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Abstract

Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most
enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected
physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these
parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition
for resources. We show that kinetic parameters are under strong directional selection only up to a point, above which
enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modeling
approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme
features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome
of evolution on a common landscape, as mutation–selection–drift balance occupy a narrow area even when very
moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context encountered
by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift
and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to
high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes
selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield
extensive variance in evolutionary outcomes when documented costs to protein expression are applied.
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Introduction
Livingorganisms need to uptake and metabolize
nutrients, relying on enzymes to catalyze chemical reac-
tions along metabolic pathways. Accordingly, and despite
being intrinsically reversible (Haldane 1930; Klipp and
Heinrich 1994), in vivo enzyme-catalyzed reactions are
commonly thought of as an irreversible two-step process
(Michaelis and Menten 1913; Bar-Even et al. 2011, 2015;
Michaelis et al. 2011):

Eþ S�
kf

kr

ES!kcat
Eþ P; (1)

where kf and kr are the rates of association and dissociation
between enzyme and substrate, and kcat is the turnover num-
ber, that is the rate of formation of the product P from ES
complexes. The first part of this chemical equation describes
the encounters between the enzyme E and the substrate S;
the enzyme will be efficient if ES complexes form often and do
not dissociate before the substrate has been turned into a
product, which is reflected by the constant KM ¼ krþkcat

kf
. The

efficiency v of an enzyme—the rate at which it makes a prod-
uct P from S—depends on these two constants through
equation (2):

v ¼ kcat:½Etot�:
½S�

KM þ ½S�
; (2)

under the assumption that the concentration ½S� is approx-
imately constant and that of ½ES� is at a steady state
(Michaelis and Menten 1913; Briggs and Haldane 1925).

At first glance, Natural Selection is presumed to opti-
mize enzymatic efficiency by pushing kcat upwards and KM

downwards to universal physical limits. Enzyme efficiencies
are for instance limited by the diffusion properties of their
aqueous environment, which sets an upper bound of ap-
proximately 108 � 1010M�1s�1 for the ratio kcat=KM

(Alberty and Hammes 1958; Zhou and Zhong 1982).
Nearly optimal enzymes indeed seem to exist, as exempli-
fied by triosephosphate isomerase (TIM) whose ratio is
close to this theoretical ceiling (Knowles and Albery
1977). But they are uncommon: most enzymes appear to
be only moderately efficient and far off these physical lim-
its—including enzymes immediately flanking TIM in the
glycolysis metabolic pathway (Davidi et al. 2018). Indeed,
Bar-Even et al. (2011) have analyzed a data set of several
hundreds of enzymes and found a wide diversity among
enzyme parameters, thus sketching a puzzling pattern that
has far more in common with a zoo than it looks like
variations around an archetypal form.
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This wide distribution of enzyme features could partly
be explained by differences between enzyme behavior
in vivo and in vitro. Such differences are expected, first
because diffusion in a test tube is hardly comparable to
diffusion in the cytoplasm (Ellis 2001; Rivas et al. 2004;
Zhou et al. 2008; Rivas and Minton 2018). As the cytoplasm
gets packed, the cell approaches a state where molecules
are less mobile, hindering substrate-enzyme encounters
(Muramatsu and Minton 1988; Zimmerman and Minton
1993; Blanco et al. 2018). In this regard, KM values are likely
underestimated in vitro, and enzymes should perform less
efficiently in vivo. Simultaneously, macromolecular crowd-
ing can sometimes improve catalytic activity in vivo, mak-
ing specificity constants kcat=KM higher than their in vitro
estimates (Ralston 1990; Ellis 2001; Jiang and Guo 2007;
Pozdnyakova and Wittung-Stafshede 2010). Crowding
effects are obviously important for our understanding of
enzyme evolution but, alone, they are definitely too weak
to explain the wide variability across enzymes insofar as
their reported estimates typically lie in the range of one
order of magnitude (Davidi et al. 2016).

Another source of explanation to the observed distribu-
tion of enzymes (in)efficiencies is a failure of Evolution to
consistently optimize them, possibly due to physical con-
straints. Indeed, Heckmann et al. (2018) have shown how a
variety of kcats may evolve provided that some of them are
physically constrained. Besides the diffusion limit already
mentioned, constraints on enzyme evolution might include
an intrinsic trade-off (Gudelj et al. 2010; Stiffler et al. 2015)
that originates from the dependency of both kcat and KM on
intermediate energy profiles (Heinrich et al. 1991).
Nonetheless, this trade-off is scarcely observable among
evolved enzymes—Bar-Even et al. (2011) report a coefficient
of determination around 0.09 for the correlation between
log 10ðkcatÞ and log 10ðKMÞ—suggesting that it can be over-
come. Other constraints may exist and be specific of a given
reaction (Klipp and Heinrich 1994)—for example, reaction
reversibility—potentially explaining a part of the variance in
enzyme efficiencies. It remains that estimating constraints on
all individual enzymes appears like a daunting task, which
could be guided, in part, by the identification of deviations
from evolutionary predictions.

Following this idea, the premise of our theoretical investi-
gation into the origins of enzyme diversity is that it results
mainly from unconstrained evolution, such that the reported
differences may be caused by the combined action of selec-
tion and genetic drift. It is important to notice that the in-
formation we have is partial, as an enzyme’s activity is the
joint result of its kinetic constants and cellular concentration,
perhaps also contributing to the reported variance in the
former. In fact, Davidi et al. (2016)’s method to determine
in vivo turn-over rates lends some credence to the idea that
increased levels of expression make up for lower kinetic con-
stants (Davidi et al. 2018). It is therefore obvious that an
enzyme’s expression needs to be considered as another di-
mension of its activity, especially since it has been shown that
the evolutionary tuning of gene expression can happen very
quickly (Dekel and Alon 2005).

Concomitantly, an enzyme’s activity can be impacted by
protein misfolding, which reduces the effective enzyme con-
centration (Drummond et al. 2005; Yue et al. 2005; Tokuriki
and Tawfik 2009; Echave and Wilke 2017) while also impact-
ing fitness by enhancing protein erroneous interactions (Yang
et al. 2012) and the formation of toxic protein aggregates
(Bucciantini et al. 2002; Sabate et al. 2010; Geiler-Samerotte
et al. 2011). Protein stability is thus under strong purifying
selection to avoid the deleterious effects of misfolding
(Drummond and Wilke 2008). Accordingly, it has been shown
that proteins have evolved to stand beyond a stability thresh-
old (Bloom et al. 2005), although marginally (Taverna and
Goldstein 2002). Because mutations are on average destabi-
lizing, this definitely narrows down the spectrum of adaptive
mutations (Shoichet et al. 1995; DePristo et al. 2005;
Weinreich et al. 2006; Tokuriki et al. 2007, 2008; Lunzer et
al. 2010). Nevertheless, several studies have reported the ex-
istence of a genotype space where activity can be optimized
without compromising stability (Schreiber et al. 1994; van den
Burg and Eijsink 2002; Bloom et al. 2004; Knies et al. 2017;
Miller 2017). Even when improving function requires the fix-
ation of destabilizing mutations, compensatory mutations
can in principle cancel out stability losses arising from active
site evolution (DePristo et al. 2005; Tokuriki et al. 2008;
Tokuriki and Tawfik 2009; Storz 2018). Adaptive evolution
may even be facilitated by preexisting mutational robustness
against misfolding (Bloom et al. 2006, 2007). Therefore, al-
though the requirement of a stable, correctly folding protein
may sometimes slow down the evolutionary process, it is
rather unlikely that stability explains the distribution of en-
zyme kinetic parameters albeit marginally.

