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Abstract

Introduction

Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochon-
drial ATP synthase and has also been found to associate with the vacuolar H*-ATPase. Its
expression is particularly high in cells with elevated aerobic metabolism and in epithelial
cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of
mitochondrial ATP synthase but the effects of its over-expression are obscure.

Results

In order to study the consequences of high expression of DAPIT, we constructed a trans-
genic cell line that constitutively expressed DAPIT in human embryonal kidney cells,
HEK293T. Enhanced DAPIT expression decreased mtDNA content and mitochondrial
mass, and saturated respiratory chain by decreasing H*-ATP synthase activity. DAPIT
over-expression also increased mitochondrial membrane potential and superoxide level,
and translocated the transcription factors hypoxia inducible factor 1a (Hif1a) and B-catenin
to the nucleus. Accordingly, cells over-expressing DAPIT used more glucose and gener-
ated a larger amount of lactate compared to control cells. Interestingly, these changes were
associated with an epithelial to mesenchymal (EMT)-like transition by changing E-cadherin
to N-cadherin and up-regulating several key junction/adhesion proteins. At physiological
level, DAPIT over-expression slowed down cell growth by G1 arrest and migration, and
enhanced cell detachment. Several cancers also showed an increase in genomic copy
number of Usmgb (gene encoding DAPIT), thereby providing strong correlative evidence
for DAPIT possibly having oncogenic function in cancers.

Conclusions

DAPIT over-expression thus appears to modulate mitochondrial functions and alter cellular
regulations, promote anaerobic metabolism and induce EMT-like transition. We propose
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that DAPIT over-expression couples the changes in mitochondrial metabolism to physiolog-
ical and pathophysiological regulations, and suggest it could play a critical role in H*-ATP
synthase dysfunctions.

Introduction

DAPIT is a 58 amino acid peptide first discovered in insulin-sensitive tissues of the streptozo-
tocin-diabetic rat model [1]. It is a component of the F, subunit of the mitochondrial H*-ATP
synthase (F-ATPase) [2-4] and its knock-down results in the loss of this enzyme [5]. Recently
we found that DAPIT is also a component of the vacuolar proton pump (V-ATPase) [6].

The gene encoding DAPIT is Usmg5 that is well conserved from insects to vertebrates
underlining its potentially important function. A histological analysis of DAPIT in rat and
human tissues revealed an elevated expression in cells with a high aerobic metabolism and in
epithelial cells involved in the active transport of nutrients and ions [6].

Interestingly, DAPIT expression appears to be modulated in various disease models. Strep-
tozotocin (STZ) induction of diabetes in rats caused a down-regulation of DAPIT mRNA in
insulin-sensitive tissues [1], but it increased DAPIT protein levels, suggesting post-transcrip-
tional regulation [6]. In diabetic neuropathies, hyperglycaemia up-regulates the DAPIT protein
in the Schwann cells of neonatal rats [7]. DAPIT is also enriched in the brain synaptosomes of
a murine model of Parkinson’s disease [8]. In addition, Gene Expression Omnibus [GEO] data-
base [9] screening suggests that the Usmg5 transcript is up-regulated in various cancers (GEO
accession GDS1792 [10], GDS3330 [11], GDS3754 [12], GDS2755 [13]), in adipose tissue of
high weight gainers (GDS 2319 [14]) and in cardiac deficiencies (GDS487, GDS696); but, since
post-trancriptional regulations seem to play an important role in DAPIT synthesis, it is diffi-
cult to estimate the consequences this upregulation could have at the functional level.

As a component of the H-ATP synthase, DAPIT is involved in mitochondrial oxidative
phosphorylation (OXPHOS), which is the major source of ATP in aerobic organisms. In vari-
ous diseases, including cancer, diabetes, cardiopathies and degenerative diseases, metabolic
stress lead to changes in OXPHOS activity and properties, altering mitochondrial parameters
such as respiration, membrane potential, ATP production, ROS generation and mitochondrial
mass. Such changes can be either beneficial (partly complementing the defects caused by the
disease) or detrimental (precipitating its pathological consequences). In addition, changes in
OXPHOS activity are known to elicit retrograde regulations, further altering the cellular
metabolism. For example, tumour cells shift from oxidative ATP generation to glycolytic pro-
duction of energy, even under normoxic conditions (the so-called Warburg effect) [15,16]. A
key regulator of this effect is the nuclear stabilization of hypoxia-inducible factor 1o (Hiflo).
Hif1 signalling up-regulates glycolysis and controls mitochondrial function, cell proliferation
and angiogenesis while repressing apoptosis [15,17]. Hifl o activation usually requires hypoxia,
but it is also observed in normoxic conditions in response to increased mitochondrial ROS pro-
duction and/or accumulation on tricarboxylic acid cycle (TCA) intermediates [18,19]. Changes
in respiratory chain function can also be sensed by mitochondrial sirtuins (Sirt 3-5) that mod-
ulate the activity of metabolic enzymes via protein deacylation or mono-ADP-ribosylation
[20]. In particular, Sirt3, a NAD"-dependent deacetylase is able to activate many protein tar-
gets, including respiratory chain complex I, acetyl-CoA synthetase 2 and glutamate dehydroge-
nase, leading to enhanced function of TCA and increased respiration [21,22].

PLOS ONE | DOI:10.1371/journal.pone.0131990 July 10,2015 2/20


https://www.skr.fi/en/finnish-cultural-foundation/regional-funds/pirkanmaa-regional-fund
https://www.skr.fi/en/finnish-cultural-foundation/regional-funds/pirkanmaa-regional-fund
http://www.diabetestutkimus.fi/en
http://www.aka.fi/en-GB/A/Funding-and-guidance/Funding/
http://www.aka.fi/en-GB/A/Funding-and-guidance/Funding/
https://www.skr.fi/en/grants

@’PLOS ‘ ONE

DAPIT Over-Expression Modulates Glucose Metabolism

As Usmg5 mRNA or DAPIT is up-regulated in various diseases and metabolic disorders
known to be associated with mitochondrial functions, we aimed to study the effects of DAPIT
over-expression at the cellular level. DAPIT was stably transfected into human embryonic kid-
ney cells, HEK293T, and we studied cell morphology-, mitochondria-, nuclei-, cell junction-,
behaviour- and metabolism-related parameters. We show that DAPIT over-expression modu-
lates mitochondrial activity causing a cellular regulation that promote glycolysis and induce
EMT-like transition.

