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Abstract

Childhood growth is of interest in medical research concerned with determinants and consequences of
variation from healthy growth and development. Linear spline multilevel modelling is a useful approach
for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of
repeat measures, the requirement for all individuals to be measured at the same ages and bias due to
missing data). Here, we outline the application of this methodology to model individual trajectories of
length/height and weight, drawing on examples from five cohorts from different generations and different
geographical regions with varying levels of economic development. We describe the unique features of the
data within each cohort that have implications for the application of linear spline multilevel models, for
example, differences in the density and inter-individual variation in measurement occasions, and multiple
sources of measurement with varying measurement error. After providing example Stata syntax and
a suggested workflow for the implementation of linear spline multilevel models, we conclude with
a discussion of the advantages and disadvantages of the linear spline approach compared with other
growth modelling methods such as fractional polynomials, more complex spline functions and other
non-linear models.
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I Introduction
I.I Background

Childhood growth is a key indicator of a child’s health and development,' and is also an important
influence on health and wellbeing later in life.>”>

There is evidence that the growth patterns of children, in the absence of ill-health or other adverse
environmental conditions, are remarkably similar across different countries of the world, even those
with very different levels of economic development.® However, poor health and nutrition can
prevent a child from attaining their genetically determined growth potential." The geographical
and social patterning of these health and nutritional insults results in growth differences between
high-, middle- and low-income countries,” as well as generating within-country socioeconomic
differentials in growth and final body size.*’

Appropriate modelling of longitudinal data is required in order to compare growth patterns
across populations, examine factors that influence growth or assess associations between growth
and later outcomes. This presents several statistical challenges. The non-independence of repeat
measures within an individual must be considered in order to obtain appropriate standard errors.
Traditional methods that have been used in the analysis of child growth data, such as the inclusion
of z-scores for multiple child growth measures in a multiple regression model,'® do not properly
model the clustering of measurements within individuals. As children grow, the scale of growth
measurements, and therefore variance and measurement error, increases with age. Although z-score-
based methods address this by standardising the measurements across time, they do not allow the
true shape of growth trajectories to be modelled. Sampling designs within many studies also present
challenges for the analysis of growth data. For example, there may not be balance in the timing of
growth measurements available for each individual. Even when follow-ups are planned for certain
ages, there is often a range of actual ages at attendance. The number of growth measures per child
may also be variable. Z-score-based methods often rely on analysis of the subset of individuals with
complete data at all measurement occasions, thus reducing power and potentially introducing bias.
Furthermore, if multiple growth measurements are included in regression models, these models can
suffer from multicollinearity because of the strong correlations between measurements on the same
individual.'! Finally, if associations between growth measures and a later outcome are conditioned
on later growth measures, the coefficients are difficult to interpret and results can be affected by the
reversal paradox.'?

In this paper, we outline the application of linear spline multilevel models to length/height and
weight trajectories in childhood, providing guidance on the process. We use examples from five birth
cohort studies (see Tables 1 and 2 for information about each cohort) from different generations and
different geographical regions with varying levels of economic development: (1) The Avon
Longitudinal Study of Parents and Children (ALSPAC), a cohort of children born in the early
1990s in the South-West of England, (2) Born in Bradford (BiB), a cohort of children born
between 2007 and 2010, in a deprived city in the North of England, (3) a cohort of children born
in 2004 in Pelotas, a city in the South of Brazil, (4) Generation XXI, a cohort of children
born in 2005/2006 in the North of Portugal and (5) the Promotion of Breastfeeding Intervention
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Table |. Characteristics of birth cohorts.

Born in Born in Pelotas
Bradford Bradford Generation 2004
ALSPAC (White British) (Pakistani) XXI cohort PROBIT
Total sample size included in 14,048 613 777 5282 4188 17,046
growth analysis
% male 51.5 51.6 50.1 50.5 51.8 51.8
% preterm birth 6.1 6.1 4.6 72 14.0 =2
(<37 weeks gestation)
Mean maternal height in cm (SD) 164.0 (6.7) 164.0 (6.2) 159.4 (5.8) 160.5 (6.1) 158.7 (6.4) 164.4 (5.6)
% mothers who smoked 25.6 34.6 3.6 20.7 27.4 2.0

in pregnancy

ALSPAC: The Avon Longitudinal Study of Parents and Children; PROBIT: the Promotion of Breastfeeding Intervention Trial.
*Eligibility criteria for PROBIT mean that all infants were term births (>37 weeks gestation) with a birth weight >2.5kg.

Trial (PROBIT), a national cohort born in the late 1990s in Belarus. Differences in data structure
across the cohorts have implications for the application of linear spline multilevel models.
We describe the two cohorts with the greatest difference in data structure (ALSPAC, which
has very large inter-individual variation in the number and ages at measurement and measures
from two sources with differing accuracy, and the 2004 Pelotas cohort, which has defined follow-
up visits with very little inter-individual variability in age at attendance and all measurements
are made by researchers) in detail in the main body of the text. The other three cohorts are
presented in full in the online-only supplement, with key details presented in the main manuscript
when relevant.

