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Abstract: BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very
weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples
Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic
properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The
analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites
of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions
does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe
and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the
occupation site of non-magnetically active Zn2+.

Keywords: magnetic properties; XAFS; local structure; sol-gel method

1. Introduction

BiFeO3 (BFO) is considered a prototype multiferroic material and is probably the most
studied multiferroic material as it is the most promising candidate for realizing multiferroic
devices [1,2]. However, BFO has some inherent problems, such as weak magnetism, a high
leakage current, lower magnetoelectric coupling coefficients.

The magnetic ordering of BFO at room temperature was proposed by Sosnowska [3],
and later confirmed to be an antiferromagnetic ordering which is modulated with a period
of 62 nm [4,5]. To solve the problem of weak magnetism, several attempts have been
made by suitable modifications at the Bi and/or Fe sites substitution or fabrication of
composites [6–9]. The weak magnetic characteristics of BFO are attributed to some fac-
tors, such as spiral spin structure, orientation of magnetic moments perpendicular to the
rhombohedral axis and magnetic moment canting [10]. Substitution at Bi sites by rare earth
ions releases the latent magnetization resulting in improvement of magnetic properties,
which is attributed to structural phase transition [11–13]. Transition metal element cobalt
has been used to dope into the Fe-site of BFO to enhance ferromagnetism, and the origin of
the enhancement of the saturated magnetization is related to the occupation of the Bi site
of crystal lattice [14–16].

At present, the study of magnetic properties for non-magnetic ions doped-BFO is
scarce. Wei et al. [17] argued that the replacement of Fe3+ by Zr4+ locally breaks the
antiferromagnetic superexchange, allowing a macroscopic magnetization contribution in
BiFe0.9Zr0.1O3. The co-doping of BFO with nomagnetic Y and Zr ions reduces leakage
current and induces ferromagnetic properties [18]. The introduction of non-magnetic Sn
into BFO thin film results in the weakness of magnetism [19]. Zn ion, as a 3d transitional
metal ion with no spin moment, has been studied in the magnetic property of Zn-doped
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BFO. For BiFe0.95Zn0.05O3 sample, due to the intervention of Zn atoms in the Fe atom chains,
the antiferromagnetic spin chains of Fe ions will be broken, and the paramagnetic properties
will be enhanced [20]. BiFe1-xZnxO3 (x = 0.1–0.2) samples exhibit a weak ferrimagnetic
nature at 300 K and superparamagnetic nature at 5 K [21]. First-principles investigation on
magnetic properties of Cu and Zn doped BFO that non-magnetic Cu and Zn doping leads
to the diversity and complexity of magnetic properties [22].

In this paper, we will use the X-ray Absorption Fine Structure (XAFS) technique to
research the local structure and magnetic properties of the samples in which the non-
magnetically active Zn2+ ions and Cu2+ ions are doped into Fe-sites of BFO.

2. Experiments

Polycrystalline samples Bi(Fe0.95Cu0.05)O3 (BFC) and BiFe0.95(Zn0.025Cu0.025)O3 (BFZC)
with nominal doping ratio were prepared by the sol-gel method using the raw materials
of Bi2O3, Zn(CHOOCH)2, Cu(CHOOCH)2, and Fe(NO3)3 taken in desired cation ratios.
Tartaric acid (the amount of tartaric acid is equal to the total metallic ions in the precursor
solutions) was added as a chelating agent. To obtain gel state, the solution was mixed
thoroughly using the magnetic stirrer and baked at 80 ◦C for 24 h. The green bodies were
then pre-sintered at 250 ◦C. After that, the pre-sintered powder was annealed at 600 ◦C for
2 h in air. Finally, the samples were slowly cooled down to room temperature.

The crystal structures of the samples were examined by X-ray diffraction (XRD)
(Rigaku Smartlab, Tokyo, Japan) patterns with Cu-Kα radiation (λ = 1.5406 Å). Magnetic
measurements were performed with a physical property measurement system (PPMS-9,
Quantum Design, San Diego, CA, USA). Fe-K, Cu-K, and Bi-L3 edge XAFS data were collected
at the beamline (1W1B) of Beijing Synchrotron Radiation Facility—(BSRF), Beijing, China.