Enzyme kinetics evolution has often been considered the-
oretically through the lens of flux control (Burns et al. 1985;
Clark 1991; Fell 1992; Kacser et al. 1995; Yi and Dean 2019).
Indeed, the control of the flux in a metabolic pathway is
shared between all enzymes, in what is known as the sum-
mation theorem (Kacser and Burns 1973; Heinrich and
Rapoport 1974). Thence, because the sum of control coeffi-
cients must equal 1 within a pathway, if all enzymes have
similar kinetic parameters, none of them exerts a strong in-
fluence (Dean 1995). But if one enzyme departs from this
trend and becomes inefficient, it exerts a strong control at
the expense of others (Dykhuizen and Dean 1990). This leads
to diminishing-returns epistasis in which the fitness landscape
flattens because, as an enzyme becomes more efficient, sub-
sequent mutations have smaller effects (Kacser and Burns
1973; Dykhuizen et al. 1987; Tokuriki et al. 2012), a finding
that has since received empirical confirmation (Fell 1992;
Dean 1995; Lunzer et al. 2005; Yi and Dean 2019; Chou et
al. 2014).

Hartl et al. (1985) and Dean et al. (1986) have considered
such a fitness landscape under a population genetics frame-
work to conclude that enzymes may quickly reach a fitness
plateau and evolve on nearly neutral landscapes (Ohta 1992).
Nonetheless, these studies fall short of explaining why ineffi-
cient enzymes having stronger control do not evolve higher
activities (Yi and Dean 2019). In these models as in most, an
enzyme’s efficiency is captured by its activity, generally
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represented by a composite of kcat; KM and enzyme concen-
tration (Hartl et al. 1985; Clark 1991; Chou et al. 2014;
Kaltenbach and Tokuriki 2014), such that the distinct evolu-
tionary dynamics of these parameters, together with an
enzyme’s concentration, is ignored. This reduction of an
enzyme’s dimensionality goes against the empirical observa-
tion that each dimension may have a differential impact on
fitness in the context of antibiotic resistance (Walkiewicz et al.
2012; Stiffler et al. 2015; Rodrigues et al. 2016) and that each is
thus necessary to predict evolutionary outcomes (Walkiewicz
et al. 2012).

Perhaps more importantly, Heinrich et al. (1991) and
Schuster et al. (2008) have pointed out that these modeling
frameworks assume a constant value for either or both con-
centrations of the first substrate and of the final product
(Orth et al. 2010), whereas evolution should instead maximize
the amount of final products generated. Klipp and Heinrich
(1994) found that the aforementioned concentrations indeed
have a major influence on optimal rate constants under cer-
tain assumptions. Likewise, nutrient uptake is most often not
considered explicitly in existing models of enzyme evolution,
while it is obviously critical in the competition for resources
(Dykhuizen and Dean 1994).

Nutrient uptake occurs when metabolites move inwards
across cell membranes; it may rely on membrane permeability
only (passive diffusion) or involve channels and carrier pro-
teins, be they transporters or cotransporters (Stein 1986a).
Here, we build a model that explicitly includes passive (PD
hereafter) or facilitated diffusion (FD) followed by an un-
branched metabolic pathway to study how resource availabil-
ity coupled to transport modulates the evolution of enzymes
along the pathway. In ecological scenarios where individuals
compete for resources, natural selection should favor geno-
types that maximize the net intake of molecules and their
transformation, which are linked under both PD and FD.

Based on this premise, we confirm that the evolution of
enzyme kinetic parameters kf and kcat takes place on cliff-like
fitness landscapes where a fitness plateau covers a wide part
of the relevant parameter space. Kinetic parameters have
codependent but distinct evolutionary dynamics—and thus
distinct sensitivities to certain parameters of the model—
such that the shape of the plateau can be modulated by
changing parameters of the model within realistic ranges.
We show that this fitness landscape depends on features of
transporters that initiate a metabolic pathway, along with
parameters that vary among enzymes within a pathway,
like the tolerance to high concentrations of intermediate
metabolites or the reversibility of reactions.

We further demonstrate, using a simple population genet-
ics model, that the evolutionarily expected features of an
enzyme should be predictable, even though enzymes evolve
near-neutrally on the fitness plateau. This is because the
model includes slightly biased mutations that tend to pro-
duce a majority of less efficient enzymes. We thus postulate
that the wide variety of enzyme features reported might be
explained in a large part by differences in the shape of their
fitness landscapes. While testing this hypothesis will require
extensive information about individual enzymes, we made a

small step in this direction, showing that enzymes involved in
metabolic pathways with different types of transporters ex-
hibit differences that our model qualitatively predicts.

Results

Passive Diffusion is Generally Inadequate to Sustain
Cell Metabolism
In the version of our model in which intake relies on passive
diffusion (PD), the net uptake of a nutrient is a direct out-
come of its concentration gradient, and therefore of how
efficiently the first enzyme catalyzes its transformation inside
the cell. Assuming that fitness is proportional to the flux of
product of this reaction, we find that the fitness landscape has
a cliff-like shape with fitness increasing steeply as parameters
kcat and kf increase (see Supplementary materials, section
Text S1). The precise shape will not be commented in detail
here, for it is very similar to landscapes obtained under facil-
itated diffusion (FD, treated in the rest of this manuscript).

Importantly, our results indicate that PD can only sustain a
small part of the metabolism of most living cells given cell
permeabilities reported in the literature (Wood et al. 1968;
Milo et al. 2010), suggesting that this process may not be a
determining factor in the evolution of enzymes along meta-
bolic pathways. Indeed, even extremely efficient enzymes,
harboring values of kcat and kcat=KM close to their physical
limits, yield low inward fluxes that approach 10�2mM:s�1

when considering a spherical cell with a diameter
D ¼ 1lm. To get a sense of how low these fluxes are, we
calculated the maximum cell size they can theoretically sus-
tain. Considering that basal metabolic demands are approx-
imately proportional to the cell volume and using estimates
by Lynch and Marinov (2015) for this relationship, we pre-
dicted the maximum size enabled by sugar passive diffusion
(see Materials and Methods section). Setting a (conservatively
high) medium concentration in glucose ½G� ¼ 1M yields a
theoretical volume ceiling Vest ¼ 0:84lm3.

Nearly all eukaryotes, and most prokaryotes are de facto
larger than this threshold (Heim et al. 2017), which might help
explain the apparent ubiquity of FD. While this demonstra-
tion hinges on numbers for sugar uptake, which may arguably
be the task requiring the highest flux, PD may be limiting for
many other metabolites (Boer et al. 2010), depending on their
permeability and availability in the environment: even for very
high amino-acids concentrations that may only be met in
multicellular organisms (Schmidt et al. 2016) and assuming
the highest observed permeability for such metabolites
(Chakrabarti 1994), these levels are orders of magnitude lower
than with FD (see Supplementary material—section Text S1
for PD results).