The paper is structured as follows. In Section 2, we describe multilevel models and their utility
for modelling longitudinal data. In Section 3, we outline the cohorts used as illustrative examples
in this paper, describing the country and setting in which they are based, and the growth data
available. In Section 4, we outline the application of the growth models within our example
cohorts, including a discussion of the process of model selection, any challenges we
encountered in model convergence and model checking. Finally, in Section 5, we conclude with
a discussion of the advantages and disadvantages of the linear spline multilevel approach
compared with other growth modelling methods such as fractional polynomials, more complex
spline functions and other non-linear models, as well as a consideration of the implications of our
findings for the application of linear spline multilevel models in other cohorts with different data
structures. We provide a suggested workflow for the implementation of these models, and sample
Stata code.

2 Multilevel models for modelling growth trajectories
2.1 Multilevel models

Multilevel modelling is one approach that can be used to overcome some of the challenges in
modelling longitudinal data. After selecting the appropriate function for age in order to model
the average relationship between age and length/height or weight (or any other variable measured
longitudinally'?), individual-level (level 2) random effects for the intercept and age coefficient(s)
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capture each individual’s deviation from the average trajectory. These individual summaries of the
growth trajectory can be extracted and related to later outcomes using a two-step process'* ' orin a
single-step process in multivariate models.'*'® Individual-specific occasion-level (level 1) residuals
are also estimated; these capture measurement error, that is, the deviation of observed measures
from values predicted by the model."

In contrast to z-score-based analysis approaches, multilevel modelling can capture the shape
of growth over time, rather than relying on standardising the scale and variance of growth
measures. The changing measurement error over time can be explicitly modelled. There is also
more flexibility in terms of the data structure; there is no requirement for individuals to have
been measured at the same ages,'” and varying numbers of measurements between individuals
can be incorporated. All individuals with at least one observation can contribute to the model
under the assumption that data are missing at random, that is, the probability of an observation
being missing is related to other observed variables for that individual, but does not depend on the
true value of the missing observation.?® A random slopes model for linear change in an outcome can
be written as follows:

Yii = Bo + ug; + P1 x (age); + ui; x (age); + e (D

where yj; is the weight for individual j at time i, and
eoij ~ N(0,02%) and (ug;, ui;) follow a bivariate normal distribution with means of zero and

covariance
2
o
Qu — u0 )
0,01 Oy

Here, By and B;(the ‘fixed’ coefficients) represent the average intercept and slope, respectively, and
ug; and uy; (the ‘random’ coeflicients) represent the deviation from the average intercept and slope,
respectively, for individual j. The best linear unbiased predictions of these residuals are shrunk
towards the mean, with estimates for individuals with greater variation (e.g. those with fewer
growth measures) having greater shrinkage.?! The occasion-level residuals eg; represent the
measurement error, and have constant variance, but the model can be extended to incorporate a
complex variance structure at the occasion level.?>

2.2 Modelling non-linear growth

The simple multilevel model for growth shown above represents linear change in the outcome over
time. For most biological processes, growth is non-linear. This non-linearity can be incorporated into
multilevel models in several ways. One method would be to impose a transformation on either the
growth measurements or on age, such that the relationship is approximately linear.?® This approach is,
however, not very flexible and results in growth curves that are difficult to interpret. A more flexible
approach is to model the non-linearity by including non-linear age functions in a multilevel model.
This requires the best-fitting function of time to be selected. Quadratic or cubic models may fit the data
well, if not, a broader range of curves could be considered by using fractional polynomial models; an
approach that has been described in detail elsewhere.>*? Briefly, a series of models are run using each
of eight powers of age (-2, —1, —0.5,0, 0.5, 1, 2, 3, where a power of zero is the log function), followed
by models incorporating each combination of pairs of these powers. For more complex curves, all
combinations of multiple powers can also be compared.?® The best fitting of these models is then
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selected, often by comparing the deviance across each model. The equation for a model with two
powers of age, p; and p,, in a multilevel framework is as follows:

vii = Bo + (B1 + wi)typ" + (Br + uzp)typ* + uoj + e if p1 # pa

. ()

vi = Bo+ (B + ui)typ" + (B2 + uxtyp log iy + ug; + ey if p1 = pa
where By, B and B, are the fixed coeflicients describing the average shape of the trajectory, and uy;
describe the deviation of individual ;’s trajectory from this average.

2.3 Linear spline multilevel models

A well-fitting multilevel model estimating a curve can be very useful for describing the average
pattern of growth, or for assessing the relationship between early exposures and later growth.
However, such models are not very conducive to exploring associations between growth and later
outcomes, or for comparing growth across populations, since the polynomial terms (and their
associations with other variables) are not easily interpreted. One approach that can yield more
interpretable growth coefficients is to use a series of linear splines, joined at ‘knot points’, to
model the growth trajectory. These models have also been referred to as piecewise linear
or broken stick. As an example, a multilevel linear spline model for weight with knots at 3 and
12 months would allow different linear slopes from 0 to 3 months, 3 to 12 months and beyond
12 months, with these slopes varying between individuals.