3. Results and Discussions

Figure 1 shows the XRD patterns of all the samples. It can be seen that all the samples
are mainly in single phase. According to the positions of the Bragg reflections, all these
samples belong to a rhombohedral structure with group R3c. A small amount of secondary
phases was observed in BFC and BFZC. According to the Rietveld refinement, the secondary
phases were indexed into Bi2Fe4O9 [23]. The percentage of it is 0.96% and 3.94% for BFC
and BFZC, respectively. The lattice constants are listed in Table 1.
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Figure 2. The magnetic hysteresis loop of the samples at 300 K. (a) BFC, (b) BFZC. 
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Table 1. The lattice constants a, c, and relevant bond lengths R(Bi-O) from XRD and r(Bi-O) from XAFS.

BFO BFC BFZC

a(Å) 5.58092 ± 0.00018 5.58143 ± 0.00026 5.58602 ± 0.0007

c(Å) 13.87368 ± 0.00084 13.86918 ± 0.00128 13.88424 ± 0.00035

R(Bi-O1) (Å) 1.92675 ± 0.00006 1.95260 ± 0.00008 2.01782 ± 0.00002

r(Bi-O) (Å) 1.94194 ± 0.02 1.95234 ± 0.02 1.97262 ± 0.02

A comparison between the magnetic hysteresis loop of BFC and of BFZC measured at
300 K is shown in Figure 2. BFC exhibits a near linear M-H relationship, which is similar
to that of BFO, as shown in Figure 2a, based on the unsaturated magnetization curves in
the fields up to 60 kOe. In Figure 2b, the magnetic hysteresis curve of the sample BFZC is
nearly similar to that of BFC, but the former shows a tiny “S”-shape in the range of low
magnetic field. It indicates the sample BFZC presents antiferromagnetism, along with very
weak ferromagnetic characteristics.
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The magnetic hysteresis loop of BFZC at 10 K is plotted in Figure 3a. The magnetic
property of the sample is evidently improved compared with that of BFO. The ferromag-
netic characteristics at low temperatures are more obvious than those at room temperature.
A well-developed M-H loop together with a small but nonzero remnant magnetization can
be observed at low temperature, as shown in Figure 3b.
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Figure 3. (a) The magnetic hysteresis loop of BFZC at 10 K. (b) Enlarged M-H curve at 10 K. (c) ZFC
curves under a field of 5 kOe and FC curve of the sample cooled under a magnetic field of 5 kOe.

To understand the origin of the observed ferromagnetism in the BFZC sample at low
temperatures, zero field cooled (ZFC) and field cooled (FC) temperature dependent magne-
tization curves were measured under 5 kOe from 10–300 K, as shown in Figure 3c. There is
no divergence between FC and ZFC magnetization curves, which indicates conventional
spin glass behavior does not exist in the BFZC sample.
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The X-ray absorption near edge structure (XANES) spectra of Fe K-edge for the BFO
and BFZC samples are plotted in Figure 4a. It can be seen that the observed spectra of both
compounds are very similar. Each spectrum includes a pre-edge peak A, a shoulder peak B,
and main peak C, which demonstrates that Zn2+, Cu2+ co-doping has a weak influence on
the microscopic local structure around the Fe atoms. The absorption energy position does
not shift, which suggests that the valence state of Fe ions does not change after Zn and Cu
ions co-doping. The pre-edge feature A of Fe K-edge denotes the electronic excitation of Fe
from the core state (1s) to an unoccupied orbital (3d), whereas peak C corresponds to the
1s-4d dipole-allowed transition. As a shoulder peak, peak B is caused by ligand-to-metal
charge transfer process in which the oxygen 2p electron partially transfers to the Fe 3d
orbital. It is worth noting that the peak intensity of the peaks A weakly increases and
that of the peak C slightly decreases due to (Zn, Cu)-co-doping, as shown in the insets
of Figure 4a. This unobvious converting of the relative peak intensity of peak A and C
indicates that a weak structure distortion induces the 3d-4p orbital hybridization [24]. This
weak distortion of structure is insufficient to cause local atomic structure greatly changing.

