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1. Introduction

There is a growing body of research supporting the idea that

a plethora of health benefits can result from resistance training

using a low volume, high-effort approach (e.g., increased met-

abolic rate and bone mineral density, a reduction in blood pres-

sure, and improved muscle quality and insulin sensitivity,

among others1,2). Further, muscular strength and muscle

mass—primary goals and benefits of participation in resistance

training—are independently strong predictors of longevity and

quality of life.3,4 Thus, many have sought to identify how the

manipulation of resistance training variables might lead to

“optimal” adaptations in such outcomes, as evidenced by

repeated attempts over recent decades to review the literature

and provide consensus statements on this topic.5�10 One vari-

able that is often hotly debated within resistance training is

training to failure. The present opinion piece presents a narra-

tive based upon 2 recent systematic reviews and meta-analyses

that ask, and propose to answer, the question: “To optimize

adaptations, should I train to momentary failure or not?”11,12

For this piece, momentary failure is defined as the point

trainees reach where “despite attempting to do so they cannot

complete the concentric portion of their current repetition

without deviation from the prescribed form of the exercise.”13

Furthermore, we have termed this momentary failure rather

than muscular failure herein because there is no current con-

sensus on where the lack of continued ability to carry on with

the task despite attempts to do so arises (e.g., centrally, at a

neural level, or peripherally, at a motor-neuron endplate or

muscular level).
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2. An argument for training to failure

A primary benefit of performing resistance training to

momentary failure is that it creates parity within and between

groups when considering other variables.14 Dankel et al.,14 for

example, suggest that exercise prescription based upon per-

forming a given number of repetitions at a given load for a

given number of sets (e.g., 3 sets of 10 repetitions at 80%

1-repetition maximum), does not allow for the large individual

variability relating to effort and fatigue. Indeed, a large vari-

ance in the number of repetitions possible at given relative

loads is well established.15�17 More recently, 2 reviews have

confronted the accepted wisdom in strength training—that of

the repetition-maximum or strength-endurance continuum—

suggesting instead that adaptations are not load specific, but

rather a range of loads can produce similar adaptations where

exercise is performed to momentary failure.18,19

With this in mind, we know training to momentary failure is

sufficient to induce increases in muscle size and strength, but

we are still unclear as to whether it is necessary. The argument

for training to momentary failure is underpinned by the size

principle20�22 and maximizing motor unit and muscle fiber

recruitment.23 Assuming that motor-unit recruitment is an

important stimulus to adaptation, as this model does, training

not to momentary failure might still be efficacious if a load is

heavy enough and/or if enough repetitions are completed

(either in a single set or across multiple sets) to maximize

recruitment and stimulate adaptation.24 In this sense, training

not to failure might be equally efficacious if the intensity of

effort is sufficiently high to be “close enough” to training to

muscular failure. Concerning volume of training, De Souza

et al.25 suggested that there is some “adaptation threshold”

based upon the intensity of effort, and that higher intensity of

effort training merely crosses this threshold with lesser volume

compared to lower intensity of effort training, which relies on
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cumulative fatigue to allow for the threshold to be crossed at a

later stage in training (i.e., with accumulation of volume).

3. A dose�response relationship

Both arguments assume that there is some continuous dose-

response relationship between proximity to failure and the adap-

tations produced (though notably, De Souza et al.25 posit some

step function to this relationship). However, most empirical stud-

ies exploring our question have been designed to consider fail-

ure/not failure in a binary, dichotomous fashion (see studies

recently reviewed by Grgic et al.11 and Vieira et al.12). Whether

this is due to the lack of formal representation of theories/mod-

els for how proximity to failure might influence adaptation to

resistance training is not clear. Nevertheless, such study designs

as these seem unlikely to reveal insights into the dose-response

nature of proximity to failure. As such, we are left with general

competing claims regarding whether one should or should not

train to momentary failure to optimize outcomes.