We define ¢ knot points at times #;, k=1,...,c, and define 71,=0, 7., = max(time). For person j,
with weight;; observed at time ¢; we create c+1 splines s

For k=1,.. ,c: sju=01f t;<t;_,

Sije =ty — te—1 if 1 < 1

S,'jk =t — t_q if tij > 1y

In the multilevel context, a model with ¢ knots would then be of the form

c+1

Vi = Bo+ g+ Y (B + u)sie + ¢ (3)
k=1

where By B.+1 are the fixed coefficients describing the average intercept and average slope between
each set of knots, u; describe the deviation for individual j from the average slope between knots
k—1 and k and u, is the deviation of individual ;’s intercept from the average intercept.

Several methods for selecting the number and position of knot points are available. We have
previously used fractional polynomials to derive a smooth function for the curve, and used the
derivatives of this curve to decide the number and position of the knot points.*'> Another possibility
would be to start with a large number of knot points, gradually reducing the number until a
‘smooth’ curve is achieved. Other options could be to place knot points at the centiles of the
distribution of age, or use stepwise regression to select knots where there is statistical evidence of
a difference between the linear slopes either side of the knot point.?” Subject knowledge of the
underlying biology of growth patterns may also decide the choice of knot point positioning, as
may the availability of data — studies with few measurement occasions may only be able to place
knot points at the mean age of each data collection. In Section 3, we describe the process of knot
point selection in our example cohorts.
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3 Description of example birth cohort studies

In this paper, we describe the application of linear spline multilevel models to child growth data
in the ALSPAC and in the Pelotas 2004 cohort. Details of these two cohorts are provided
below. Complete details of the remaining three cohorts from which we draw examples
(BiB,?® Generation XXI and PROBIT?) are provided in the online supplement; brief details are
shown in Tables 1 and 2, and are discussed throughout the paper where insights can be drawn that
are not possible from ALSPAC and the Pelotas 2004 cohort.

3.1 The ALSPAC

3.1.1 Description of cohort

The ALSPAC is a prospective cohort study investigating the health and development of children in
the South-West of England, complete details of which are published elsewhere.**! Pregnant women
residents in one of three Bristol-based health districts with an expected date of delivery between 1
April 1991 and 31 December 1992 were invited to take part in the study. Of these women, 14,541
were recruited. From these pregnancies, there were 14,062 live-born children, 13,988 of whom were
alive one year. Follow-up has included parent- and child-completed questionnaires, links to routine
data and clinic attendance.

3.1.2  Description of child growth data

Length/height and weight data for the children are available from several sources. Birth length and
weight are available for most children. Between birth and age 5 years, measures are available from
routine child health clinics for most children, and from research clinic measurements on a random
10% subsample of the cohort. All cohort members were invited to research clinics from age 7
onwards. Across all ages parent-reported measures are available. Complete details of the
measurement protocols are provided in the web supplement.

After the exclusion of multiple births (whose growth rates differ considerably from singletons), at
least one growth measurement is available for 14,048 children. These children have a combined total
of 106,933 length/height measurements and 120,081 weight measurements (median number of
measurements per individual 7 for length/height and 8 for weight, interquartile ranges 5 to 9 and
5 to 11, respectively; minimum and maximum number of measurements per child were 1-36 for
height and 1-34 for weight).

3.2 The Pelotas 2004 birth cohort

3.2.] Description of cohort

From 1 January 2004 to 31 December 2004 inclusive, a population-based birth cohort
study attempted to enrol all births from mothers residing in the urban area of the city of
Pelotas, Southern Brazil. Births were identified by daily visits to the five maternity hospitals.
Mothers were interviewed soon after delivery. Of the 4263 live births in Pelotas during 2004,
4231 were enrolled in the cohort study. Follow-ups were done at home at mean (SD) ages
3.0 (0.1), 11.9 (0.2), 23.9 (0.4) and 49.5 (1.7) months; note the small inter-individual variation
in the ages at follow-up occasions, which was made possible by the strategy of visiting children
in their own homes and planning the visits individually to be as close to the target follow-up age
as possible. Further information about the methodology of the 2004 Pelotas birth cohort study
is described in detail elsewhere.*
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3.2.2 Description of child growth data
In addition to birth length and weight, length/height and weight were measured at each follow-up;
see supplementary material for detailed protocols.

The sample size for inclusion in this paper is 4188 singletons, with a combined total of 19,721
length/height measurements and 19,688 weight measurements (median number of measurements
per individual 5 for both length/height and weight, interquartile range 5 to 5 because most
children attended all follow-ups).