Figure 4b exhibits the Fourier transformed curves of BFO and BFZC obtained by Fe-K
and Cu-K edge XAFS spectra. However, compared to the actual interatomic distance, the
peak position will shift approximately 0.05 nm shorter because no phase-shift correction
is considered for Fourier transformation [25]. The main peaks located at 0.147 nm are
assigned to the Fe-O bond for BFO a BFZC, which is the first neighbor coordination shell
peak. It can give the information of FeO6 octahedron. Compared to the main peak of
BFO, when Zn and Cu ions are doped, the position and intensity of Fe-O peak for BFZC
hardly change. It indicates that the doping by both Zn and Cu ions does not affect the
local structure of central Fe atom in this system [26]. This result is in good agreement
with that of Fe K-edge XANES spectra. It can be seen that the shape of radial distribution
function curve of Cu K-edge is almost identical to that of Fe K-edge, which illustrates that
the Cu ions occupy Fe-sites in this sample. Comparing the Fourier transform of Fe and Cu
K-edge XAFS data of BFZC sample, it is noteworthy that the intensity and shape of the
first coordination shell peak do not change significantly, but the second coordination shell
peak presents a clear change. It exhibits that Cu ion substitution mainly affects the second
coordination shell.

The Bi L3-edge EXAFS spectra of the BFZC sample show an analogous pattern to that
of BFO sample, as shown in Figure 4c, which substantiates the fact that doping by Cu and
Zn ions has no or very little impact on the local structure of Bi atoms.
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From the analysis of the magnetic properties of the samples, we can conclude that the
magnetic properties of Cu-doped BFO is not enhanced, similar to that of BFO, although
Cu2+ ions possess spin moment. When non-magnetic transition metal Zn ion is doped into
BFC, a larger magnetic character of the sample is exhibited.
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It is known that the magnetic property of BFO is associated with the spins of ions at
Fe-sites. The magnetic ordering of this series of samples based on parent BFO is essentially
G-type antiferromagnetic with cycloidal spin magnetic ordering [3,8]. The magnetic mo-
ments of the Fe cations produce antiparallel alignment through Fe-O-Fe superexchange
interactions, as shown in Figure 5a. The analysis of EXAFS data has shown that the Cu
atoms well occupy the sites of the Fe atoms. However, Cu2+ has a weaker magnetic moment
compared to Fe3+ ion due to the electronic configuration of the Cu2+. The number of the
incorporated Cu2+ is limited, thus the magnetic property of the BFC sample is not strong,
as shown in Figure 5b. Further doping by non-magnetic transition metal ions (Zn2+) at
Fe sites gives rise to a loss of one of the spin moments in the magnetic Fe ion spin chain,
leading to a transformation of the magnetic moment around substitution sites in the whole
spin chain from originally antiparallel to parallel or nearly parallel, as shown in Figure 5c,
i.e., a ferromagnetic character forms. Consequently, the magnetic property of BFZC sample
is enhanced when the non-magnetically active Zn2+ ions are further doped.
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In addition to the effect of non-magnetic Zn ions and weakly magnetic Cu ions on
the spin arrangement of antiferromagnetic Fe, other factors may also affect the magnetic
properties. (1) Particle size. The average particle size of polycrystalline BFO prepared by
the sol-gel method is usually in dozens of nanometers, which is lower than the periodicity
of a spin cycloid (62 nm) [27]. The destruction of the periodicity of the spin cycloid enhances
the magnetization [28]. (2) The presence of magnetic impurity phase. From XRD, there is
an amount of Bi2Fe4O9 phase detected, especially in BFZC samples, which will improve the
macro-magnetism [28]. (3) Crystal structural transition and local structural distortion. As
reported, the spiral spin modulation will be destroyed by the structural transition and be
suppressed by the larger distortion of the lattice [29]. From the analysis of XRD and XAFS,
there is no change of crystal structure and local lattice distortion by doping. Therefore, this
factor can be excluded.

4. Conclusions

In summary, BFO, BFC, and BFZC samples have been prepared by the sol-gel method.
XRD patterns demonstrate that all samples present well single phase. The magnetic
property of BFZC is stronger than that of BFO. XANES data analysis confirms that the
valence states of iron ions do not change. The EXAFS data analysis shows that the Cu ions
have been completely incorporated into the BiFeO3 structure and have occupied Fe-sites,
and that non-magnetic transition metal ion doping has no impact on the local structure of
the Fe and Bi atoms. Finally, the magnetic property improvement of (Cu, Zn)-co-doped
sample is explained from the perspective of the occupation by non-magnetic transition
metal ions.
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