General Shape of the Fitness Landscape under
Facilitated Diffusion
For most metabolites, FD relies on the specific binding of the
substrate to transmembrane carrier proteins (transporters
hereafter), followed by its translocation to the other side of
the membrane (Danielli 1954; Kotyk 1967; Stein 1986b). Our
model builds on ter Kuile and Cook (1994)’s approach to
model FD, considering the simplifying assumption of
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symmetric transport. Within this framework, FD operates on
the concentration gradient (Bosdriesz et al. 2018) and is sus-
ceptible to saturation, represented by constant KT—similar to
KM in the Michaelis–Menten equation—and an interaction
constant a (see Materials and Methods section for details).
We assessed how this saturation phenomenon influences the
selection pressure acting on forward enzyme kinetic param-
eters (kf and kcat) under various scenarios.

In order to depict a fitness landscape representative of an
average enzyme, we first consider a situation where trans-
porters induce a moderately low rate VTm and saturate
with a relatively high affinity—corresponding to a low KT

(fig. 1). In this situation, the inward flux at steady-state (which,
as argued in the introduction, can be considered representa-
tive of fitness) forms a plateau when the upstream enzyme in
the metabolic pathway has high kcat and kf. This low equilib-
rium flux elasticity coincides with the saturation theory
(Wright 1934; Kacser and Burns 1973; Hartl et al. 1985;
Dykhuizen et al. 1987; Dean 1995; Yi and Dean 2019), espe-
cially with its version incorporating facilitated diffusion (ter
Kuile and Cook 1994; Dean 1995). The flux plateau is delin-
eated by parallel isoclines (solid and interrupted lines in fig. 1)
oriented in the bottom-right direction of the landscape for
intermediate values of kcat and kf, such that decreasing kf by
one order of magnitude can be compensated by a similar
increase in kcat. While this mutual dependency holds even
for high kf values as long as kcat is not critically low (i.e., when
kcat > 10�3), it stops when kcat � 103, where increasing kcat

no longer improves fitness. Besides, the influence of kcat and kf

is not strictly equivalent, since the increase in flux is more
gradual in response to kf.

Furthermore, and contrary to the textbook picture
whereby most biological reactions are not limited by diffusion
at all (Bar-Even et al. 2011; Sweetlove and Fernie 2018), in-
creasing an enzyme’s association rate kf—be it through its

diffusivity or its binding rate—may still enhance the equilib-
rium flux when diffusion is substantially faster than catalysis.

Properties of Facilitated Diffusion Modulate the
Landscape
To explore the effect of FD kinetics on the evolution of
enzymes in the metabolic pathway, we studied the influence
of KT—the affinity of the transporter for the substrate—and
VTm—the maximum transport rate—still assuming that the
substrate is close to saturation (½Sout�=KT ¼ 10). We find that
increasing the transport flux VTm exerts a positive selection
pressure on kinetic parameters for the upstream enzyme (i.e.,
for increasing kcat and kf). The plateau is shifted accordingly
(see fig. 2A), towards the top-right corner of the landscape, at
a distance that corresponds to the magnitude of the change
in VTm. Increasing the affinity of the transporter (i.e., decreas-
ing KT), however, selects for higher kf (the isoclines are dis-
placed to the right and the fold change is similar to that of KT)
but has no other visible influence on kcat than increasing its
codependency with kf, a result that holds regardless of the flux
at saturation VTm (notice that we only considered high VTms,
larger than in the average case, because these cases are more
likely to be under directional selection).

This specific effect on the affinity of the upstream enzyme
is likely due to a competition between the transporter—
which can transport the substrate in both directions—and
the enzyme, which harvests the substrate at a rate that
depends on the dissociation constant KD ¼ kr=kf . It should
be noted that nutrients under lower demands—for example,
amino acids—are generally less concentrated in the environ-
ment, often coinciding with a higher affinity of their trans-
porter. Therefore, the possible combinations of flux and
affinity likely occupy a restricted space of possibilities where
flux and affinity are negatively linked (Gudelj et al. 2010;
Bosdriesz et al. 2018), which as can be seen in supplementary

FIG. 1. The flux of product following substrate uptake by transporters and conversion by a dedicated enzyme depends on kinetic parameters kf and
kcat. This landscape is based on a moderately low flux at saturation VTm ¼ 1lM:s�1 close to those measured for amino acids and nucleosides in E. coli
(Zampieri et al. 2019). We also set the transport saturation ratio ½Sout�=KT to 10 such that the FD process approaches saturation, and relatively high
transporter affinity KT ¼ 50lM, also in line with estimates for nucleosides (Griffith and Jarvis 1996; Xie et al. 2004). Other parameter values include
kr ¼ 103s�1 and ½Etot� ¼ 1mM. The color gradient indicates the absolute and normalized (with a maximum flux of 1) values of equilibrium flux.
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figure S3A, E, and I results in landscapes that mainly differ by
the minimum value of kcat on the plateau. In figure 2A, we
have considered ranges of empirical estimates for sugars (high
flux with low to moderate affinity) (Stein 1986b; Maier et al.
2002), nucleosides (Griffith and Jarvis 1996) and amino acids
(Stein 1986b; Zampieri et al. 2019) (weak to moderate flux
with moderate to high affinity), which indeed mainly corre-
spond to these combinations.

So far, we have considered transporters saturated by high
external substrate concentrations. Relaxing this assumption
has little impact on the fitness landscape, except that very low
values of kcat (lower than 10�2 in fig. 2B) can only sustain the
low influx of transporters far from saturation, but fail to keep
up with higher influxes in richer environments.

Enzymes Differ among Metabolic Pathways
We then superimposed empirical estimates of kinetic param-
eters over our theoretical fitness landscapes, after substituting
parameter kf for its usual empirical counterpart, kcat=KM.
Because kcat=KM ¼ kf kcat=ðkr þ kcatÞ, this approximation
only holds when kcat � kr . Representing the fitness land-
scape in this parameter space sets an inaccessible area in
the bottomright part of the landscapes where kf would ex-
ceed the diffusion limit (gray area on fig. 3). For purposes of
inclusiveness, we used kr ¼ 102s�1 by default—noting that
this limit would be displaced upwards for larger kr (and down-
wards otherwise).