3.3 Comparisons between the cohorts

In addition to differences in year of birth, socioeconomic factors, etc. between the cohorts (Table 1),
there are data differences that have implications for the application of linear spline multilevel
models. Within ALSPAC, growth measurements are available from routine health records,
from research clinics and from parent-completed questionnaires. The likely differential accuracy
of these measurement sources must be taken into account within the model. The Pelotas 2004
cohort has defined follow-up ages of birth, 3 months, 1, 2 and 4 years. There is very little inter-
individual variation in the ages at which children were measured. This is in stark contrast to all of
the other four cohorts, which have a much broader spread of ages at measurement. This has
implications for model development — in Pelotas 2004 there is little option but to fit the knot
points at or around the target ages for follow-ups, whereas in the other four cohorts, models
can be tested and compared placing the knot points at various ages. PROBIT combines research
clinic and routine healthcare measurements, with very high levels of participation. The BiB cohort
participants are approximately 50% of white ethnicity and 50% of Pakistani ethnicity. Given
the likely differences in growth trajectories between these groups, it is appropriate to model this
from the outset. Generation XXI has the greatest frequency of measurements in all the five cohorts.
The density of measurements in early infancy means that an additional knot point in the first weeks
of life can be included.

4 Application of linear spline multilevel models for childhood growth
4.1 Selection of the number and position of knot points

The differing data structures necessitated a different strategy to identify and select the knot points
within each cohort (Figure 1, Supplementary Figure 1, Table 2). Within ALSPAC, growth
measurements were available over most of the age range birth to 10 years owing to the use of
routine health visitor measurements and the wide variability in ages at clinic attendance and
completion of questionnaires. Thus, there was very little restriction in where the knot points for
the linear spline model could be placed. The approach used in this cohort was to estimate the curve
that best described the growth data using fractional polynomials, and use this to estimate the
approximate number and location of knot points. The best-fitting fractional polynomial was
established for both length/height and weight by comparing the log likelihood values from
models containing one or two age terms. For both height and weight, the best-fitting fractional
polynomial had the age powers age® and age'/?>. For weight in males, the fixed part of the equation
for this best-fitting fractional polynomial was

weight;; = By + Bi(ty)” + Ba(ty)'?
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(a) ALSPAC: (b) Pelotas 2004 cohort
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Figure 1. Distribution of the ages at measurement in (a) ALSPAC and (b) Pelotas 2004 cohorts.

a. ALSPAC: b. Pelotas 2004 cohort

ALSPAC: The Avon Longitudinal Study of Parents and Children.

Note: lllustrating the greater inter-individual variability in ages at measurement in ALSPAC compared with the Pelotas
2004 cohort. Other cohorts are shown in Supplementary Figure |.

where

t;=age (weeks divided by 10) +0.01 at time i for individual j

Bo=2.92 (SE=0.023)

B1=0.0007 (SE =0.0000004)

B>=3.02 (SE=0.006)

Note that 0.01 is added to all ages in order to make all ages above zero because some of
the fractional polynomial models include log(age) terms. The mean trajectory indicated by the
best-fitting fractional polynomial models for length/height and weight in males for the
ALSPAC cohort are shown in Supplementary Figure 2. These models indicated that for both
weight and length/height, there appeared to be a phase of rapid growth in the first few months
of life followed by a slightly slower rate of growth for the rest of infancy (up to approximately 1
year). For length/height, this was followed by a slightly slower rate of growth between about 1
and 3 years and a slower still rate of growth after about 3 years of age. For weight, the rate
of growth seemed to increase after about age 7. In order to select the number and position
of knot points, we fit linear spline models with all combinations of the following knot points:

Length/Height: early infancy knot point at 2, 3, 4, 5 or 6 months, late infancy knot point at
8,9, 10, 11, 12, 13, 14, 15 or 16 months and early childhood knot point at every one month
interval between 24 and 48 months.

Weight: early infancy knot point at 2, 3, 4, 5 or 6 months, late infancy knot point at 8, 9, 10, 11,
12, 13, 14, 15 or 16 months, carly childhood knot point at every one month interval between 24
and 48 months and late childhood knot point at every one month interval between 60 and 108
months.

The ‘best-fitting” model was selected on the basis of comparing the log likelihoods from each of
these models, for males and females separately. This identified the following knot points: for weight
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for boys knots were birth, 4, 11 and 80 months and for girls were birth, 4, 10 and 80 months; for
length/height for boys knot points were birth, 3, 10 and 29 months and for girls were birth, 2, 11 and
32 months. However, for ease of interpretation, presentation of results, and combination of males
and females in analyses, we sought to simplify the model. Thus, we assessed whether the following
knot points resulted in adequate model fit in a model combining males and females, but allowing
different average intercepts and slopes by gender: knot points at 3 months, 1 year and 3 years for
length/height, and 3 months, 1 year and 7 years for weight. This simplification of the model did not
result in appreciably worse model fit (Supplementary Table 1).

