but 
also to crossing over into kinetic, spatial, rule-based 
models, and more. And the experimental data required 
for building all these different types of computational 
models at different scales and levels of detail will have to 
come from both ‘small science’ and ‘big science’ [27].
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