We otherwise used sets of parameters that correspond to
typical features of sugar and amino acid/nucleoside trans-
porters to obtain fig. 3. Because we have previously shown
that changing the affinity or maximum flux of transporters
may move the fitness plateau, our model predicts that

enzymes involved in the corresponding pathways (e.g., of
sugars and amino acids) should have their own specific dis-
tributions. We see that enzymes involved in the central car-
bohydrate metabolism as categorized by Bar-Even et al.
(2011) have on average higher kcat and KM than those me-
tabolizing amino-acids and nucleotides. Our superimposition

FIG. 2. Features of a transporter have an impact on the flux landscape for upstream enzymes, as shown by the 0.9 isoclines—above which the
relative flux is> 90% – that delineate the fitness plateau for each set of parameter. (A) low (KT ¼ 0:1M) and high (10lM) transporter affinities are
considered, in combination with low (VTm ¼ 10�6M), moderate (10�4:5M) or high maximum flux (10�3M). Increasing KT extends the plateau only
towards the left part of the landscape, allowing enzymes with lower kf on the plateau, whereas decreasing VTm extends the plateau in both
directions. (B) the shape of the fitness plateau is however little dependent on the saturation of the transporter, for a transporter with moderate flux
(VTm ¼ 10�4:5M:s�1; the effect is identical for higher VTm, see supplementary fig. S2, Supplementary Material online). Other parameter values:
kr ¼ 1000=s; ½Etot� ¼ 1mM and ½Senv� ¼ 10� KT .

FIG. 3. In vitro experimental estimates of kinetic parameters kcat and
kcat=KM exhibit different distributions for enzymes involved in differ-
ent categories of pathways—as identified by Bar-Even et al. (2011)—
namely (AFN): amino acids, fatty acids, and nucleotides and (CE):
carbohydrates and energy. Corresponding fitness landscapes—differ-
ing by transporter features—are superimposed, with the parameter
space narrowed down due to the diffusion limit (grey area, set for
kr ¼ 102s�1). The isoclines shown correspond to parameter values
typical of sugar transporters (KT ¼ 5mM; VTm ¼ 1mM:s�1, in red)
(Maier et al. 2002) or amino acids transporters (same as in fig. 1, in
black).
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with the predicted fitness plateaus in figure 3 suggests that
there may indeed be an explainable difference between
enzymes contributing to carbohydrate processing (in red)
and to that of other primary metabolites (in black, e.g., amino
acids). We acknowledge that this result implicitly suggests
that enzymes within a pathway have evolved on a common
fitness landscape, spreading neutrally onto the fitness plateau.
This is by no means our interpretation, as this subset of the
full data set includes enzymes that differ in many other ways
that, as we will see, make each enzyme evolve on its own
fitness landscape and thereby potentially explain a large part
of this observed variance.

Downstream Enzymes also Evolve on Cliff-like Fitness
Landscapes
One of the factors that make enzymes different along a path-
way is their position, such that the fitness landscape in figure 1
may only hold for the most upstream enzyme in a pathway.
Indeed, because the flux of the first product in a pathway
increases with the substrate gradient across the cell mem-
brane, the upstream enzyme of a given metabolic pathway is
selected for efficiency as described above. In contrast, this
selection pressure does not apply directly downstream; at
steady-state, even inefficient enzymes can in principle process
newly formed substrate molecules at an elevated rate, assum-
ing that the concentration of the substrate is allowed to reach
any steady-state value. This is an obviously unreasonable as-
sumption, since a part of this standing substrate should be
lost by outward diffusion or degradation (Jones et al. 2015;
Bosdriesz et al. 2018). The loss of fitness may therefore result
from the loss of metabolites in a way that can be modeled by
a constant degradation rate gd (Chou et al. 2014) (assuming

that the external environment is infinite, the degradation
term can as well represent an efflux). Highly concentrated
metabolites may also be involved in widespread nonspecific
(Keller et al. 2015) or promiscuous interactions (Khersonsky
and Tawfik 2010; Sch€auble et al. 2013; Peracchi 2018) that
may interfere with other cellular processes; this is well cap-
tured by the linear cost as nonspecific interactions should
follow Michaelis–Menten kinetics albeit with much lower
affinities, hence following an approximately linear relationship
up to very high cellular concentrations (see Materials and
Methods section for more details). However, for some reac-
tions the accumulation of metabolites may result in the pro-
duction of toxic compounds (Lilja and Johnson 2017; Niehaus
and Hillmann 2020), hence triggering toxicity best modeled as
a nonlinear fitness cost (Clark 1991; Wright and Rausher
2010).

We first consider a “perfect,” highly concentrated up-
stream enzyme (kf ¼ 1010M�1 s�1; kcat ¼ 106s�1;
kr ¼ 103s�1; ½Etot� ¼ 10�3M) and focus on the second en-
zyme in the pathway, showing that it evolves on a fitness
landscape that has a similar shape than described above, still
hitting a plateau (fig. 4, with the same parameterization as fig.
1). The degradation rate creates a ceiling for the concentra-
tion of the product of the first reaction, such that reducing gd

allows for higher concentrations (see supplementary fig. S4,
Supplementary Material online) and makes the flux tolerant
to second enzymes with lower kfs, whereas selection on kcat is
barely impacted by this parameter. The plateau is therefore
extended to the left when high product concentrations are
enabled at low gd (see fig. 4B). The shape of the plateau is little
impacted by changes in the efficiency of the first enzyme,
especially when it stands on the plateau. These results are
almost independent of the transporter initiating the pathway

FIG. 4. Downstream enzymes exhibit similar fitness landscapes as those upstream, with a dependency to degradation parameter gd. (A) A high
degradation rate (gd ¼ 10�2=s) results in a fitness plateau for the second enzyme very similar to that of the first enzyme; in the case presented the
first enzyme is considered “perfect” in order to draw the fitness landscape of the second enzyme
(kf ¼ 1010M�1:s�1; kcat ¼ 106s�1; kr ¼ 103s�1; ½Etot� ¼ 1mM). (B) decreasing the degradation rate allows less efficient enzymes (with lower
kcat or kf) to reach the fitness plateau. Considering the first enzyme to be inefficient (kf ¼ 102M�1:s�1; kcat ¼ 10�2s�1; kr ¼ 103s�1) instead of
perfect marginally changes the fitness landscape by making organisms tolerant to extremely low kcat. Other parameter values are identical to fig. 1
(findings are relatively similar for sugar-like transporters, as reported in supplementary fig. S6, Supplementary Material online).

Resource Uptake and the Evolution of Moderately Efficient Enzymes . doi:10.1093/molbev/msab132 MBE

3943



(see supplementary fig. S6, Supplementary Material online for
the case of moderate affinity, high flux transporters).

The shape of the negative relationship between metabolite
concentration and fitness can be important (supplementary
figs. S7–S9, Supplementary Material online), as it can make
the fitness landscape of an enzyme dependent on the overall
flux of the metabolic pathway, and therefore on other
enzymes in the pathway. Indeed, low general fluxes (as mod-
eled by an inefficient first enzyme in supplementary figs. S7
and S8, Supplementary Material online) make the metabolite
concentration below its toxicity threshold, therefore making
organisms tolerant to enzymes with lower kf and kcat. Taken
together, these results show that the precise epistatic rela-
tionship between enzymes in a pathway will depend on the
exact cost function applied, with a linear cost generating
epistasis for kcat only and a nonlinear cost possibly impacting
both kf and kcat.