Within the Pelotas 2004 cohort, growth measurements are only available from follow-ups,
around which there is relatively little variability in the participants’ ages at attendance (Figure 1).
We therefore fit models in the Pelotas data with the knot points at the planned ages of follow-ups
(three months, one year and two years). The slopes for the rate of weight gain between 1 and 2 years
and 2 and 4 years were almost identical. Therefore, the final model for weight was chosen as having
two knot points, at three months and one year.

Knot points for BiB and Generation XXI were selected similar to ALSPAC. Knot points of 4
and 9 months were found to fit the data best in BiB. In Generation XXI, in addition to 3 and
12 months, a knot point in very early infancy (10 days) was included in the weight trajectory
model in order to improve model fit. A slightly different process of knot point selection was
used in the PROBIT, which aimed to select the knot points leading the best fit to the fractional
polynomial model. Complete details for these three cohorts are provided in the supplementary
material.

4.2 Including covariates

In all cohorts, interactions between gender and the intercept and each slope were fitted. Within BiB,
interaction terms allowed different average intercepts and slope for White British and Pakistani
ethnic groups. Within ALSPAC and BiB, measurements were available from multiple sources
with different measurement error. In both cohorts, a dichotomous indicator of measurement
source was included in the models as a fixed effect, representing measured (research clinic or
health worker) versus parent-reported in ALSPAC, and research clinic versus health worker in
BiB. Separating the research clinic and health worker measurements in the ALSPAC model did
not improve model fit and so was deemed unnecessary.

The growth trajectory in the ALSPAC cohort, with separate intercepts and slopes for males and
females and a fixed effect for measurement source, can therefore be represented by the following
equation:

c+1

vii = Bo + Br(male) + uo; + Y (Bk + B (male) + ug)si + B3(source); + e )
k=1

where B is the fixed coefficient describing the average intercept in females, 8; is the fixed coefficient
describing the difference in average intercept between males and females, 8, are the fixed coefficients
describing the average linear slopes in females, §; are the fixed coefficients describing the difference in
average linear slopes between males and females, 85 is the fixed coefficient describing the average
difference for measurements from parent-reported questionnaires compared with those from
research clinics or health workers, uy; describe the deviation for individual j from the average
slope between knots k—1 and k, and u,; is the deviation of individual ;’s intercept from the
average intercept.
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4.2 Complex level | variation

Since the scale and measurement error of height and weight vary over time, it is necessary to measure
the potentially complex nature of level 1 variation. We did this by allowing the within-individual
(occasion level, level 1) variances to vary with time. The way in which complex level 1 variation is
modelled varies between outcomes and datasets, and can make a considerable difference to model
convergence and model fit. Possible approaches to parametrising age as a level 1 random effect
include as a continuous term, or as each of the linear splines. The details of which functions of age
were modelled as complex level 1 variation in each model are provided in the supplementary
material.

Inclusion of an occasion-level random effect for the measurement source variable in ALSPAC or
BiB, gender in all cohorts, or ethnicity in BiB did not improve the differences between observed and
predicted measurements, so fixed effects were decided to be sufficient. In each model, we assumed
that there was no correlation between the occasion-level random effects. Thus the occasion-level
variance/covariance matrix had all off-diagonal terms set to zero.

4.3 Modelling the variance-covariance matrix of individual-level
random effects

We put no constraints on the individual-level variance/covariance matrix for most models. However,
for both the Pelotas and BiB length/height models, we could not estimate the covariance between the
individual-level random effects for birth length and growth between 0 and 3/4 months. If these
covariances were estimated, the model estimated a negative variance for the level 2 random
effects for growth between birth and 3/4 months. Similarly, the covariance between birth weight
and weight gain between 0 and 10 days could not be estimated in Generation XXI. This possibly
reflects the lower frequency of measurement occasions in Pelotas, and the lack of measured birth
length in BiB. Variation between individuals increased gradually over time, whereas that within
individuals increased sharply from birth and more slowly after 1 year.

4.4 Model checking

For all cohorts, most individuals had at least one growth measurement within each time period
defined by the linear splines (Supplementary Table 2). One exception was the length trajectories for
BiB, where birth length was not measured. For the purposes of comparison in this paper, we have
estimated the length trajectories from birth for BiB, but it should be noted that the estimates for
birth length are less reliable in BiB than in the other cohorts due to the lack of measured birth
length. In order to check the influence of missing birth length on this model, we also fitted models
with age centred at 2 weeks and at 1 month; model fit was similar and estimated mean growth rates
in the first period were also similar.

Model fit, as judged by the differences between observed growth measurements and those
predicted by the models, was good in all models (Table 3 and Supplementary Table 3). For all
cohorts, the individual- and occasion-level residuals were approximately normally distributed
(Figure 1 and Supplementary Figure 3). There is some evidence that deviation from normality
increased as measurements became more sparse, generally as the children get older within each
cohort.

We plotted the residuals from a linear regression between consecutive level 1 residuals for the
same individual against the time difference between the consecutive measures (Supplementary Figure
4) and saw no evidence of autocorrelation. In order to verify that models were not dominated by
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Table 3. Differences between observed measurements and those predicted by the multilevel model for ALSPAC.