Materials and Methods
Plasmid DNA constructs

The full-length DAPIT ¢cDNA was originally cloned in pCR-TOPO vector (Invitrogen, Carls-
bad, CA, USA) [1]. The DAPIT coding sequence-including ten nucleotides from the 5> NCR-
was recloned by PCR with the pEGFP sequence of the pIRES2-EGFP vectors (Clontech Labora-
tories, Palo Alto, CA, USA). The primers used were 5’- acgaattcgattgaagtcatggctggecca -3’ and
5’- tcgggatccttatgttgetttcacagetggggt —3’. The PCR reactions consisted of cycles at 96°C for 2
min, 4x (96°C for 30 s, 50°C for 1 min, 72°C for 30 s), 25x (96°C for 30 s, 60°C for 1 min, 72°C
for 30 s) and 72°C for 10 min. The DAPIT amplicon was purified, cloned into the pIRE-
S2-EGFP vector with EcoRI and BamHI restriction enzymes (MBI Fermentas GmbH, Leon-
Rot, Germany; ClontechLaboratories, Palo Alto, CA, USA) and amplified in One Shot TOP

10 bacteria (Invitrogen). The insert size (~204 bp) was confirmed by restriction enzyme diges-
tion, and the insert DNA was fully sequenced. The construct was used for stable transfection of
HEK293T cells.

Cell culture, transfections and RT-PCR

HEK?293T cells (ATCC, crl-3216) were cultured in Dulbecco's modified Eagle's medium
(Sigma-Aldrich, Ayshire, UK or Gibco BRL, Paisley, Scotland, UK), containing 4.5 g/ of D-glu-
cose, 10% foetal calf serum (Sigma), 50 pg/ml uridine, 1 mM sodium pyruvate, 2 mM L-gluta-
mine, 100 U penicillin and 100 pg/ml of streptomycin (Gibco BRL) at 37°C in an incubator
with 5% CO,. Transfections were performed using Lipofectamine according to the manufac-
turer's protocol (Invitrogen). Transfection efficiency was estimated by flow cytometry using
GFP fluorescence. Twenty-five Geneticin-resistant clones (Calbiochem/Merck KGaA, Darm-
stadt, Germany; 2 mg/ml) were selected and combined to form the polyclonal cell line. Total
RNAs from pIRES2-EGFP and DAPIT-pIRES2-EGEFP stably transfected cells were extracted
by RNeasy Mini Kit (Qiagen), and 1 ug total RNA was used for RT-PCR using M-MuLV
reverse transcriptase, as suggested by the provider (MBI Fermentas). The obtained cDNAs of
control and transgenic cells were multiplied by PCR as indicated above.

Fluorescence microscopy

For live imaging of mitochondria and lysosomes, the cells grown on poly-L-lysine coated cover
slips (Sigma) were washed with PBS and incubated in a medium containing 100 nM Mito-
tracker Red (Invitrogen) or 100 nM Lysotracker red (Invitrogen) for 10-30 min at 37°C. Mito-
tracker-stained cells were PBS washed and maintained in DMEM medium for 1 hour at 37°C
before observation. For immunofluorescence microscopy, cells fixed in 4% paraformaldehyde
(Sigma) for 15 min were permeabilized with 0.5% Triton X-100 (MP Biomedicals,Ilkirch,
France) in TBS (10mM Tris, 0.9% NaCl, pH 8.0 (Sigma)) for 10 min. Non-specific epitopes
were blocked by using 5% w/v non-fat milk powder, 2% w/v BSA (Sigma) for 30 min. Samples
were incubated in TBS-T (TBS with 0.1% Tween (Sigma)) with the primary antibody (aD15C,
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1:300) [5] for 2 h at room temperature, washed for 3x5min and incubated in Alexa Fluor 488
or 568 goat anti-rabbit, Alexa Fluor 568 goat anti-mouse or Alexa Fluor 549 chicken anti-
mouse IgG secondary antibodies (Molecular Probes, Eugene, Oregon, USA, 1:4000) for 1 hour.
Coverslips were mounted on slides using Vectashield mounting medium (Vector Laboratories,
Burlingame, CA, USA), and samples were examined by confocal microscopy at 100x magnifi-
cation using a Perkin Elmer-Cetus/Wallac UltraView LCI system (Wellesley, MA, USA)
equipped with appropriate excitation and emission filters, an Andor iXon DV885 EMCCD
camera and the Andor iQ software (Andor, Belfast, UK), or with a conventional fluorescence
microscope at 40x and 60x magnification (Olympus BX60, Olympus Corporation, Japan).
Images were further processed using Corel Photo-Paint 11 (Corel Corporation).

Mitochondrial copy number calculation and citrate synthase activity

For mtDNA copy-number analysis, total DNA was prepared as reported in Fukuoh et. al.
[23]. The isolated DNA from 0.4X10° cells were resuspended in TE buffer (pH 8.0), purified
and quantified by Nanodrop. Relative mtDNA copy number was measured by real-time
qPCR using primers for mitochondrial COXII subunit (Forward cgtctgaactatcctgeecg,
Reverse tggtaagggagggatcgttg) and nuclear APP (Forward tttttgtgtgctctcccaggtct, Reverse
tggtcactggtttgge) in a StepOnePlus instrument (Applied Biosystems>place) using Fast SYBR
Green Master Mix (Applied Biosystems) under the manufacturer’s recommended conditions,
with 20 sec of enzyme activation at 95°C, followed by 40 cycles of 95°C for 3 sec and 60°C for
30 sec.

The activity of citrate synthase of cells was measured using a kit (Sigma-Aldrich, CS0720)
according to the manufacturer s instructions with an automated KoneLab device (Thermo
Scientific, Vantaa, Finland).