The Reversibility of Reactions also Matters
Reversibility is an intrinsic feature of chemical reactions that
cannot be directly overcome by Evolution (Haldane 1930;
Cornish-Bowden 1979). A highly reversible reaction corre-
sponds to a large intrinsic equilibrium constant Keq ¼ ½S�eq=
½P�eq (Klipp and Heinrich 1994), and results in higher back-
ward than forward rates in the following chemical equation:

Eþ S�
kf

kr

ES�
kcat

kinh

Eþ P1; (3)

where kinh represents the rate at which enzyme and product
combine back. Such a (reversible) reaction could in principle
influence the selective pressure acting on the following en-
zyme in the pathway, for both enzymes compete to process
the same metabolite P1. We thus quantified how reversibility
affects the evolution of an enzyme downstream (supplemen-
tary figs. S10 and S11, Supplementary Material online).

The equilibrium constant Keq has a similar (nonlinear) im-
pact on the fitness landscape of the second enzyme to that of
the degradation rate, with a highly reversible upstream en-
zyme exerting a selection pressure downstream towards an
increase of kinetic parameters (supplementary fig. S10A,
Supplementary Material online). Indeed, increasing Keq moves
the fitness plateau toward the upper-right corner in the (kf,
kcat) parameter space, hence selecting for more efficient
downstream enzymes. The effect appears linear, except for
very low values of Keq where metabolite accumulation exerts
a dominant role in shaping the fitness landscape (through the
degradation rate gd, set to a low residual value). Therefore, the
reversibility of the upstream reaction appears like a critical
parameter for the evolution of an enzyme.

Evolutionary Dynamics of Enzyme Kinetic Parameters
How much variance in evolutionary outcomes these differ-
ences in fitness landscapes may explain is contingent on the
interplay between selection, mutation, and drift. Small differ-
ences in an isocline position should indeed be of little impor-
tance if populations perform random walks on the fitness
plateau, for instance. To approach how populations evolve

on our mathematically derived fitness landscapes, we built a
simple population genetics model in which absolute fitness is
directly proportional to the flux arising from the first enzyme
at steady-state—which itself equals the net inward flux of
nutrients. Two different levels of metabolic demands were
considered, corresponding to parameter values of amino
acids/nucleosides and sugar transporters (supplementary
fig. S3A and I, Supplementary Material online). In this instance
of the model, only kcat and kf were susceptible to evolve
through mutations. Mutational effects on log 10kcat and
log 10kf were drawn from independent normal distributions
with mean b � 0, and the absolute value of b setting the
intensity of a mutational bias towards less efficient parameter
values, as has been widely documented in many contexts
(Eyre-Walker and Keightley 2007; Serohijos et al. 2012;
Heckmann et al. 2018). The standard deviation of the distri-
bution of mutational effects equals 0.3 such that most muta-
tions explore the neighboring parameter space, seldom
changing a parameter by more than one order of magnitude
(one log 10 unit) in compliance with empirical estimates
(Carlin et al. 2016). Since the relation between kinetic param-
eters may be constrained—for example, due to shared prop-
erties of the energy profile of a reaction—we tested the
influence of negative and positive relationships using bivariate
normal distributions, with three different values of q (see
Materials and Methods section for details).

In the absence of mutational bias (b¼ 0), simulated
enzymes spread over the fitness plateau, as expected (supple-
mentary fig. S16A, Supplementary Material online for low flux,
supplementary fig. S17A, Supplementary Material online oth-
erwise). The onset of the plateau depends on the strength of
drift and hence derive from the effective population size Ne,
following the classical expectation that selection becomes in-
efficient when Ne � s < 1 (Wright 1931; Kimura 1968).
Introducing a mutational bias that makes enzyme kinetics
less efficient on average has a strong effect on both kcat and
kf, preventing simulated enzymes from improving far above the
drift barrier (fig. 5A for low flux, fig. 5B otherwise). Even weak
biases (b ¼ �0:1) lead to enzymes evolving in the vicinity of
the isocline where Ne � s � 1. Increasing the strength of this
bias to 0.2 only slightly decreases the population variance
around this expectation. Finally, mutational correlations do
not impact much the distribution of evolutionary outcomes
(supplementary fig. S18, Supplementary Material online).

Our results suggest a strong effect of the effective popula-
tion size on enzyme evolution, such that species with Ne

above 105 (Bobay and Ochman 2018, most unicellular organ-
isms) should express extremely efficient enzymes. This
appears to not be the case, as for instance Eukaryotes and
Prokaryotes display similar enzymes despite large differences
in effective population sizes (Bar-Even et al. 2011). As we will
later discuss, this conundrum might resolve when considering
the smaller size of organisms forming larger populations, mak-
ing them more sensitive to noise in gene expression and
favoring higher concentrations. Notwithstanding this issue,
the prediction of enzymes evolving a predictable set of kinetic
parameters strongly suggests that a large part of the broad
variance in enzyme features is due to differences in the
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selective context experienced by each, thereupon requiring
further investigation on the dependency of the position of the
fitness plateau to parameters of our model.

The Joint Evolution of Enzyme Concentrations and
Kinetic Parameters
Hitherto, we have considered enzymes to be highly concen-
trated, an assumption that we now relax since it is an impor-
tant component of the presumed kinetic activity (Koshland
2002). Predictably, increasing the concentration of the first or
second enzyme in a pathway releases the selection on their
kinetic parameters (Noor et al. 2016), producing larger fitness
plateaus as an enzyme concentration increases (see supple-
mentary figs. S12B and S13B, Supplementary Material online
for this influence in different contexts). Due to the compen-
satory effects between concentration and activity, we antic-
ipate that the joint evolutionary dynamics of the
concentration and kinetic parameters should yield a negative
correlation between them, as reported by Davidi et al. (2016,
2018).

Despite their common role on reaction efficiency, enzyme
concentration expectedly responds to very different selection
pressures than kinetic parameters, as increased gene expres-
sion levels come with costs (Wagner 2005; Lang et al. 2009;
Scott et al. 2010; Noor et al. 2016; Kafri et al. 2016). Indeed,
producing extra proteins requires both energy and matter
(Novick and Weiner 1957; Stoebel et al. 2008; Wagner 2005;
Lynch and Marinov 2015) and may impede the efficiency of
physical processes that rely on an optimal intermediate con-
tent (Dong et al. 1995; Dill et al. 2011; Andrews 2020). We

designed a new instance of our population genetics model to
study the tangled evolution of kinetic constants and enzyme
concentration, introducing two of these costs: 1) the cost of
producing proteins c, considered to be proportional to con-
centration (Wagner 2005; Chou et al. 2014; Lynch and
Marinov 2015) and 2) the exponential cost of an increase
in macromolecular crowding, which hinders diffusion and
thus slows down reactions (Dill et al. 2011; Schavemaker et
al. 2018; Andrews 2020) (see supplementary fig. S15,
Supplementary Material online for the resulting fitness land-
scapes of enzyme concentration).