First, in comparing training to failure versus not to failure,

authors reported small to moderate effect sizes (ESs) for optimiz-

ing hypertrophic response (ES = 0.22 (based on Cohen’s d11) and

ES = 0.75 (reported as standard mean differences but without

clarity of the denominator used to calculate these values12)) as

compared to strength adaptations (ES =�0.09 and

ES =�0.08).11,12 It is worth highlighting that increases in

strength are not synonymous with increases in muscle size.26 Fur-

thermore, strength adaptations appear to be easier to attain com-

pared to increases in muscle size, possibly based on neural

adaptations. This is evidenced by studies showing: (a) much

larger ESs for increases in strength compared to hypertrophy,27

(b) studies showing contralateral strength adaptations,28 (c) a

potentially lesser stimulus for equivalent strength increases com-

pared to hypertrophy (e.g., single sets seem to produce similar

strength increases to multiple set training, whereas multiple sets

seem to produce greater hypertrophic adaptations compared to

single sets29), and (d) that strength increases precede muscle size

increases due to neural adaptations and development of the motor

schema.30 In this sense, it might be that increasing strength

requires a lesser stimulus and thus training at a lesser intensity of

effort (e.g., not to failure) might produce equivocal adaptations

compared to training to failure, whereas hypertrophy requires a

greater stimulus and thus requires a greater intensity of effort.

Second, Grgic et al.11 reported similar ESs but a tighter and

positive 95% confidence interval (95%CI) when comparing

trained to untrained participants for hypertrophy: trained

ES = 0.15, (95%CI: 0.03�0.26), untrained ES = 0.23 (95%CI:

�0.25 to 0.71). In practice, this makes logical sense if we

reasonably assume that someone naı̈ve to resistance training

will likely make adaptations in response to even a modest

stimulus since their threshold for adaptation is low.30 In

addition, another recent meta-analysis of 119 studies27

reported ESs of 1.43 for strength and 0.54 (reported standard-

ized mean differences corrected by the bias; Hedges’ g)for

muscle mass for resistance training interventions when com-

pared to non-training control conditions in previously

untrained people, which is to say, resistance training compared
to doing nothing.27 However, our re-analysis of 111 of the

studies from which we could extract data using multilevel

modelling with robust variance estimation has produced ESs

of 0.88 (95%CI: 0.80�0.98) and 0.37 (95%CI: 0.32�0.43)

for strength and hypertrophy, respectively. It seems justifiable

to assume that any given comparison between 2 reasonably

ecologically valid resistance training interventions (such as

training to failure or not) would be unlikely to exhibit a

between-treatment comparative effect which exceeds that seen

when comparing intervention to no intervention.

Third, the binary operationalization of training to failure or

not does not accurately represent the dose-response relation-

ship from intensity of effort. While training to failure might be

the operationalization of an effort of 100%, training not to fail-

ure as an operationalization implies effort that approaches but

does not reach 100%. Indeed, the preferred terminology in the

literature has often been “volitional fatigue” or “volitional fail-

ure”; all we can really know as third-party observers is that a

person has ceased attempting the exercise when we observe

that they have done so. However, we cannot know whether

they chose to stop or could not continue. Indeed, in context it

is perhaps useful to recognize the complexity for first- and

third- person (i.e., internal and observational experiences), as

well as subjective and objective assessment. Hence, even

when someone perceives they have reached momentary fail-

ure, they might be physically capable of continuing. Research

considering even a well-trained person’s ability to predict

proximity to momentary failure has repeatedly shown under-

estimation.31�33 As such, recommendations that a person train

“not to failure” are limited, firstly, by a lack of objective and

quantifiable effort level <100%, and secondly, by a person’s

ability to predict proximity to failure.

4. Re-phrasing the question with models

If the evidence suggests that resistance training to momen-

tary failure is sufficient, though not necessary, for adaptations

in strength and hypertrophy, then we should resist asking the

binary question, “To optimize adaptations, should I train to

momentary failure or not?” Rather, it might be better to

rephrase the question as, “How close to momentary failure

should I train to optimize adaptations?” Indeed, as others have,

we propose that a continuous relationship exists with intensity

of effort (operationalized as proximity to failure) and adapta-

tions. By way of example, we consider 5 simple models that

could be plausible candidates. These models are presented

herein based on arbitrary but hypothetical potential. That is to

say, we have chosen some models that might be credible, but

this is not an exhaustive list; adaptations might follow a linear

model, a threshold-step function model, a linear-log model, a

quadratic model, a sigmoid model, or a linear plateau (Fig. 1).