Oxygen consumption and fluorescence biomarkers

The mitochondrial measurements in living cells were performed as in Cannino et. al. [24].
Oxygen consumption was measured with a Clark-type electrode (Oxygraph, Hansatech Instru-
ments Ltd, Norfolk, UK). Intact cell respiration was recorded from 1x10 cells suspended in
500 pl of DMEM medium at 37°C. Maximum respiration was obtained by FCCP titration (5-
9 uM). Oxygen consumption was stopped with 150 nM rotenone, 30 ng/ml antimycin A,

100 uM Cyanide or 100-200 nM Oligomycin (Sigma). Oxygen consumption from 1x10” cells
permeabilized by 80 ug/ml digitonin was recorded in respiratory buffer A (225 mM sucrose,
75 mM mannitol, 10 mM Tris-buffer pH 7.4, 10 mM KCI, 10 mM KH,PO,, 5 mM MgCl2,
Img/ml BSA (Sigma)) at 37°C. The substrate concentrations were 10 mM ADP, 5 mM pyru-
vate + 5 mM malate for complex I, 10 mM succinate for complex II, and 50 pM TMPD and

1 mM ascorbate for complex IV. All measurements were corrected by subtracting the residual
oxygen consumption present after full inhibition of the respiratory chain.

For the mitochondrial mass, membrane potential and superoxide measurements, flow
cytometry assays were used. In the absence of G418, 4x10° (Vector) and 4.5x10° (DAPIT) cells
were seeded in culture medium. After overnight culture, the subconfluent cells were treated
with 200 nM 10-nonyl acridine orange (NAO; Invitrogen,) for 30 min at 37°C, 200nM tetra-
methyl rhodamine methyl ester (TMRM; Invitrogen,), for 30 min at 37°C or 2.5 uM MitoSox
(Invitrogen,), for 45 min at 37°C. The staining was stopped by replacing the medium with
1xPBS, and cells were kept at 37°C (NAO and TMRM) or on ice (MitoSox) until measured.
Negative controls for mitochondrial membrane potential were obtained by adding 10 uM
FCCP before flow cytometry analysis.
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The fluorescence was counted from 40,000 cells using a BD Accuri C6 flow cytometry (BD
Biosciences). The region of interest was defined by using the forward scatter/side scatter values,
excluding the debris and dead cells. The staining was measured either by using 488 nm (band-
pass) excitation and emission of FL2 (585 + 40 nm) for NAO and TMRM, FL3 (620 + 15 nm)
for Mitosox and FL1 (533 + 40 nm) for GFP. The fluorescence compensations were estimated
independently for each series of experiments. All measurements provided as “relative to mito-
chondrial (mt) content” were normalized by NAO quantification, whereas measurements pro-
vided as “per cell” were normalized to the cell count.

Isolation of mitochondria and complex V activity

For crude extraction of mitochondria, the cells from four 17.5 cm? or 8-10 10 cm? culture
plates were collected by centrifugation at 250 g for 3 min at room temperature. The rest of the
protocol was carried out in a cold room (+4 C) on ice. The cells were bloated in 5.5 ml of hypo-
tonic buffer (10mM NaCl, 1.5mM MgCl2, 10mM Tris-HCl pH 7.5 (Sigma), protease inhibitor
coctail (Roche, Mannheim, Germany)) for 8-13 min, ruptured with eight strokes of teflon pes-
tle. 4 ml of 2.5X MS buffer (700 mM sucrose, 2.5 mM EDTA, 12.5 mM Tris-HCl pH 7.5, prote-
ase inhibitors) was added. To remove nuclei and cell debris, the samples were centrifuged at
1,300 g for 10 min. Mitochondria from the supernatant was pelleted by centrifugation at
17,000 g for 15 min, and diluted to 0.5-1 ml of 1X MS buffer (0.28 mM sucrose, 5 mM Tris-
HCI, 1 mM EDTA pH 7.5, protease inhibitors).

Fifteen ml of 1.5 M and 1.0 M sucrose in buffer (10mM Tris-HCl pH 7.4, 1 mM EGTA,
0,1% BSA, protease inhibitors) were layered in ultracentrifuge tubes. The crude extract of mito-
chondria was added on the top of sucrose layers and centrifuged at 60 000 g for 20 min at 4°C.
The resulting fraction of mitochondria in the interphase of sucrose layers was collected, the
volume measured and slowly (15-20 min) diluted on ice for 4X with 0.2M mannitol in Tris-
EGTA-BSA buffer. Finally, the mitochondria were pelleted at 17,000 ¢ for 15 min at 4°C,
diluted to 40-50 pl of 1X MS buffer and stored at -80°C.

The oligomycin-sensitive complex V activity was spectrophotometrically measured in the
backward direction using lactic dehydrogenase and pyruvate kinase as coupling enzymes, as
essentially described elsewhere [25,26].

Cell growth, mortality, and synchronization

Fifteen thousand cells were seeded on a 24-well culture plate (Nunclon, Thermo Scientific) in
500 pl of culture medium in the presence of antibiotics (Penicillin-Streptomycin & G418). Cell
proliferation and mortality were followed for five days by counting the living and dead cells in
a Burker hemocytometer after trypan blue labelling (0.4%; Sigma).

The control and DAPIT overexpressing cells were synchronized by a double thymidine
block method (DIAMONDS Deliverable 1-D1.1.3, ResearchGate.net) for more accurate follow
up of cell division. At 30% confluence in 24-well culture plate, the cells were washed twice with
1x PBS and 1 ml of cell culture medium supplemented with 2 mM thymidine (Sigma) was
added for 18 hours. Thymidine was washed out and the cell divisions were released by adding
fresh cell culture medium for nine hours. This was followed by another thymidine step for 17
hours after which the cells progress synchronously through G2- and mitotic phase. Upon the
release from the thymidine block, the cells were cultured in normal medium for 4, 8, 12, 16 and
24 hours in order to follow the cell cycle progress. At each time point the cells were collected,
pelleted, stained with 250 pl of PI staining solution (25ug/ml propidium iodide, 100pg/ml
RNAse A, 0.1% sodium citrate, 0.1% Triton X-100 (Sigma)) for 20 min on ice and measured by
flow cytometry (488 nm excitation, >670 nm emission; FL3). The number of cells (arbitrary
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units) was blotted against the DNA content at each time point. The test was repeated for four
times.