The two types of costs result in a different shape of the
fitness landscape, with the noticeable difference that evolu-
tionarily expected concentration depends on Ne when the
cost of production is considered (supplementary fig. S19,
Supplementary Material online) but not with crowding
effects (supplementary fig. S20, Supplementary Material on-
line). With a combination of the two costs, enzyme concen-
trations decrease with Ne and production costs, resulting in
the evolution of higher kinetic constants (fig. 6). This is be-
cause at higher effective sizes, direct costs of protein produc-
tion are large enough to incur effective selection for lower
protein expression. This is no longer the case when Ne

decreases, such that the major force driving the optimization
of enzyme concentration becomes that opposing macromo-
lecular crowding, which is less sensitive to Ne (as shown in
supplementary fig. S19, Supplementary Material online). The
balance between these two selective forces, and the depen-
dency to Ne, obviously depend on the relative importance of
these costs (supplementary fig. S20, Supplementary Material
online), itself depending on many parameters (protein length,

FIG. 5. Population genetic simulations predict that enzymes should reach a predictable set of features when mutation biases towards lower
efficiencies are considered (see supplementary fig. S17, Supplementary Material online for the case of an absence of bias). Indeed, the mutation
selection drift equilibrium establishes close to an isocline indicative of effective selection that depends on the effective population size Ne. The cases
considered here are that of a transporter with a low flux at saturation and high affinity (A; VTm ¼ 1lMs�1 and KT ¼ 10lM) and one with a high
flux at saturation but low affinity (B; VTm ¼ 1mMs�1 and KT ¼ 100mM) with effective population sizes ranging from 102 to 105 (different colors)
and two strengths of the mutational bias (the absence of mutational bias was also considered, see Supplementary Material online). Each of 30
independent simulations for each scenario is represented a dot in the “empirical” parameter space (kcat; kcat=KM), but only kcat and kf were
susceptible to evolve. kr is set to 103s�1 such that the grey part of the parameter space is inaccessible to enzymes that would otherwise exceed the
diffusion limit.
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molecular weight, etc.) that should only make enzymes mar-
ginally different within a given species (when their activity
evolves on similar fitness landscapes).

Discussion
Most enzymes have been considered to be only moderately
efficient (Bar-Even et al. 2011), if not sloppy (Bar-Even et al.
2015). This claim was put into perspective by Newton et al.
(2018) who argued that the link between fitness and enzyme
efficiencies is complex and may be partly enzyme dependent,
such that all enzymes may not evolve on a common fitness
landscape. Through this work, we have developed a model
where enzyme efficiencies are mechanistically linked to fitness
through the impact of nutrient gradients on the production
of metabolites. Our results emphasize that an enzyme’s fitness
landscape—and the resulting mutation–selection–drift bal-
ance—may indeed be largely context dependent, possibly
explaining a large part of the extreme observed variance in
enzyme features.

At first sight, all enzymes evolve on fitness landscapes that
have the same general shape, with a fitness plateau sur-
rounded by a steep slope. While this shape is usual in models
of enzyme evolution (Hartl et al. 1985; Kaltenbach and
Tokuriki 2014; Yi and Dean 2019), in our model the landscape
is drawn in the parameter space formed by the two forward
kinetic parameters kcat and kf, instead of a composite
“efficiency” whose relevance is questionable (Koshland
2002; Eisenthal et al. 2007). Our model allows to predict the
precise position of the fitness plateau in various contexts,
showing that model parameters may have a selective impact
on kf, kcat, or both, thereby confirming the relevance of con-
sidering their distinct evolutionary dynamics.

We have shown that the exact position of the plateau is
important through a population genetics model including
mutational biases that produce less efficient enzymes at a
slightly higher frequency. Despite their small effect, these
biases are sufficient to have a significant impact on the evo-
lutionary dynamics occurring on the fitness plateau, prevent-
ing enzymes to explore the parameter space far away from an
isocline whose precise value can be predicted. Because the
mutation–selection–drift balance occupies a narrow part of
the landscape, this makes the evolution of an enzyme, in
principle, highly predictable. Likewise, we anticipate that dif-
ferences between enzymes should largely be explained by
differences in the shapes of their individual fitness landscapes.

Overall, the selective pressure acting on an enzyme results
from an interplay between several biochemical factors. We
have effectively found that the shape of the fitness landscape
is first governed by features of the transporter initiating a
pathway, especially the maximum flux they can sustain.
Using parameters that correspond to empirical estimates
for sugars and amino acids/nucleosides, we have found that
enzymes contributing to subsequent metabolic pathways
should be different, with those in the “sugars” pathway being
selected for faster kinetics.

While sharing a common transporter, enzymes along a
pathway are also subject to a variety of local chemical con-
texts, making each evolve on its own unique fitness landscape.
This could explain, at least in part, the large within-pathway
variance of enzyme kinetic parameters. Physical constraints
may for instance act differentially on different enzymes, as
exemplified by the intrinsic reversibility of a reaction that fuels
the selective pressure towards higher efficiency in down-
stream enzymes. This may contribute to explain the high
efficiency of a few enzymes like TIM (Williamson et al.
1967; Davidi et al. 2018).

One way to compensate for low kinetic constants is to
enhance the level of expression of an enzyme, as confirmed by
our model—concentration indeed has a strong influence on
the fitness landscape of kf and kcat. Nonetheless, concentra-
tion and kinetic parameters face very distinct selection
regimes: while the latter are both under directional selection,
vanishing at high efficiencies, concentration is under stabiliz-
ing selection—owing to a combination between its positive
impact on the flux and the adverse costs to high expression—
as already pinpointed by Chou et al. (2014). Their joint evo-
lution is complex because the position of the concentration
optimum depends on an enzyme’s kinetic constants, whose
fitness landscape itself depends on concentration. This results
in a slightly increased variance in enzyme efficiencies com-
pared to simulations with fixed concentrations, along with a
complex relationship with genetic drift, because smaller pop-
ulations tend to tolerate higher enzyme concentrations and,
therefore, evolve less efficient enzymes.

It should be noted that our model does not consider an-
other selection pressure on enzyme concentrations that arises
from noise in gene expression, as argued by Wang and Zhang
(2011). Indeed, low expression results in detrimental noise
that should be avoided by pushing enzyme concentrations
towards higher values in small organisms like Prokaryotes (see

FIG. 6. Simulations of the joint evolution of enzyme concentration
and kinetic parameters, with a 2-fold cost of enzyme overexpression
(the direct metabolic cost and the indirect cost of cell packing). The
case considered here is that of a transporter with a high flux at sat-
uration and low affinity (VTm ¼ 1mMs�1 and KT ¼ 1mM) under a
high mutational bias on kinetic constants (b ¼ �0:2). Two different
costs of protein production c are considered along with four effective
population sizes ranging from 102 to 105. We ran 30 independent
simulations for each scenario, each represented by a dot in the
“empirical” parameter space as described in fig. 5.
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supplementary Text S6, Supplementary Material online for an
estimate of this effect). This could result in a different rela-
tionship between Ne and enzyme efficiencies than considered
here, possibly explaining the confusing observation that spe-
cies with larger populations (and smaller sizes) do not express
markedly more efficient catalysts. Furthermore, an enzyme’s
effective concentration can also increase through compart-
mentalization (Ov�adi and Saks 2004; Diekmann and Pereira-
Leal 2013; Cornejo et al. 2014) and substrate channeling
(Welch and Easterby 1994; Huang et al. 2001; Sweetlove
and Fernie 2018), within the limits imposed by noise, and
modify the selective pressure acting on kinetic parameters.