Mean actual Mean predicted

measurement (SD) measurement (SD) Mean difference (SD)
ALSPAC, N=13,922
Length/height models
Birth length 50.61 (2.36) 50.72 (1.65) —0.11 (1.19)
>0 to <3 months 57.25 (3.11) 57.18 (2.66) 0.07 (1.33)
>3 months to <| year 69.95 (4.78) 70.06 (4.39) —0.11 (1.38)
> year to <3 years 83.64 (5.56) 83.61 (5.12) 0.02 (1.48)
>3 years to <10 years 117.70 (15.26) 117.65 (15.00) 0.05 (1.71)
Weight models
Birth weight 3.40 (0.55) 3.36 (0.47) 0.04 (0.15)
>0 to <3 months 4.61 (0.91) 4.65 (0.87) —0.04 (0.17)
>3 months to <| year 8.49 (1.48) 8.45 (1.44) 0.05 (0.27)
> 1| year to <7 years 15.28 (4.26) 15.29 (4.11) —0.01 (0.79)
>7 years to <10 years 29.41 (6.48) 29.42 (6.14) —0.01 (1.06)

ALSPAC: The Avon Longitudinal Study of Parents and Children.

individuals with either very few or very many growth measures (those with many measures in
particular may have different growth patterns compared with the average, e.g. they may be
measured frequently because of failure to thrive), sensitivity analysis were conducted excluding
individuals with less than the 25th centile number of measurements or more than the 75th centile
number of measurements. As an example, within the ALSPAC models this resulted in coefficients
and individual-level residuals that had correlations >0.90 compared with the model including all
individuals. An alternative check that we could have performed to check this assumption would be
to only include a certain number of measurements for individuals with many measures.

4.5 Growth patterns within each birth cohort study

Within each cohort, similar patterns of growth were seen such that rapid length/height growth and
weight gain in early infancy were followed by a slowing down of growth in later infancy and early
childhood (Table 4 and Supplementary Table 4). In ALSPAC, where data are available for older
ages than the other cohorts, rates of weight gain began to increase again between ages 7 and 10 years
(Supplementary Figure 4). Rates of growth are broadly similar across the cohorts; the greatest
differences are seen at birth, with greater similarity between the cohorts in terms of postnatal
growth.

The variances and covariances of the level 2 random effects show broadly similar patterns across
all cohorts (Supplementary Table 5).

5 Discussion and relevance for other studies
5.1 Application of linear spline multilevel models for childhood growth

5.1.1  Model fit and similarity of knot points across cohorts
Within each cohort, linear spline multilevel models provided good fit to the observed data. Similar
knot points summarised the growth trajectories in all five cohorts; faster growth was observed in the
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first few months of life, followed by slower growth for the rest of the first year of life and an even
slower growth rate later in childhood. The similarity of the knot points selected in each of these
diverse cohorts provides some external validity to the model and reassurance that these models are
identifying periods of growth which are biologically, as well as statistically, distinct. The knot points
identified in these five cohorts could be used as a starting point for model selection in the application
of this methodology to other datasets. The analyses we present here also provides reassurance that
routinely collected growth measurements can be successfully used to model child growth in
epidemiological studies, or to supplement research measurements of growth in order to minimise
data collection costs.

The frequency and intensity of data collection within each cohort had implications for the
application of the linear spline multilevel models. Where data had been collected at a wide range
of ages across the cohort members, alternative knot point positions could be tested to select the best-
fitting model. A variety of methods could be used to select the knot points (see Box 1: suggested
workflow), but care should be taken in this process, for example, knot points should not be placed
too close together in such a way that few individuals have measurements between the knot points. In
cohorts with fewer measurement occasions, knot points had to be fixed at planned follow-up ages.
However, the analyses of the ALSPAC cohort demonstrated that the exact position of the knot
points does not always have a strong effect on model fit, suggesting that knot points could be varied
depending on data availability and/or the research question of interest. Given that the exact position
of the knot points had only limited consequence, we would advise not to interpret the exact growth
periods with too much certainty — rather, we would suggest that they should be interpreted as
approximate periods of the life course, for example, early infancy, late infancy, early childhood,
mid childhood, etc. In the Generation XXI cohort, where most children had several measures of
growth taken in the first weeks of life, good model fit could only be achieved if an additional knot
point was included at age 10 days, modelling slow weight gain or neonatal weight loss in early life.
These early weight changes could not be modelled in the other cohorts with fewer early life
measurements; in the other four cohorts, a constant rate of weight gain had to be assumed
between birth and 3/4 months of age.