Migration and adhesion

The migration was studied by scratch wound test in a 12-well culture plate (Nunclon). The
cells were grown confluent, and fresh medium was provided three hours prior to starting the
test. After 1 hour-treatment with 20 ug/ml Mitomycin C (Sigma) cells were scratched with a
tip, washed and incubated overnight at 37°C. After fixation with 4% PFA for 15 min and PBS
washing, cells were stained with crystal violet (0.5 mM) for 5 min in 70% ethanol. The cells
migrating in the scratched area were counted using a phase contrast microscope (Axiovert
200 M, Zeiss). Cell attachment was studied using PMS/MTS (Promega, Madison, W1, USA)
according to the manufacturers’s protocol. Detachment was determined according to the pro-
tocol used in migration assays in a 48-well culture plate (Nunclon). The empty areas of
detached cells in the bottom of wells were quantified by Image]J (imagej.nih.gov/ij) analysis.

Western blot analysis

Proteins from subconfluent (approximately 50-70%) cells were extracted in PBS containing
1% Triton X100 and protease, followed by incubation on ice for 30 min and centrifugation at
12,000 g for 1 minute. The protocol applied by Teittinen et al. [27] was followed to obtain
nuclear extracts. Briefly, subconfluent cells were washed with PBS and collected by centrifuga-
tion. The cells were resuspended in 5 ml hypotonic buffer (10 mM Hepes (pH 7.9), 10 mM
KCl, 1.5 mM MgCl,, 0.5 mM DTT (Sigma)) and broken on ice using a Dounce homogenizer.
Nuclei were pelletted by centrifugation (228 g, 5 min, +4°C) and purified by isopycnic centrifu-
gation (1,430 g, 5 min, +4°C) on a two-step sucrose gradient: 250 mM sucrose, 10 mM MgCl,
vs 880 mM sucrose, 0.5 mM MgCl,. The proteins of this nuclear fraction were extracted as
described above.

The protein concentration was determined by the Bradford method [28]. Then, 20 pg of cel-
lular and 50 pg of nuclear protein were used for SDS-PAGE analysis according to Laemmli
etal. [29] and transferred to Hybond-C extra nitrocellulose membrane (Amersham plc, Buck-
inghamshire, UK). Non-specific epitopes were masked, exposing membranes to 5% freeze-
dried fat-free milk in TBS-T for 1 hour. Primary antibodies (see Table 1) were incubated for 2
hours. After washings, the blots were incubated with the secondary antibody: peroxidase-con-
jugated swine anti-rabbit and rabbit anti-mouse (DAKO, Clostrup, Denmark) 1:2,000, or Per-
oxidase Horse Anti-Goat IgG (H+L; Vector Laboratories) 1:10,000 for 1 hour. Subsequently,
the blots were washed, and the signal was detected by enhanced chemiluminescent ECL reagent
(Amersham) according to the manufacturer’s protocol. The blots were visualized on Super RX
medical X-ray film (Fujifilm Corporation, Tokyo, Japan) and the bands quantitated by Kodak
imaging software (Eastman Kodak Company, US). The protein expression was normalized to
the house-keeping protein gamma-tubulin, and additionally to mitochondrial content (NAO
result) in the case of the mitochondrial proteins.

Glucose and lactate test

The glucose consumption and lactate production were measured from culture media of the cell
proliferation test and results were normalized with concomitant cell number. Glucose and lac-
tate levels were analysed using the enzymatic-amperometric method and chip-sensor technol-
ogy (Biosen C-line Sport, EKF Diagnostic, Magdeburg, Germany).
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Table 1. List of primary antibodies and dilutions used in Western blot.

Antibody

ATP5a

B-actin

B-catenin

Connexin 43
aD15C (anti-DAPIT)
E-cadherin

y-tubulin

GFP

Hif1a

Histone H1

HSP60

Integrin a2
N-cadherin
NDUFS3

PGC1la

RhoA

Sirt3

Smooth muscle actin
VDAC1/Porin
Vimentin

Zo-1
doi:10.1371/journal.pone.0131990.t001

Dilution

1:4000
1:5000
1:400
1:1000
1:160
1:1000
1:4000
1:10000
1:1000
1:500
1:600
1:200
1:1000
1:10000
1:3000
1:200
1:400
1:200
1:1000
1:200
1:300

Host

Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Rabbit polyclonal
Rabbit polygonal
Rabbit polyclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Mouse monoclonal
Rabbit polyclonal
Mouse monoclonal
Goat polyclonal
Mouse monoclonal
Mouse monoclonal
Goat polyclonal
Mouse monoclonal

Manufacturer

Abcam, #MS502
Sigma, #A5316
Transduction Laboratories, BD Biosciences, #610153
Sigma, #C6219

Custom made [5]

Santa Cruz, #sc-7870
Sigma, #T5326

Zymed, #33-2600
Abcam, #10625, ab8366
Santa Cruz, #sc-8030
Sigma, #4149

Santa Cruz, #sc-13546
Sigma, #C2542

Abcam, # 14711
Millipore, #516557
Santa Cruz, #sc-418
Abcam, #118334
Sigma, #A5228

Nordic BioSite, #MSA03
Millipore, #AB1620
Invitrogen, #339100

Oncomine data analysis

We used the Oncomine Cancer Genomics Data Analysis tool [30] to mine Usmg5 copy number
profiles in a large subset of carcinomas and cancer cell lines [31-48]. In the dataset information
of cancers both significant differences (p<0.05) and fold changes (> 1) were reported. The
number of DNA copies (= 2*(2/y-axis value)) were calculated as advised in Oncomine
instructions.

Statistical analysis

Comparisons between cell lines were performed by using Mann-Whitney U test.

Results

For the sake of simplicity, from now on we will call “control cells” the cells transfected with
empty pIRES2-EGFP vector and “DAPIT cells” the ones over-expressing transgenic DAPIT.
The transgene is co-transcribed with a cytosolic GFP reporter, independent from fusion
protein.

Mitochondrial mass, mtDNA and DAPIT over-expressing cells

As DAPIT was reported a Fo subunit of H*-ATP synthase, the immunofluorescence analysis of
DAPIT cells showed clear co-localization of mitochondrial and DAPIT signals (Fig 1A).
Importantly, we observed very few DAPIT-positive lysosomes. Knowing that mitochondria
that are targeted for degradation (e.g. through mitophagy) would lead to a transient localization
of DAPIT into lysotracker positive compartments, our results suggest a pure mitochondrial
location of this protein.