This illustrates that rather than making precise predictions,
our study aims at making the strong claim that selection
acting on enzyme features is important for their diversity,
possibly largely overcoming the diversity arising from neutral
processes. If this is indeed the case, trends in enzyme evolu-
tion can be predicted—as it was shown empirically in the
context of antibiotic resistance (Walkiewicz et al. 2012)—and
further improvements of this model should allow one to
predict the expected features of individual enzymes. Such
improvements are made easier by the use of a mechanistic
framework, where fitness arises as enzymatic efficiency helps
ingesting nutrients and win the competition for resources.
This framework could even be enriched by other dimensions
relevant to the genotype-phenotype-fitness map (Bershtein
et al. 2017; Echave 2019; Kinsler et al. 2020).

Unfortunately, mechanistic does not mean free of a defi-
nition of fitness, as we have here assumed that the latter is
proportional to metabolic flux, hence considering each flux in
isolation. Fitness instead results from a wide range of meta-
bolic pathways that combine together and should all be com-
petitive to certain degrees. How global epistasis builds up
(Weinreich et al. 2013; Otwinowski et al. 2018; Reddy and
Desai 2021), and genetic drift acts in this context, is far from
obvious (Iwasa et al. 2004; Weinreich and Chao 2005;
Weissman et al. 2009). But this should not impact much
how enzymes evolve in old, overall efficient pathways, as
any impediment in efficiency should have a relatively inde-
pendent effect on fitness in this context, as captured by our
model. Understanding these complex interactions between
pathways would nevertheless be crucial to understand how
metabolic pathways arose and improved, likely from a highly
inefficient state during early steps in the evolution of life on
Earth (Kacser and Beeby 1984; Schmidt et al. 2003; Heckmann
et al. 2018).

Materials and Methods

Quantifying the Maximum Size for Cells Using Passive
Diffusion
If a cell is to be viable, it has, at least, to uptake enough glucose
to compensate for basal metabolism—metabolism that
allows to maintain the same cell size for nonactively growing
cells (Lynch and Marinov 2015)—leading to the following
equation: /PD ¼ CM, with /PD the uptake through passive
diffusion and CM the basal metabolism demand. To calculate
the maximum size a cell can reach using only passive

diffusion, we relied on the formula CM ¼ 0:39V0:88ð109ATP
=hrÞ estimated in (Lynch and Marinov 2015). We also as-
sumed the cell to be of spherical shape, both concentra-
tions—inside and outside the cell—to be constant with the
cellular concentration staying so low that it can be over-
looked, meaning that the uptake resulting from passive dif-
fusion can merely be written as /PD ¼ P:½Sout�: SAsphere

Vsphere
, where

SAsphere and Vsphere are the surface area and the volume of a
sphere, and P represents the cell permeability and was mea-
sured to 10�6lm�1 (Wood et al. 1968) for glucose. Finally, we
considered that each glucose yields 30 ATP molecules (Rich
2003).

Flux Sustained by the First Enzyme
When assessing the flux of product made by the first enzyme
in a pathway, both (PD) and (FD) result in similar sets of
equations; we focus on FD here (see supplementary Text S5
- Mathematical appendix, Supplementary material online for
a comparison with PD). FD typically relies on the specific
binding of substrate molecules—located outside the cell—
by transmembrane carrier proteins, followed by their trans-
location into the cytoplasm (Danielli 1954; Wilbrandt and
Rosenberg 1961; Kotyk 1967; Bosdriesz et al. 2018). This spe-
cific process obeys Michaelis–Menten-like kinetics when
transport is assumed to be symmetric (Kotyk 1967), which
can be modeled through Brigg–Haldane equations (Briggs
and Haldane 1925; Haldane 1930; Stein 1986b):

d½Sin�
dt
¼ VTm:

½Sout� � ½Sin�
KT þ ð½Sout� þ ½Sin�Þ þ a: ½Sout�½Sin�

KT

(4)

with:

VTm: the maximum rate of a given carrier protein;

KT : a constantinversely proportional to the transpor

terefficiency;

a: the Kotyk interactive constant capturingthedis

equilibrium between boundand free transporters:

8>>>>>>>><
>>>>>>>>:

By construction, a cannot exceed 1 Kotyk (1967) and is
close to this upper limit for sugars (e.g., a ¼ 0:91 for glucose
(Teusink et al. 1998), so we set a¼ 1 by default in this study,
maximizing the effect of interaction).

A model including both FD and irreversible substrate con-
version by an enzyme therefore corresponds to the following
chemical equation:

Sout �
VTm;KT

a
Sin þ E�

kf

kr

ES!kcat
Eþ P (5)

Using analytical tools (see ter Kuile and Cook (1994) and
Bosdriesz et al. (2018), rederived in supplementary —Text S5
Mathematical appendix, Supplementary material online), the
flux can be determined through the following set of
equations:
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½ES�	 ¼ kf ½Sin�	

kr þ kcat þ kf ½Sin�	
:½Etot� (6)

v ¼ d½P�
dt
¼ kcat½ES�	; (7)

where:

½Sin�	 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
(8)

with:

a ¼ kf kcat Etot½ � 1þ ½Sout�
KT

� �
þ kf VTm

b ¼ kf kcat½Etot�ð½Sout� þ KTÞ þ ðkcat þ kr � kf ½Sout�ÞVTm

c ¼ �VTm½Sout�ðkr þ kcatÞ

8>>>><
>>>>:

(9)

Multiple Enzymes Model
In order to study the evolution of downstream enzymes, we
considered an unbranched metabolic pathway in which the
product formed by the first reaction serves as the substrate
for a second reaction whose flux determines fitness.
Theoretically, as there is nothing prohibiting increase in prod-
uct concentrations—for it is not considered reversible at this
point—any second enzyme should be able to sustain any
metabolic demand. We penalized large increases in cellular
concentrations through a degradation process of the product
of the first reaction, occurring at rate gd (� this concentra-
tion). The chemical reactions occurring after uptake
(Michaelis Menten part of equation 5) are described by the
following equations:

Sin þ E1�
kf1

kr1

E1S!kcat1
E1 þ P1 (10)

P1 þ E2�
kf2

kr2

E2P1!
kcat2

E2 þ P2

# gd

P1out

(11)

Such a system may reach a steady-state at which the cel-
lular concentrations of the substrate Sin and of the first prod-
uct P1 are constant. At this point, the net instantaneous
uptake of substrate equals the instantaneous production of
P1 which, in turn, equals the sum of the instantaneous
amount of degraded P1 and the instantaneous production
of P2, according to the principle of mass conservation. It yields
the following system of equations:

VTm:
ð½Sout� � ½Sin�Þ

KT þ ð½Sout� þ ½Sin�Þ þ a:
½Sout�½Sin�

KT

¼ Vm1:
½Sin�

KM1 þ ½Sin�

(12)

Vm1:
½Sin�

KM1 þ ½Sin�
¼ Vm2:

½P1�
KM2 þ ½P1�

þ gd:½P1� ; (13)

where appear the traditional Michaelis–Menten kinetic
parameters for the (ieth) reaction:

Vmi
¼ kcati

½Etoti
�

KMi
¼ kri

þ kcati

kfi

:

8><
>:

To test the potential influence of toxicity, we defined the
absolute fitness as a function of both the flux and a toxicity
factor whose influence is represented through a sigmoid func-
tion and reflects the nonlinearity nature of toxic effects (Clark
1991; Wright and Rausher 2010): f ¼ /ð1� ½P�

½P�þTÞ
In an independent section, we also introduced reversibility

through the modification of equation (10), which becomes:

Sin þ E1�
kf1

kr1

E1S�
kcat1

kinh1

E1 þ P1 (14)

Such a phenomenon is described by the more general
form of Haldane equation (Haldane 1930; Cornish-Bowden
1979), which changes the contribution of the first reaction
(Vm1:

½Sin�
KM1þ½Sin�) in both equations (12) and (13) to:

Vm1þ :
½Sin�

KM1þ þ ½Sin� þ KI½P1�
� Vm1� :

½P1�
KM1� þ ½P1� þ ½Sin�=KI

with Vm1þ and KM1þ respectively corresponding to the pre-
vious Vm1 and KM1, while:

Vm1� ¼ kr1½Etot1�

KI ¼ kinh1=kf1

KM1� ¼ KM1þ=KI

:

8>><
>>:

To solve these systems, we implemented the Newton
method (Atkinson 1989) aiming to find ½Sin�	 and ½P1�	.
We ran the algorithm starting from very low values of con-
centration (both set to 10�20M) to determine numerically
the equilibrium without facing convergence problems. The
final flux can then be determined through the “production”
part of equation (13), that is, Vm2:

½P1�
KM2þ½P1�.

Validation of the Method and Computing of the
Fitness Landscapes
To validate the approach, we compared equilibrium results
obtained with Raphson–Newton algorithm to those obtained
when simulating the process with Euler explicit schemes for a
set of (3x3) kinetic values – kcat and kf - encompassing three
orders of magnitude (see supplementary Section Text 5,
Supplementary material online for further details).

We then drew fitness landscapes after determining the
flux—assumed to be to be linearly related to fitness—
achieved for enzyme kinetic parameters kcat and kf varying
by 10 orders of magnitude, setting kr to 103s�1—within the
range found for several enzymes (Klipp and Heinrich 1994;
Knowles and Albery 1977)—unless stated otherwise. Except
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in the section dedicated to the influence of enzyme concen-
tration, we set the enzyme concentration such that
½Etot� ¼ 1mM, lying nearby the highest observed values
(Albe et al. 1990; Noor et al. 2016). Other parameters are
detailed on a case-by-case basis as they may change depend-
ing on the goal of each section. To compare with the data and
visualize results in the experimenter’s parameter space, we
also determined the flux and plotted simulation results using
kcat and kcat

KM
, also making them vary by 10 orders of magnitude.

We divided the parameter space in 100 log-equidistant values
(250 for representations with kcat=KM to obtain a cleaner
demarcation for the diffusion limit).

Population Genetics Model
Evolutionary simulations rely on a Wright–Fisher process in-
cluding the selective effects of mutations displacing enzymes
on mathematically derived fitness landscapes. Two fitness
landscapes were considered: weak flux, high affinity (supple-
mentary fig. S3A, Supplementary material online) and high
flux, low affinity (supplementary fig. S3I, Supplementary ma-
terial online), both with saturated facilitated diffusion
(½Sout� ¼ 10KT) and the following constant parameters: kr ¼
103s�1 and ½Etot� ¼ 1mM. Mutations occur at a rate l
¼ 10�1=Ne following reproduction, with an effect sampled
in Gaussian distributions with dispersion (r ¼ 0:3). The
mean effect of a mutation is given by parameter b, hence
representing the mutation bias—absent with b¼ 0, low
(b ¼ �0:1) or high (b ¼ �0:2). Kinetic parameters were
initiated to the inefficient values of kcat ¼ 10�3s�1 and kf

¼ 102M�1s�1 and kf was limited to values under the diffu-
sion limit—1010M�1s�1 (kcat was also limited to 106s�1 when
b¼ 0 to avoid physical outliers). To analyses simulation out-
comes, we picked out the kinetic and fitness values of the
most represented genotype when multiple variants were seg-
regating. Thirty simulations were ran for each set of param-
eters. Finally, we verified that evolutionary steady-states were
reached and considered it was the case when at least the
average fitnesses (over all simulations) of the last three
time-steps were not significantly different one from another
(supplementary figs. S5 and S6, Supplementary material
online).

We also simulated the case where mutations between
parameters are correlated. We tested both positive and neg-
ative mutational relationships through a bivariate Gaussian
distribution whose correlation coefficient were set to q ¼ �
0:8; q ¼ �0:5; q ¼ þ0:5 (see supplementary fig. 18,
Supplementary material online for the results with a moder-
ate flux).

Evolution of Enzyme Concentrations
Finally, we simulated the joint evolution between kinetic
parameters and enzyme concentration, repeating the previ-
ous procedure with concentration as an evolvable quantity
and the fitness function including deleterious effects of extra
gene expression (see supplementary section Text S5,
Supplementary material online for the effect of each cost
considered independently one from another). Mutations af-
fected either levels of expression or kinetic constants, with

those affecting levels of expression (in log values) being drawn
from Gaussian distributions with mean 0 and r ¼ 0:2 to
comply with existing estimates (Landry et al. 2007; Metzger
et al. 2016; Hodgins-Davis et al. 2019). Because sugars are
directly involved in energy metabolism, we computed these
simulations for the case of a high flux which can more readily
be linked to the cost of expression.

As explained above, producing extra proteins is costly,
both energetically and because it may increase a cell’s crowd-
ing. The cost of protein production is considered to be pro-
portional to the steady-state enzyme concentration, with a
slope c. Empirical estimates suggest that c should be in the
range ½10�4; 10�3� (Wagner 2005; Lynch and Marinov 2015),
such that producing an extra mM of a protein would impede
the whole energy budget by one 10,000th to one 1,000th (we
also consider c ¼ 10�5 and 10�2 in the SM). Accordingly, we
calculate the absolute fitness f ¼ U� ½Etot�c, where U is the
flux generated by the enzyme.

The influence of crowding was computed by penalizing kf

through an effective kf ;act ¼ kf :10�ð½Etot�þ½Mb�Þ=½2Mb�, where ½
Mb� ¼ 2:5:10�3M represents the basal protein concentra-
tion of a viable cell and also constitutes a scaling factor
that complies with Andrews (2020) log-linear influence of
crowding or glass transition effects described by Dill et al.
(2011).

Data Availability
The models have been implemented using R. The source code
for these models and the simulated data are available from
https://gitlab.in2p3.fr/florian.labourel/ruemee.

All the enzyme data used in this work to compare fitness
landscapes and measured values were recovered from (Bar-
Even et al. 2011) and so was the classification of reactions with
regards to metabolic groups. Thanks to their authors and
publisher, data sets are publicly available at https://pubs.acs.
org/doi/10.1021/bi2002289. Apart from that, no new empir-
ical data were generated in support of this research.

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online.
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