5.1.2  Modelling complex level | variation

Level 1 variation can arise not only from measurement errors due to instrument or recording errors,
but also due to day-to-day fluctuations. Both of these types of measurement error vary with age — it
is far more difficult to measure the length of a young baby than to measure standing height in an
older child, and day-to-day fluctuations in weight are likely to represent a greater proportion of a
baby’s total weight compared with a young child. Knowing about the likely structure of these
measurement errors can inform the choice of modelling for the level 1 variation. However,
comparison of model fit between alternative specifications is likely to be important when
determining the optimal level 1 variance structure — for example, there was variability between
our models in whether including a linear age term or all linear splines in the level 1 variance
provided the best combination of convergence, model fit and plausible (positive) estimates of all
level 2 random effect variances. There is some evidence that misspecification of complex level 1
variation has little influence on the fixed effects in a multilevel model,** but it can affect the level 2
residuals.

5.1.3 Software
In our examples, all analyses were conducted using the runmlwin command®* in Stata version 12,%
which calls the MLwiN program.*® Other software packages, for example, Stata alone
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(without calling on MLwiN), SAS and R are able to perform similar modelling, but may not have
some of the flexibility offered by MLwiN. For example, within Stata and R it is not possible to allow
complex level 1 variation. We provide example Stata syntax for these models in the online
supplementary material.

5.1.4  Further developments

In our analyses, we observed some non-normality in the level 1 residuals. Although there is some
evidence that this has limited impact on the fixed effects of such models,”’* one possible further
development could be to model different distributions for the level 1 residuals. The methods used
here allow for correlation between growth measures at different times to depend on the individuals’
underlying birth size and growth trajectory. They do not allow for autocorrelation beyond this —
where for example, measures may have a greater correlation than that predicted by the model
because of a period of illness or a short-term growth spurt. Autocorrelation can be modelled
using standard software when the intervals between repeated measures are regular; but this is
more complex when there are irregular gaps between measurement occasions: it is then necessary
to parametrise the autocorrelation function explicitly.®

5.2 Linear spline multilevel models and other models for childhood growth

Linear spline multilevel models assume biologically implausible piecewise linear growth. However,
this permits a simplification of the growth trajectories. Using these models, linear growth rates in
different periods of childhood can be compared across populations, which is simpler to present and
understand than describing differences in more complex non-linear growth functions. The linear
spline multilevel modelling approach is particularly useful for exploring the associations between
childhood growth and later outcomes. Regression models for the association between linear growth
rates in different periods of childhood and later outcomes are more easily interpretable'*!” than
coefficients for polynomial age terms.

Other methods are available for modelling childhood growth, which do not assume the
biologically implausible piecewise linear structure. Apart from the fractional polynomial models
mentioned in Section 2, other approaches to modelling a curved function for growth include (i) non-
linear splines,*° (i) superimposition by translation and rotation, in which individual growth curves
are brought towards the mean curve by three parameters that shift the curve up or down, left or
right, and stretch or squash the age axis*' and (iii) Preece—Baines models, which involve fitting many
curves and result in five parameters, thus having relatively few degrees of freedom.** From the non-
linear splines models or fractional polynomial curves, it is possible to extract features of the
individual curves, for example, the age and magnitude of peak height velocity, or if body mass
index (BMI) was the growth process being modelled, features of interest might include the BMI peak
in infancy or the adiposity rebound (BMI nadir that occurs at approximately age six years). The
summary measures of interest must be defined before commencing analysis.

Thus, compared with curvilinear models for growth, the main advantage of the linear spline
approach is its interpretability, whilst its main disadvantage is the non-plausibility of the
piecewise linear shape. Compared with simpler z-score-based approaches to modelling growth,
some of the key advantages are that multilevel modelling allows the shape of the trajectory to be
modelled, does not require complete and balanced data for all individuals and correctly models the
non-independence between repeat measures on the same individual. Multilevel modelling does, of
course, have some disadvantages compared with simpler z-score approaches. It requires specialist
software and statistical knowledge, whereas z-score analysis can be done by many analysts on
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standard software. The balance of advantages and disadvantages of multilevel modelling compared
with simpler methods will depend on several factors. Firstly, for cohorts utilising growth data
collected as part of routine health care, or where ages at attendance at planned research clinic
follow-ups are very variable between individuals, z-score-based methods will be more difficult to
apply, and multilevel models will considerably increase power and efficiency. Likewise, similar
benefits to using multilevel models will apply if there is a lot of missing data. The larger the
number of measures per individual, and the closer together the measurements are over age, the
greater the extent multilevel models will reduce the dimensionality of the growth data and avoid
multicollinearity compared with z-score approaches.