PLOS ONE | DOI:10.1371/journal.pone.0131990 July 10,2015 7/20



DAPIT Over-Expression Modulates Glucose Metabolism

Mitotracker &

DAPIT cells

Lysotracker

Protein expression a.u.
relative to mt content (NAO)

Hek293T Control DAPIT
n=9 = n=9

DAPIT cells

kDa F ka G

GFP W ~ - 27 PGCTo 120 12 MDA

wetiibiili 48 . . Histone 1 NS N 30
r-tubulin - Mitochondrial mass BaCHn  Se— — 13 N,

. PGC1a

8

m

50 EGFP

4,0
6
30

Relative mtDNA

4
2,0

2

1,0 -

Protein expression a.u.
Relative NAO fluorescence
[
3 8 3
© -
Protein expression a.u.
o
N

o
* Control DAPIT 9 B Control DAPIT n=9
n=6 n=4 n=6 n=6

Hek293T Control  DAPIT ® “Control  DAPIT
n= = n= n=

Fig 1. DAPIT over-expression decreased mitochondrial mass and mtDNA content in DAPIT cells. (A) Representative confocal microscopy images of
cells stained by Mitotracker and Lysotracker (100 nM, 10-30’, 37°C) and anti-DAPIT antibody, aD15C. (B) mRNA expression of the Usmg5 by semi-
quantitative RT-PCR. Protein levels estimated by Western blot of (C) DAPIT and (D) EGFP. (E) Mitochondrial mass was measured by flow cytometry of NAO
stained cells (200nM, 30’, 37°C). (F) Protein level of PGC1a from nuclear extract. (G) mtDNA content by quantitative PCR. The error bars are S.D. and
asterisks indicate: *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0131990.g001

In this study, we emphasize the comparison of DAPIT cells to control ones due to vector
transduction and following culture conditions. For assuring our cell model, the mRNA and
protein level and mitochondrial mass from HEK293T cells are also reported. As mitochondrial
mass is sensitive to H'-ATP synthase impairments [23,49,50], the concomitant differences in
mass between cell lines are normalized into reported mitochondrial parameters.

The expression of transgene was controlled by reverse transcriptase-PCR (RT-PCR) and
Western blot analysis. DAPIT cells presented higher level of Usmg5 messenger RNA compared
to the HEK293T and control cells (Fig 1B) demonstrating the functionality of the DAPIT
construct.

The expression of DAPIT protein in the three cell lines is shown in Fig 1C. DAPIT expres-
sion was slightly decreased in control cells (vehicle) as compared to HEK293T cells. A mild but
not significant increase was seen between HEK293T and DAPIT cells, but significantly higher
expression was observed in DAPIT than in control cells (p<0.05). The green fluorescent pro-
tein expression appeared lower in DAPIT cells (Fig 1D) indicating that translation from the 5’
RNA CAP is more efficient than internal ribosome entry, as previously reported [51].
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In order to study the effect of DAPIT over-expression on mitochondrial physiology, we
measured mitochondrial mass using the mitochondria specific dye NAO in HEK293T, control
and DAPIT cell lines (Fig 1E). Mitochondrial mass in DAPIT cells was significantly lower than
in control and HEK293T cells, while it was intermediate in HEK293T cells.

To verify the mitochondrial mass in control and DAPIT cells, we measured mtDNA copy
number and nuclear level of mitochondrial biogenesis regulating transcription factor PGClo.
In line with NAO results, both the translocation of PGCla to the nuclei and the mtDNA con-
tent were decreased in DAPIT cells (Fig 1F and 1G). These results indicate that mitogenesis is
decreased in DAPIT cells.

Metabolic activity of mitochondria

We next estimated the effect of DAPIT over-expression on mitochondrial protein transport,
TCA cycle activity, respiratory chain activity in intact cells and oxygen consumption driven by
complexes I, IT and IV in permeabilized cells. The results are reported both at cellular level (S1
Fig) and in relation to mitochondrial content (NAO normalized results, Fig 2).

The expression of VDACI (Fig 2A and 2M) and the activity of citrate synthase (Fig 2B)
were increased significantly upon DAPIT over-expression (p = 0.001 and 0.05, respectively).
These results could indicate increased transport or reduced turn-over of cytosolic substrates
suitable for enhanced oxidation by TCA cycle, thereby facilitating the demands of respiratory
chain.

The protein expression of C1 subunit NDUFS3 (p = 0.004) was increased in DAPIT cells
(Fig 2C and 2M). In addition, both the oxygen consumption from complexes I, Il and IV in
digitonin-permeabilized cells and respiration of intact cells (Fig 2D and 2E) were significantly
increased (p = 0.044, 0.000, 0.002, 0.000), respectively. However, the expression of F; complex
subunit ATP5a was unaltered (Fig 2F and 2M) suggesting that enhanced oxygen consumption
seen in DAPIT cells is not due to increase in CV content. Instead, the changes in respiratory
chain function are supported by unchanged expression of Sirt3 (Fig 2G and 2M), a modulator
of the activity of metabolic enzymes. In addition, DAPIT cells exhibit increased basal and
maximal respiration (p = 0.003 and 0.004, respectively) (Fig 2H) and decreased activity of
ATP synthase (p = 0.005)(Fig 2I). These results suggest enhanced substrate availability and
increased activity of TCA cycle, efficient respiration, active coupling but decreased H*-ATP
synthase activity in DAPIT cells. Accordingly, the membrane potential (p = 0.001) and super-
oxide (p = 0.001) levels were increased (Fig 2] and 2K). When assessed at cell level (S1 Fig),
respiration and TCA cycle activity remained unchanged between cell lines but VDAC1
expression, CV activity, membrane potential and superoxide showed the same changes as
when normalized to mitochondrial mass. Taken together, these results suggest the saturation
of respiratory chain due to DAPIT over-expression. The protein level of HSP60 increased sig-
nificantly (p = 0.009) in DAPIT cells (Fig 2L and 2M), indicative of an appropriate mainte-
nance of the mitochondrial proteins.