However, current studies that take only a single operationaliza-

tion of “not to failure” (e.g., in the figure we show arbitrary

effort values of 50%, 70%, and 90%) are likely to yield differ-

ent conclusions depending on the real nature of that dose-

response relationship—something we do not know but can

posit and then test with appropriately designed studies. The



Fig. 1. Examples of possible candidate models of dose-response. Vertical dashed lines are 50% (red), 70% (green), and 90% (blue) of proximity to failure. The

simulated models are shown with n = 100 example participants. Each has been parameterized such that the standardized mean difference between 0% (i.e., non-

training control) and 100% (i.e., momentary failure) is »0.9 to reflect realistic magnitude of expected effects.
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current body of literature has not attempted to identify this

dose-response relationship, instead focusing mostly on com-

parisons between exercising to momentary failure and not to

momentary failure. However, based on the results of our

study,24 and on the similarity of our findings to those of other

research, we propose that these studies have ultimately com-

pared groups that are training at a similar level of effort.

With this in mind, it seems unwise to provide recommenda-

tions to train not to momentary failure, especially since people

are poor at gauging proximity to momentary failure. Since not

reaching failure exists along a spectrum, we might instead

encourage people to perform resistance exercise to as high an

effort as they feel comfortable doing while maintaining good

technique. This, in turn, avoids the limitations of prescribing

submaximal effort levels based on load/volume/repetitions. A

person following the traditional prescription likely needs to

make continual increases in the load used and/or the number of

sets performed. In practice, this might become difficult where a

person is unable to continually add weight to exercises (some-

thing that has been seen recently with gym closures due to the

severe acute respiratory syndrome coronavirus 2 pandemic34).

With the above in mind, it is our opinion that, given the aim

of informing exercise prescription and guidance, researchers

should avoid considering continuous variables in a binary fash-

ion (e.g., training to momentary failure or not). Instead, a prag-

matic and effective approach given current evidence would be

to encourage people to perform resistance exercise to as high an

effort as they feel comfortable, while maintaining good tech-

nique. At the very least, there is little evidence to suggest doing

so would be meaningfully detrimental to outcomes. We should

remember that there exists overwhelmingly poor participation

and adherence to resistance training despite the aforementioned

health benefits.35,36 The most commonly cited barriers appear to

be time constraints and perceived complexity.37,38 If resistance
training recommendations can be more time-efficient (e.g., if

performing resistance training to a high degree of effort can

diminish the need for multiple/additional sets of an exercise)

and reduce the complexity of performing a given number of rep-

etitions for a given number of sets with a given load, then it is

our opinion that a lower volume, higher effort approach should

be encouraged.
5. Conclusion

The present piece discusses limitations of the current research

on the efficacy of resistance training with respect to the question

of proximity to failure, and it offers effective and practicable

resistance training recommendations. While laboratory-based

research suggests few discernible benefits from doing so, it is our

opinion that practical recommendations should encourage people

to perform resistance training to momentary failure or as high an

effort as they feel comfortable. This might permit trainees to use

a more time-efficient, low-volume approach and, in turn, serve to

enhance participation and adherence to resistance training. Fur-

thermore, if a trainee is less focused on performing a given num-

ber of repetitions and more focused on performing as many as

possible, then the increases in repetitions as they continue are

indicative of strength increases, thus eliminating the need for

maximal strength testing. This guidance allows the freedom to

prescribe exercise based on a more time-efficient, effort-based

paradigm as opposed to on load/volume/repetitions, as has typi-

cally been suggested. This aligns with the work of Fisher et al.18

and Schoenfeld et al.,19 who have shown that, when training is

performed to momentary failure, a range of loads and repetitions

can be used to achieve a number of desirable adaptations, includ-

ing muscular strength, local muscular endurance, and muscle

hypertrophy, and more importantly, an array of health benefits.
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