5.3 Between cohort differences in growth patterns

The World Health Organization (WHO) developed a ‘growth standard’ for child growth, by
comparing growth patterns of children from a total of 8500 children from six countries between
1997 and 2003 (Brazil, Ghana, India, Norway, Oman and the United States). In order to be included
in the study, infants needed to be delivered at term, breastfed, suffering from no illnesses, from high
socioeconomic families and have mothers who did not smoke. In this healthy, affluent population
from diverse countries, the WHO described very similar growth patterns in children from all the
countries involved in their study.® In our analyses, despite the considerable demographic, social and
economic differences across these five cohorts, and despite the almost 20 years gap in the birth years
of the two UK-based cohorts, patterns of growth are remarkably similar across the populations. The
growth rates we observe are also similar to those seen in the WHO study. For example, the WHO
reported a median rate of growth between birth and three months of 0.996 kg/month for males and
0.868 kg/month for females. This compares with the mean rates of growth in this period observed in
each of our cohorts (e.g. 1.04kg/month in ALSPAC males, 0.87 kg/month in Generation XXI
females). With the exception of PROBIT, which excludes preterm and low birth weight infants,
these cohorts are general population studies. Unlike in the WHO study, there is a range of levels of
disadvantage within each cohort, and many of the children included in our analysis were not
breastfed, not term deliveries and suffered from childhood illnesses. ALSPAC participants tend to
be socioeconomically advantaged compared with the source population, and hence growth rates in
the ALSPAC cohort may not necessarily generalise to the whole population of Avon. However, the
Pelotas cohort had extremely high participation rates and does include some very low socioeconomic
status individuals. Thus it is reassuring that even in the presence of these complexities, similar
average growth rates are seen across the different cohorts. The most marked differences between
the cohorts included in our analyses were present at birth. Whilst genetic, maternal nutrition,
maternal smoking and other intrauterine factors may play a part, these differences are perhaps
most likely to be attributable to differences in maternal size; maternal height has been shown to
explain the majority of the maternal education differences in length/height growth within both
ALSPAC?* and the 2004 Pelotas cohort,” as well as the ethnic differences in birth size (but not
postnatal growth) in BiB.**

5.4 Conclusions

Linear spline multilevel models provide a useful method to summarise growth trajectories, reducing
the dimensionality of the data in cohorts rich in growth measurements, and providing interpretable
growth summaries that can be used to compare growth rates across populations, assess associations
between early life exposures and child growth or examine associations between child growth and
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Figure 2. Average predicted length/height and weight trajectories from the ALSPAC cohort; (a) Mean predicted

height trajectories for males (dashed line) and females (solid line) in ALSPAC and (b) Mean predicted weight

trajectories for males (dashed line) and females (solid line) in ALSPAC.
ALSPAC: The Avon Longitudinal Study of Parents and Children.
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Box |. Suggested workflow for the application of linear spline multilevel models.

|. Choose approximate knot point locations. Possible strategies include the following:

a. Use knowledge of the underlying biology of growth patterns to decide the choice of knot point positioning.

b. Identify the best-fitting curve (using fractional polynomials or other method) and use the derivatives of the curve
to identify the number and approximate timings of knot points.

c. Identify the best-fitting curve (using fractional polynomials or other method) and visually estimate the number and
approximate timings of knot points.

d. Start with a large number of knot points, gradually reducing the number until a ‘smooth’ curve is achieved.

e. Place knot points at the centiles of the distribution of age.

f. Use stepwise regression to select knots where there is statistical evidence of a difference between the linear slopes
either side of the knot point.

g. For datasets with a small number of follow-up occasions and limited inter-individual variability in the timing of
follow-ups, knot points can be placed at the target ages of follow-up occasions.

h. When modelling child growth data, it may be possible to start with the knot points identified in the five cohorts
shown in this paper (i.e. 10 days in data permits, then 3—4 months, 9-12 months, 3 years (height) and 7 years
(weight)).

2. Test various models to determine the final knot point locations. We suggest that this choice should be a
combination of model fit (which may be assessed by likelihood values, other model fit statistics, residual standard
deviation, differences between observed and predicted measurements, etc.) and interpretability.

3. Identify which covariates will be included and how these will be modelled, for example, as fixed effects only or as
random effects, with or without interactions between the covariates and the linear splines.

4. Determine whether it is necessary to model complex level | variation (e.g. this will be more important when the
variance of the outcome changes over time) and how best to model this (e.g. age could be modelled as a continuous
term or as each of the linear splines) — comparisons of model fit will be important in this process.

5. Perform model checks. Potential model checks include the following:

a. Examine the difference between observed and predicted measurements (range, mean and reference range) overall
and in different periods of time to check whether model fit is consistent across the time range of the model.

b. Assess the normality of level | and level 2 residuals.

c. Plot the difference between consecutive level | residuals for the same individual against the time difference
between the consecutive measures as a check for autocorrelation. If autocorrelation is detected, some statistical
software packages can model this.

d. Depending on the nature of the dataset, it may be prudent to conduct various sensitivity analyses, for example,
verify that models are not dominated by individuals with a greater than average number of measurements, verify that
the selected knot points are appropriate for all sub-groups of the population, verify that model fit is similar for all
sub-groups of the population, etc.

later outcomes. In five cohorts from different geographic regions and birth years, a good level of
model fit was achieved with similar knot points. This provides reassurance that the models are
identifying periods of growth with biological relevance, and provides a suggested starting point
for model estimation in other cohorts. A suggested workflow for the implementation of linear
spline multilevel models is shown in Box 1.
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