Nuclear proteins

We observed increased nuclear translocation of the Hiflo. transcription factor in DAPIT

cells (Fig 3A and 3C). We also observed an increased protein expression of nuclear B-catenin
(Fig 3B and 3C) and relocation of E-cadherin from cell junctions to the cytosol in DAPIT cells
(Fig 3D, upper panel). Altogether, these results suggest major remodeling of cellular functions
in response to DAPIT over-expression, since Hiflo and B-catenin level are known to be
involved in cellular dedifferentiation [52].
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Fig 2. Mitochondrial activity in DAPIT over-expression (relative to mitochondrial mass (NAO)). (A) Protein level of VDAC1 by Western blot of cellular
lysates. (B) Citrate synthase activity was measured by spectrophotometric analysis from protein extracts of control and DAPIT cells. (C) Protein level of
NDUFS3. (D) Inhibitor-sensitive oxygen consumption of complexes |, Il, IV and (E) complex V in digitonin-permeabilized and intact cells. Protein level of (F)
ATP5a and (G) Sirt3. (H) Basal and maximal respiration by oxygen consumption of living cells. (I) Spectrophotometric analysis applied for measuring CV
activity in backward direction using lactic dehydrogenase and pyruvate kinase as coupling enzymes. Mitochondrial (J) membrane potential and (K)
superoxide levels measured by flow cytometry of TMRM (200nM, 30", 37°C) and Mitosox (2,5 uM, 45’, 37°C) stained cells. (L) Protein expression of HSP60.
(M) Representative immunoblots. The error bars are S.D. and asterisks indicate: *p <0.05, **p<0.01 and ***p<0.001.

doi:10.1371/journal.pone.0131990.g002

Morphological analysis of cell junction and adhesion proteins in DAPIT
over-expressing cells

The over-expression of DAPIT induced changes in cell morphology, from a regular cuboidal
epithelial-like (control cells) to an irregularly sized and shaped morphology (DAPIT cells) with
decreased intercellular separation, showing a polygonal, sheet-like appearance but unaffected
cell projections (Fig 3D, lower panel), thereby suggesting an epithelial to mesenchymal transi-
tion (EMT).
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microscope view of living control and DAPIT cells (lower panel, 20x magnification). The error bars are S.D.
and asterisk indicates *p <0.05.

doi:10.1371/journal.pone.0131990.g003

Due to morphological changes in DAPIT cells, we investigated the expression of several cell
junction and adhesion proteins (Fig 4). Protein levels of E-cadherin decreased significantly
(Fig 4A and 4I), while N-cadherin, Connexin 43, ZO-1, Vimentin, Integrin o2, and their mod-
ulator RhoA GTPase were all increased (Fig 4B-4G and 4I). We also observed increased
(although non-significant) expression of the SMA (Fig 4H and 4I). Interestingly, such pattern
of expression is reminiscent of the EMT observed, for example, in embryogenesis, wound heal-
ing and cancer.

Cell growth, mortality, migration and adhesion

In order to study the effect of DAPIT over-expression on cell physiology and to clarify the con-
sequences of the EMT-like phenotype, we examined cell growth, mortality, cell cycle, migration
and adhesion capacity (Fig 5). According to hemocytometer calculation, DAPIT cells showed
slower growth during the active growing phase (Fig 5A, days 1-3). Since the mortality rate,
measured at day 2, was not altered (Fig 5B), we attribute the slower cell proliferation to a
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Fig 4. Modification in cell junction and adhesion proteins correspond to EMT-like changes in DAPIT
cells. (A-H) Modulation of cell junction proteins and RhoA. Protein expression by Western blot in 20ug of cell
lysate. (I) Representative immunoblots. The error bars are S.D. and asterisks indicates **p<0.01.

doi:10.1371/journal.pone.0131990.g004

reduced proliferation rather than increased cell death. To test this premise, we followed the cell
cycle in synchronized cells. After withdrawal of thymidine, DAPIT cells entered the G1 phase
approximately four hours later than control cells (seen at time point 4 h) (Fig 5C, dark grey).
This retardation results also significant difference in S phase from 12 h on (light grey) and in
G2 (medium grey) at 4 h onwards, thereby confirming the slower growth of DAPIT cells.

The unexpected decreased migration capacity (Fig 5D) of DAPIT cells is in contradiction
with EMT and suggests a suppressive trait. The attachment capacity of the cells remained
unchanged, whereas cell detachment was enhanced (Fig 5E and 5F), indicating adhesion char-
acteristics typical of EMT.

Glucose consumption and lactate production

The miss-functional ATP-synthase, reduced growth and HIFla stabilization in DAPIT cells
suggested a metabolic shift from aerobic respiration to glycolysis. Therefore, we measured, in
parallel, glucose consumption and lactate production in DAPIT cells. As we anticipated,
DAPIT cells consumed more glucose and produced more lactate during the exponential stage
of their growth at days 1-3 (Fig 5G and 5H). Cell growth reached a plateau at day 4, and this
was associated with a decreased glucose consumption and lactate production, a metabolic
switch attributable to cell quiescence (see Valcourt et al. [53] for a review).
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doi:10.1371/journal.pone.0131990.g005

Usmg5 copy number in cancers

Since DAPIT over-expression induced EMT and glycolytic switch in HEK293T cells, we tested
if DAPIT is over-presented in cancers. The Oncomine Cancer Genomics database revealed a
duplication (4 copies) of Usmg5 copy number in a large panel of cancers (Table 2). Usmg5 was
ranked within 10% of top genes duplicated in various brain, pancreas and liver cancers, within
15% in sarcomas, kidney, lung and gastric cancers, and within approximately 20% in leukemia,
lymphoma, and breast- and ovarian cancers. These data strongly suggest a role for DAPIT
over-expression in cancers.

Discussion

The OXPHOS system comprises five multi-subunit enzymes known as complexes L, II, III, IV
and V. The electron transfer through complexes I-IV is coupled to proton translocation across
the inner membrane. This results transmembrane electrochemical potential which is converted
into chemical energy in the form of ATP by H*- ATP synthase (CV).
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Table 2. Cancers expressing increased genomic Usmg5 copy number in Oncomine cancer genomics database.

Classification

Brain

Pancreas
Liver

Sarcoma

Kidney

Lung

Gastric

Leukemia

Breast

Ovarian

Cancer type

Astrocytoma

Astrocytoma

Astrocytoma

Astrocytoma

Head and Neck Cancer Cell Line

Head and Neck Cancer

Head and Neck Cancer

Mixed Glioma

Oligodendroglial Tumor

Oligodendroglial Tumor

Oligodendroglial Tumor

Pancreatic Cancer

Liver Cancer

Liver Cancer

Liver Cancer Precursor

Dedifferentiated Liposarcoma
Myxoid/Round Cell Liposarcoma

Sarcoma

Sarcoma

Sarcoma

Sarcoma Cell Line

Kidney Cancer

Kidney Cancer

Hereditary Clear Cell Renal Cell Carcinoma
Non-Small Cell Lung Carcinoma

Non-Small Cell Lung Carcinoma

Gastric Adenocarcinoma

Gastric Mixed Adenocarcinoma vs. Normal
Gastrointestinal Stromal Tumor

Colon Adenocarcinoma

Colorectal Cancer

Colorectal Cancer

Colorectal Cancer

Leukemia

Refractory Anemia with Excess Blasts-1 vs. Normal
Chronic Myelomonocytic Leukemia-1 vs. Normal
Leukemia Cell Line

Plasma Cell Leukemia

Mixed Lobular and Ductal Breast Carcinoma
Papillary Breast Carcinoma

Mucinous Breast Carcinoma

Lobular Breast Carcinoma

Ductal Breast Carcinoma in Situ

Ovarian Cancer

Endometrial Endometrioid Adenocarcinomavs. Normal
Endometrial Serous Adenocarcinoma vs. Normal

DNA copy number

4,40
4,50
4,36
4,07
4,13
4,11
4,13
4,89
4,73
5,07
4,29
4,19
4,33
4,18
4,10
4,12
4,12
4,12
4,12
4,10
4,14
4,67
4,20
4,07
4,13
4,18
4,06
4,10
4,40
4,06
4,13
4,07
4,28
4,46
4,13
4,12
417
4,09
4,11
4,08
4,08
4,07
4,06
4,09
4,10
4,16

*Gene rank % Oncomine datasets

1 Beroukhim Brain [31]

3 TCGA Brain 2 [N/A]

4 Kotliarov Brain [32]

12 Northcott Brain 4 [33]

2 Beroukhim Multi-cancer [34]
Beroukhim Multi-cancer [34]

24 Barretina CellLine 2 [35]

1 TCGA Brain 2 [N/A]

2 Kotliarov Brain [32]

3 TCGA Brain 2 [N/A]

7 Beroukhim Brain [31]

6 Barretina CellLine 2 [35]
4 Rothenberg CellLine [38]
7 Barretina CellLine 2 [35]

29 Chiang Liver 2 [46]

9 Barretina Sarcoma 2 [37]

15 Barretina Sarcoma 2 [37]

8 Barretina CellLine 2 [35]

12 Wooster CellLine 2 [N/A]

13 Rothenberg CellLine [38]

24 Beroukhim Multi-cancer [34]

2 Neale Multi-cancer 2 [43]

12 Barretina CellLine 2 [35]

26 Beroukhim Renal 2 [47]

10 Weiss Lung [40]

12 TCGA Lung 2 [N/A]

14 Deng Gastric [36]

15 Deng Gastric [36]

17 Barretina Sarcoma 4 [37]

14 TCGA Colorectal 2 [N/A]

13 Rothenberg CellLine [38]

18 Barretina CellLine 2 [35]

13 Jaiswal Multi-cancer [39]

5 Neale Multi-cancer 3 [43]

13 Yoshida Leukemia [44]

14 Yoshida Leukemia [44]

20 Beroukhim Multi-cancer [34]

21 Chapman Myeloma 2 [45]

7 Nikolsky Breast [41]

11 TCGA Breast 2 [N/A]

20 Curtis Breast 2 [42]

23 TCGA Breast 2 [N/A]

24 Curtis Breast 2 [42]

16 Beroukhim Multi-cancer [34]

17 TCGA Endometrium [N/A]

29 TCGA Endometrium [N/A]
(Continued)
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Table 2. (Continued)

Classification Cancer type DNA copy number *Gene rank % Oncomine datasets

Lymphoma Lymphoma 4,15 21 Wooster CellLine 2 [N/A]
Lymphoma 4,08 28 Barretina CellLine 2 [35]

Other Oral Cavity Squamous Cell Carcinoma vs. Normal 4,03 48 Peng Head-Neck 2 [48]

N/A indicating not available.

* Indicating % of top genes duplicated, within which Usmg5 was ranked.

doi:10.1371/journal.pone.0131990.t002

DAPIT has been shown to be a structural component of H-ATP synthase and its deletion
resulted in the loss of H*-ATP synthase [2-5]. As DAPIT mRNA and/or protein levels are
increased in various diseases [6-8, 10-14] we hypothesized that in addition to its structural
role, DAPIT could also be a regulatory component of H*-ATP synthase. In consequence,
DAPIT up-regulation could lead to both structural changes and alteration in respiratory chain
regulation. In the present study, we stably transfected DAPIT into HEK293T cells. The strategy
we used permits both the transgene and an EGFP reporter to be translated from a single bicis-
tronic mRNA without formation of a fusion protein. The DNA sequence of the DAPIT trans-
gene appeared unaltered and the expression of the protein was confirmed. We emphasized the
effect of DAPIT over-expression on mitochondrial level by normalizing the reported mito-
chondrial parameters with concomitant mass. Accordingly, DAPIT up-regulation did not alter
the mitochondrial H'- ATP synthase levels in terms of the expression of ATP5a (a subunit of
the H™-ATP synthase enzymatic channel). Still, DAPIT cells showed an increased basal respira-
tion and inhibitor-sensitive oxygen consumption of complexes I, IT and IV, but decreased
activity of H"-ATP-synthase. This result is in line with cellular increase in lactate production.
Therefore, we suggest that increased maximal respiration is due to increased capacity of com-
plexes I-IV. Since mitochondrial mass was decreased, we conclude that DAPIT positively mod-
ulates respiration. In agreement with this hypothesis, we observed increased membrane
potential together with citrate synthase activity and VDACI expression, an issue suggesting
increased availability and use of respiratory chain substrates. As DAPIT cells are glycolytic,
these may have altered their catabolic balance in order to fuel the respiration. Accordingly, an
accumulation of superoxide production per mitochondria and DAPIT cell was also observed.
Interestingly, it was recently reported that intracellular balance of respiratory substrates con-
tribute to the cell decision between differentiation and stemness [54].

Most of the energy needed by human cells is provided by mitochondria in the form of ATP
through oxidative phosphorylation. Mitochondrial adenosine triphosphate (ATP) synthesis,
while essential to maintain homeostasis, is sensitive to oxidative damages and other cellular
injuries [49], and alterations of H'-ATP synthase biogenesis increases ROS production while
decreasing energy production [55]. ROS damages could disrupt mitochondrial integrity and
lead to apoptosis or necrosis, depending on cellular energy status. Regardless of increased mito-
chondrial respiration and good coupling, the activity of H*-ATP-synthase was decreased in
DAPIT cells. This decrease could be due to diminished number of H*-ATP-synthase com-
plexes in mitochondrial inner membrane, the down-regulation of its enzymatic/hydrolytic
activity or both. The decreased H"-ATP-synthase activity is well documented in human tumors
where the Inhibitory Factor 1 (IF1) of H"-ATP-synthase mediates the metabolic shift of cancer
cells to aerobic glycolysis with mitochondrial hyperpolarization and subsequent production of
superoxide radical [56,57], the mitochondrial characteristics also seen in DAPIT cells. More-
over, the regulated degradation of IF1 controlled energy metabolism during osteogenic
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differentiation of human mesenchymal stem cells by hindering their self-renewal, but favour-
ing differentiation [58]. These reported studies clarify a mito-cellular mechanism by which the
activity of H"-ATP-synthase is physiologically regulated in stemness, differentiation and can-
cer, process where DAPIT over-expression might be involved in. Altogether, these results fit
with the idea that DAPIT over-expression accelerates mitochondrial respiration although, or
because, inactivating H+-ATP synthase.

Cells can adapt to mitochondrial dysfunctions and energy depletion by regulating mito-
chondrial biogenesis [49,50]. We observed significant decrease in mtDNA level due to inactiva-
tion of mitogenesis in impaired H*-ATP-synthase DAPIT cells.

Hifl induction is reported to shift aerobic cellular metabolism to glycolysis [15-17,59].
Accordingly, translocation of Hifla to the nucleus was induced in DAPIT cells, and both glu-
cose consumption and lactate production were significantly enhanced. Interestingly, these
changes are reminiscent of the Warburg effect observed in many cancers and stem cells.

Hifla stabilization is also involved in EMT, which is a process of epithelial cells losing cell-
cell junctions and baso-apical polarity while acquiring plasticity, mobility, invasive capacity,
stem-like characteristics and resistance to apoptosis [60-62]. This cell biology program is active
in embryos, fibrosis, wound healing and in promoting metastasis in cancer. In addition to
Hifla, the Wnt/B-catenin pathway signalling also controls EMT upon hypoxic stress in cancer
[60,61]. One of the hallmarks of EMT in cancer is the disappearance of E-cadherin from the
cellular membrane and its replacement with N-cadherin. Several key transcription factors regu-
lating E-cadherin expression and/or the fate of other epithelial molecules are direct or indirect
transcriptional targets of the canonical Wnt pathway [61]. Accordingly, we saw E-cadherin
shift to N-cadherin (and regulation of various other proteins) in DAPIT cells and nuclear
expression of B-catenin indicating activation of Wnt signalling. All these molecular findings
provide evidence that supports the involvement of DAPIT over-expression in altered mito-
chondrial function in cancer and stemness.

EMT resembling change in DAPIT cells induced transformation of regular cuboidal epithe-
lial-like cells into irregularly sized and shaped cells showing a polygonal, tightly packed, sheet-
like appearance with short projections reminiscent of mesenchymal-like cells. However, in
contrast to mesenchymal cells, DAPIT cells presented an unexpected decrease in migration
capacity. This suggests that some of the defects caused by DAPIT over-expression suppressed
the normally improved migratory capacity of mesenchymal-like cells. However, if cell adhesion
was unaltered, dissociation from the surface was more frequent.

DAPIT cells grew slower while presenting normal viability. We studied the cell-cycle pro-
gression by thymidine synchronization and found that DAPIT cells were arrested in G1. Previ-
ously it was shown that the activation of Hiflo. (which occurred in DAPIT cells) in embryonic
stem cells and colon cancer cells under hypoxia inhibited transcriptional activity of -catenin
resulting in G1 arrest [63,64]. Taken together, the physiological properties of DAPIT cells
resemble an EMT-like phenotype with mitochondrial impairment leading to glycolytic metab-
olism, decreased cell proliferation and migration, and an increase in cell dissociation from the
surface, the issues active in varying conditions of cancer and stem cells. Interestingly, searching
in the Oncomine cancer genomics database revealed a duplication in Usmg5 copy number in
various cancers (Table 2). This was ranked within 15% of top of duplicated genes in classified
brain, pancreas, liver, sarcoma, kidney, lung, gastric, leukemia, breast and ovarian cancers.
Despite the link between DAPIT and the tumorigenic capacity has not been sufficiently dem-
onstrated, this result strengthens a correlative involvement of DAPIT in cancer and suggests a
possible oncogenic function for it.

In summary, we have characterized the effect of a stable over-expression of DAPIT in a cell
culture model; at the level of morphology, molecular biology, metabolic homeostasis and cell
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behavior. The over-expression of DAPIT in HEK293T cells impaired mitochondria promoting
the activation of Hiflo. and Wnt/B-catenin signaling, which resulted in a shift of aerobic metab-
olism to more glycolytic direction and in cell dedifferentiation resembling EMT. We suggest
that DAPIT over-expression couples changes in mitochondrial metabolism to physiological
and pathophysiological activities at the cellular level, possibly including cancer.

Supporting Information

S1 Fig. Mitochondrial metabolism (activity) at cellular level. Protein levels estimated by
Western blot of (A) DAPIT and (B) VDAC. (C) Citrate synthase activity. (D) Protein level of
NDUES3. Inhibitor-sensitive oxygen consumption of (E) complexes I, II, IV and (F) complex
V in digitonin-permeabilized and intact cells. Protein level of (G) ATP5a and (H) Sirt3. (I)
Basal and maximal respiration. (J) H"-ATP synthase activity measured by spectrophotometric
analysis. Mitochondrial (K) membrane potential and (L) superoxide levels at cellular level mea-
sured by flow cytometry of TMRM (200nM, 30', 37°C) and Mitosox (2,5 pM, 45’, 37°C) stained
cells. (M) Protein level of HSP60. Representative immunoblots are shown in Fig 2M. The error
bars are S.D. and asterisks indicate: “*p<0.01.
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